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Ab initio study of high-lying doubly excited states of helium in static electric fields: Complex-scaling
generalized pseudospectral method in hyperspherical coordinates
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We present a complex-scaling (CS) generalized pseudospectral (GPS) method in hyperspherical coordinates
(HSC) for ab initio and accurate treatment of the resonance energies and autoionization widths of two-electron
atomic systems in the presence of a strong dc electric field. The GPS method allows nonuniform and optimal
spatial discretization of the two-electron Hamiltonian in HSC with the use of only a modest number of grid
points. The procedure is applied for the first precision calculation of the energies and autoionization widths for
the high-lying 1Se, 1P o, 1De, and 1F o (n = 10–20) doubly excited resonance states of He atoms. In addition,
we present a theoretical prediction of the energies and widths of high-lying doubly excited resonance states of
1P o (n = 8–15) in external dc electric field strengths of 3.915–10.44 kV/cm. The calculated dc-field perturbed
high-lying resonance energies are in good agreement with the latest experimental data.
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I. INTRODUCTION

The helium atom is the simplest two-electron three-body
system that has been studied extensively both theoretically
and experimentally since the first experiment by Madden and
Codling on doubly excited states in 1963 [1]. From an excita-
tion energy of 57 eV to the He+ N = 2 threshold at 65.4 eV,
the spectrum of helium contains a number of Rydberg series of
autoionizing states embedded in the He+ 1sεl continuum. Due
to the existence of strong electron-electron correlation, higher
members of the Rydberg series cannot be described by the
single-configuration or mean-field approximation. Numerous
theoretical investigations have improved our understanding of
the e-e correlation and the determination of the autoionizing
resonances of the double-excited states of He in the last
few decades [2]. In addition to fundamental interest, the
energies, lifetimes, and oscillator strengths of these doubly
excited resonance states are also of significance in astrophysics
and plasma physics [3]. More recently there is considerably
experimental [4–7] and theoretical [8–11] interest in the study
of the effect of static electric fields on low-lying (n � 8) doubly
excited states of helium atoms below the N = 2 threshold. The
presence of the dc electric field allows the exploration of new
sets of doubly excited states which cannot be accessed by
photoexcitation directly. In this work, we present field-free
theoretical prediction of high-lying doubly excited resonance
states (n = 10–20) as well as 1P o (n = 8–15) series doubly
excited resonance states in external dc electric fields.

The first observation of the effect of dc electric field on
the photoexcitation spectrum of He doubly excited states was
performed by Harries et al. [4], who measured the Stark
shifts and splittings in strong dc fields (up to 84.4 kV/cm) in
the region of the 6a − 8a 1P o resonances below the N = 2
threshold. Most theoretical works in the recent past have
dealt with dc fields in this strong field regime [8–10,12].
With the exception of the dipole allowed 1P o states, most
doubly excited states of He are not accessible by simple
photoexcitation. In the presence of external dc electric fields,
these dark states become accessible by means of the Stark

mixing with the 1P o states. For example, the even 1P e series
of doubly excited states have been recently observed and
measured [6,11] in weak dc electric fields (F < 10 kV/cm).
In addition, a dramatic electric field effect has been also
reported in the fluorescence yield spectrum of the doubly
excited states in He in the weak dc electric field regime (∼few
kV/cm) [5,6,13]. To our knowledge, however, the study of the
resonance energies and autoionization widths of higher-lying
doubly excited states (n > 10) in the presence of dc electric
fields has not yet been achieved by either experimental or
theoretical methods. In this paper, we advance this field by
presenting a computational method, the complex-scaling (CS)
generalized pseudospectral (GPS) method in hyperspherical
coordinates (HSC), for accurate treatment of high-lying doubly
excited resonance states (n = 8–20) in the field-free case and
in the presence of external dc electric fields.

The CSGPS method was first introduced for the precision
study of atomic resonance states [14,15] of effective one-
electron systems in spherical coordinates. The GPS method
has been later extended to the time domain [16,17], allowing
accurate treatment of multiphoton ionization (MPI), above-
threshold ionization (ATI), and high-order harmonic gener-
ation (HHG) of atoms [16,18–20] and diatomic molecules
[17,21–23] in intense laser fields by means of self-interaction-
free, time-dependent density-functional theory [24]. The CS-
GPS method has been also used in conjunction with the
non-Hermitian generalized Floquet formalisms [25,26] for the
accurate treatment of complex quasienergy eigenvalues and
eigenfunctions associated with the MPI/HHG processes. In
this paper, we extend the CSGPS method to the hyperspherical
coordinates (HSC), allowing the accurate treatment of electron
correlation and the effect of dc electric field on the energies
and autoionization rates of Rydberg doubly excited resonance
states. Our results for doubly excited states are in excellent
agreement with available experimental and theoretical data.
In addition, some results for high-lying resonances are
presented.

The paper is organized as follows. In Sec. II, we present the
CS-GPS-HSC procedure for the accurate treatment of doubly
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excited resonance states in two-electron atomic systems.
Section III presents the calculations of the field-free doubly
excited states and the effect of dc electric field on the high-lying
doubly excited resonance states. Explorations of the effects of
electron correlation and doubly excited states in dc electric
field are discussed in detail. Conclusions and remarks are
presented in Sec. IV.

II. THEORETICAL METHOD

A. The complex-scaling generalized pseudospectral method in
hyperspherical coordinates

The complex-scaling generalized pseudospectral (CSGPS)
method was first introduced in 1993 for the study of atomic
resonance states [14,15] in grid representation. The CS-
GPS approach employs the use of nonuniform and optimal
spatial grid discretization of the coordinates and Hamil-
tonian, allowing high-precision and efficient calculation of
complex quasienergy eigenvalues and eigenfunctions and
MPI/ATI/HHG rates with the use of only a modest number
of grid points.

In this section, we present the extension of the CSGPS
method in the framework of HSC for the ab initio treat-
ment of doubly-excited resonance states of the two-electron
atomic systems. We note that the time-dependent generalized
pseudospectral (TD-GPS) method in HSC, without the use of
complex-scaling transformation, has been recently developed
for the treatment of double photoexcitation of He atoms in
weak attosecond xuv pulses [27], as well as the study of the
effect of electron correlation on HHG of helium atoms in
intense laser fields [28].

We first briefly outline below the essence of the GPS-
HSC formalism [28] without the use of complex-scaling
transformation. The Schrödinger equation for the field-free
He atoms is given by, in atomic units,[
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In the HSC, Eq. (1) can be transformed to the
form [28][
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spatial size, and the hyperangle, α = tan−1(r2/r1), depicts the
radial correlation. The potential energy term C is the electron-
electron and electron-nucleus potentials, given by
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In the HSC, the two vectors (r1,r2) are replaced by the six
coordinates (R,α,�1,�2), where �i (i = 1 and 2) stands
for the spherical angles θi and φi , respectively, for the ith
electron.

In the CSGPS approach in HSC, only the hyperradius
coordinate R needs to be complex rotated, namely,

R → Reiθ , (4)

where θ is the rotation angle. We perform next the algebraic
mapping from R to x and from α to y:
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1 + x

1 − x + γ
eiθ , (5)

and

α(y) = π

4
(1 + y), (6)

where γ = 2L/Rmax, and x ∈ [−1,1], y ∈ [−1,1], R ∈
[0,Rmax], α ∈ [0,π/2], and L is the mapping parameter.
The variables x and y are discretized using the Gauss-Legendre
abscissas xi and yj as the collocation points. The given space
that the two electrons are confined to is determined by the size
of Rmax [14].

Under the complex-scaling transformation, Eq. (2) becomes[
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where ε denotes the complex energies of the autoion-
izing resonance states. We expand the total two-electron
wave function � in terms of the complex-scaled adiabatic
channels
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2 θ
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5
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where Fμ(Reiθ ) is to be solved in the hyperradius space, and
the adiabatic channel functions �μ(Reiθ ,α,�1,�2) describe
the radial correlation between the two electrons [29]. These
channel functions are obtained by solving the adiabatic
Hamiltonian [28] at a fixed value of R:

Had�μ(Reiθ ,α,�1,�2) = Uμ(Reiθ )�μ(Reiθ ,α,�1,�2).

(9)

Here the channel functions �μ(Reiθ ,α,�1,�2) can be repre-
sented in a way to satisfy the exchange symmetry 2S+1Lπ ,
(π = e or o) for either singlet or triplet states, and they can
be expanded in terms of two-particle spherical harmonics
YLM

l1l2
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where we define A = l1 + l2 − L + S. L and S are the total
orbital and spin angular momenta, and M and π denote
the magnetic quantum number and parity of the total orbital
angular momentum, respectively. In Eq. (10), the coefficients
f (Reiθ ,α) are the cardinal functions at those Gauss-Legendre
quadrature points [16].

Once the adiabatic eigenvalue problem is solved [Eq. (9)],
we then use these complex-scaled channel functions to com-
pute the coupling terms [29] and the overlap matrix elements,

Oiμ,jμ′ = 〈�μ(Rie
iθ ,α,�1,�2)|�μ′(Rje

iθ ,α,�1,�2)〉. (11)

After making the coordinate transformations Eqs. (4)–(6), we
obtain the following complex scaled wave function:
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√
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R′(x)
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where NR and Nμ are the number of collocation points for the
hyperradius and the number of discretized channels for the
adiabatic Hamiltonian, respectively. Inserting the discretized
representation of Eq. (12) into Eq. (7), we can rewrite the
discretized Schrödinger equation in the form∑

i ′μ′
[K(Reiθ )ii ′Oiμ,i ′μ′ + δii ′U

L
μ′(Ri ′e

iθ )Oiμ,i ′μ′]Ciμ

= ε
∑
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where K(Reiθ )ii ′ represents the complex-scaled kinetic
energy matrix elements, and UL

μ′(Ri ′e
iθ ) is the complex-scaled

adiabatic eigenenergy at each Ri ′ for the corresponding L and
adiabatic channel μ′.

The first advantage in the present CSGPS-HSC procedure
is that the GPS method is a nonlinear grid discretization
method. This ensures that the short-range part of the Coulomb
interaction is properly represented. Therefore, a denser portion
of grid points is distributed near the origin. The second
advantage is that, in the CSGPS approach, the complex-rotated
coordinate R is discretized on a set of collocation grid points.
The potential matrix elements are diagonal, and equal to
the values of the potential at the grid points. The kinetic
energy matrix elements K(Reiθ )ii ′ in Eq. (13) have simple
explicit analytical expressions. This speeds up the numerical
calculation considerably and at the same time provides highly
accurate wave functions at the grid points.

III. RESULTS AND DISCUSSIONS

A. Determination of the energies and autoionization widths for
high-lying doubly excited resonance states

In this section, we present our calculated resonance energies
and autoionization (half) widths for the high-lying doubly-
excited resonance states (n = 10–20) of the He atom below
the N = 2 threshold in Tables I–IV. We also compare our
results of 1Se, 1P o, 1De, and 1Fo Rydberg states with other
recent theoretical data [30–33]. The agreement is generally
excellent for the doubly excited states up to n = 10–15. To our

TABLE I. The calculated resonance energies Er and autoionization (half) widths �/2 for the n = 10–20 doubly-excited Rydberg states 1Se

(2,n,(a,b)) below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of ten.

State −Er �/2 State −Er �/2

Present 10a 0.505759011 9.777[−6] 10b 0.504746220 2.775[−6]
[30] 0.505759052 9.777[−6] 0.504746230 2.776[−6]
[31] 0.505759104 9.790[−6] 0.504746388 2.766[−6]

Present 11a 0.504697225 7.131[−6] 11b 0.503940604 2.145[−6]
[30] 0.504697299 7.131[−6] 0.503940615 2.146[−6]
[32] 0.504697187 7.131[−6]

Present 12a 0.503904116 5.362[−6] 12b 0.503324068 1.700[−6]
[30] 0.503904132 5.362[−6] 0.503324031 1.690[−6]
[32] 0.503904047 5.360[−6]

Present 13a 0.503296014 4.134[−6] 13b 0.502841616 1.350[−6]
[30] 0.503296078 4.134[−6] 0.502841626 1.350[−6]
[32] 0.503296011 4.131[−6]

Present 14a 0.502819664 3.251[−6] 14b 0.502457209 1.137[−6]
[30] 0.502819726 3.253[−6] 0.502457222 1.136[−6]
[32] 0.502819669 3.239[−6]

Present 15a 0.502439597 2.613[−6] 15b 0.502145509 8.058[−7]
[30] 0.502439676 2.617[−6] 0.502145517 8.06[−7]
[32] 0.502439599 2.689[−6]

Present 16a 0.502131622 2.090[−6] 16b 0.501889058 5.817[−7]
Present 17a 0.501878528 1.681[−6] 17b 0.501676589 4.910[−7]
Present 18a 0.501666988 1.452[−6] 18b 0.501498052 4.181[−7]
Present 19a 0.501489971 1.274[−6] 19b 0.501346589 3.647[−7]
Present 20a 0.501341721 1.179[−6] 20b 0.501216515 3.082[−7]

032506-3



JOHN HESLAR AND SHIH-I CHU PHYSICAL REVIEW A 86, 032506 (2012)

TABLE II. The calculated resonance energies Er and autoionization (half) widths �/2 for the n = 10–20 doubly-excited Rydberg states
1P o (2,n,(a,b,c)) below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of ten.

State −Er �/2 State −Er �/2 State −Er �/2

Present 10a 0.505174452 4.052[−6] 10b 0.505806734 4.90[−8] 10c 0.504758332 8.15[−11]
[30] 0.505174494 4.054[−6] 0.505806870 4.9[−8] 0.504758391
[34] 0.505175 4[−6] 0.50580696 1.0[−7] 0.5047590

Present 11a 0.504259181 3.031[−6] 11b 0.504732042 3.62[−8] 11c 0.503950110 6.08[−11]
[30] 0.504262710 3.038[−6] 0.504732057 3.6[−8] 0.503950219

Present 12a 0.503572206 2.332[−6] 12b 0.503930196 2.79[−8] 12c 0.503331700 3.31[−11]
[30] 0.503572348 2.335[−6] 0.503930208 2.8[−8] 0.503331706

Present 13a 0.503037023 1.829[−6] 13b 0.503316098 2.09[−8] 13c 0.502847463 1.51[−11]
[30] 0.503037093 1.834[−6] 0.503316151 2.1[−8] 0.502847834

Present 14a 0.502613680 1.432[−6] 14b 0.502835501 1.54[−8] 14c 0.502462316 0.72[−11]
[30] 0.502613741 1.434[−6] 0.502835510 1.5[−8] 0.502462325

Present 15a 0.502273019 1.332[−6] 15b 0.502452286 3.88[−8] 15c 0.502149624 0.15[−11]
[30] 0.502273028 1.335[−6] 0.502452349 3.9[−8] 0.502149666

Present 16a 0.501993794 9.535[−7] 16b 0.502140336 1.04[−8] 16c 0.501892145 0.77[−12]
Present 17a 0.501763954 7.939[−7] 17b 0.501885535 8.03[−9] 17c 0.501679199 0.45[−12]
Present 18a 0.501571686 6.680[−7] 18b 0.501673666 6.31[−9] 18c 0.501500276 0.33[−12]
Present 19a 0.501409224 5.674[−7] 19b 0.501495600 4.06[−9] 19c 0.501348498 0.17[−12]
Present 20a 0.501270711 4.859[−7] 20b 0.5013445104 2.29[−9] 20c 0.501218639 0.09[−12]

knowledge, there is currently no experimental or theoretical
data in the higher-lying resonance states (n > 15) available.
In the present work, we extend our CSGPS-HSC study to
the higher-lying doubly excited resonance states (n = 15–
20), which are also shown in Tables I–IV. Throughout this
paper, we use the (N,n, (a,b, or c)) representation for doubly
excited states introduced by Lipsky and Conneely [35], which
is widely used for He. We expect our results will stimulate
further experimental works in the future.

When we incorporated ten adiabatic eigenchannels and
five partial waves (l1,l2) in the calculation, the ground-state
energy of helium is determined to be −2.903 723 a.u., in good

agreement with the benchmark result of −2.903 724 a.u. [36].
In Tables I–IV, the results for all the symmetries are calculated
accurately by using 20 eigenchannels and 20 partial waves
(l1,l2), with Rmax = 500 a.u., to ensure convergency.

Our predicted results of the resonance energies by means of
the CSGPS-HSC method are converged at least to 10−10 a.u.,
and the widths are converged to the digit of accuracy shown
in the tables (Tables I–V) and figures (Figs. 1 and 2). We note
that such an accuracy for the Rydberg resonance energies and
widths by the present CSGPS-HSC procedure has not yet been
achieved by the traditional basis-set expansion methods or the
B-spline functions.

TABLE III. The calculated resonance energies Er and autoionization (half) widths �/2 for the n = 10–20 doubly-excited Rydberg states
1De (2,n,(a,b,c)) below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of ten.

State −Er �/2 State −Er �/2 State −Er �/2

Present 10a 0.505328768 6.793[−6] 10b 0.505012277 4.463[−7] 10c 0.504874911 1.813[−9]
[30] 0.505328784 6.799[−6] 0.505012580 4.47[−7] 0.504874929 1[−9]

Present 11a 0.504378289 5.069[−6] 11b 0.504141604 3.377[−7] 11c 0.504038182 1.114[−9]
[30] 0.504378303 5.071[−6] 0.504141617 3.38[−7] 0.504038200 1.000[−9]

Present 12a 0.503661137 3.821[−6] 12b 0.503479422 2.622[−7] 12c 0.503399708 8.312[−10]
[30] 0.503661148 3.882[−6] 0.503479414 2.62[−7] 0.503399748 8[−10]

Present 13a 0.503106758 3.031[−6] 13b 0.502964210 2.045[−7] 13c 0.502901529 7.254[−10]
[30] 0.503106766 3.037[−6] 0.502964214 2.07[−7] 0.502901543 7[−10]

Present 14a 0.502669301 2.419[−6] 14b 0.502555489 1.598[−7] 14c 0.502505310 5.412[−10]
[30] 0.502669381 2.421[−6] 0.502555511 1.62[−7] 0.502505327

Present 15a 0.502318297 1.931[−6] 15b 0.502225905 1.712[−7] 15c 0.502185026 3.964[−10]
[30] 0.502318305 1.939[−6] 0.502225953 1.76[−7] 0.502185075

Present 16a 0.502119020 9.049[−7] 16b 0.502032470 7.812[−8] 16c 0.501952454 9.29[−11]
Present 17a 0.501858693 3.540[−7] 17b 0.501792102 2.904[−8] 17c 0.501720766 3.73[−11]
Present 18a 0.501614863 1.807[−7] 18b 0.501586479 1.511[−8] 18c 0.501530058 7.1[−12]
Present 19a 0.501507873 1.011[−7] 19b 0.501431527 9.255[−9] 19c 0.501401640 2.6[−13]
Present 20a 0.501348770 8.151[−8] 20b 0.501349341 7.230[−9] 20c 0.501218639 1[−13]
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TABLE IV. The calculated resonance energies Er and autoionization (half) widths �/2 for the n = 10–20 doubly-excited Rydberg states
1F o (2,n,(a,b,c)) below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of ten.

State −Er �/2 State −Er �/2 State −Er

Present 10a 0.505058334 2.890[−7] 10b 0.505016412 1.811[−10] 10c 0.504924432
[30] 0.505058342 2.88[−7] 0.505016428 2[−10] 0.504924466

Present 11a 0.504175912 2.204[−7] 11b 0.504144617 1.253[−10] 11c 0.504076210
[30] 0.504175949 2.18[−7] 0.504144611 1[−10] 0.504076225

Present 12a 0.503505796 1.687[−7] 12b 0.503481706 1.009[−10] 12c 0.503429022
[30] 0.503505827 1.69[−7] 0.503481779 1[−10] 0.503429075

Present 13a 0.502984948 1.350[−7] 13b 0.502966093 7.82[−11] 13c 0.502924588
[30] 0.502984969 1.33[−7] 0.502966109 8[−11] 0.502924637

Present 14a 0.502572129 1.069[−7] 14b 0.502557030 5.69[−11] 14c 0.502523827
[30] 0.502572121 1.07[−7] 0.502557054 6[−11] 0.502523838

Present 15a 0.502239306 7.432[−8] 15b 0.502227098 4.34[−11] 15c 0.502200108
[30] 0.502239372 7.5[−8] 0.502227191 0.502200122

Present 16a 0.501840336 5.024[−8] 16b 0.501793794 1.28[−11] 16c 0.501692145
Present 17a 0.501685535 2.077[−8] 17b 0.501563954 0.24[−11] 17c 0.501579199
Present 18a 0.501473666 9.314[−9] 18b 0.501471686 0.66[−12] 18c 0.501300276
Present 19a 0.501395600 1.243[−9] 19b 0.501209224 0.12[−12] 19c 0.501248498
Present 20a 0.501244510 6.222[−10] 20b 0.501070711 0.91[−13] 20c 0.501118639

Tables I–IV display (as n increases) the resonance
energies converging to the He+ (N = 2) ionization
thresholds (−0.5 a.u.). One of the features revealed from

Tables I–IV is the common trend of the autoioniza-
tion rates, which decrease as the quantum number n in-
creases.

TABLE V. Calculated field-free and field-perturbed resonance energies Er and autoionization (half) width �/2 (in a.u.) for the n = 8–15
doubly excited Rydberg 1P o states below the N = 2 threshold. Numbers in square brackets indicate powers of ten.

F (V/cm) State −Er �/2 State −Er �/2

0 8a 0.508158278 7.9658[−6] 9a 0.506413702 5.572[−4]
3915 0.508129956 1.5509[−6] 0.506369923 0.1111[−4]
5438 0.508102683 1.5084[−6] 0.506356012 0.1103[−4]
6525 0.508105623 1.4753[−6] 0.506374800 0.1095[−4]
7613 0.508058225 1.4382[−6] 0.506322365 0.1087[−4]
8700 0.508061532 1.4012[−6] 0.506371772 0.1077[−4]
10440 0.508108243 1.3398[−6] 0.506344442 0.1060[−4]

0 10a 0.505174852 3.989[−6] 11a 0.504259181 3.061[−6]
3915 0.505073102 0.7176[−5] 0.504158874 0.5596[−5]
5438 0.505048006 0.6767[−5] 0.504131354 0.5119[−5]
6525 0.505022143 0.6545[−5] 0.504140882 0.4671[−5]
7613 0.504990094 0.6374[−5] 0.504057374 0.4129[−5]
8700 0.50503704 0.6243[−5] 0.504112002 0.3505[−5]
10440 0.505034226 0.6095[−5] 0.504094210 0.2448[−5]

0 12a 0.503569606 2.316[−6] 13a 0.503037923 1.796[−6]
3915 0.503476447 0.4430[−5] 0.502913832 0.1107[−5]
5438 0.503458349 0.4271[−5] 0.502776991 0.1025[−5]
6525 0.503326001 0.4131[−5] 0.502794228 0.1734[−5]
7613 0.503342662 0.3894[−5] 0.502778839 0.2987[−5]
8700 0.503317389 0.3380[−5] 0.502659111 0.4524[−5]
10440 0.503379114 0.1614[−5] 0.502692099 0.2790[−5]

0 14a 0.502613980 1.427[−6] 15a 0.502272673 1.358[−6]
3915 0.502408440 0.2247[−5] 0.502038166 0.1951[−5]
5438 0.502342324 0.1964[−5] 0.501972034 0.3615[−5]
6525 0.502254060 0.3434[−5] 0.501861343 0.1007[−4]
7613 0.502295193 0.6938[−5] 0.501847895 0.5408[−5]
8700 0.502208033 0.8642[−5] 0.501738941 0.1732[−5]
10440 0.502175043 0.2690[−5] 0.501711885 0.6170[−5]
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The resonance energies and autoionization widths can be
approximately parameterized by [31,37]

E2,k,n = −1/2 − (Z − 1)2

2(n − μkn)2
, (14)

where k = a, b, or c series for each total orbital angular
momenta L and μkn is the quantum defect. Here, μkn is
complex since E2,k,n has real and imaginary parts. The
effective quantum number n∗ is defined as follows:

n∗ = n − Reμkn. (15)

Since the autoionization widths are very small, we have
Imμkn � n∗. Then we can expand the right-hand side of
Eq. (14) and write down the approximate expression,

E2,k,n ≈ −1/2 − (Z − 1)2

2(n∗)2
− i

Imμkn(Z − 1)2

(n∗)3
, (16)

so the He autoionization widths can be expressed as

�/2 ≈ Imμkn

(n∗)3
. (17)

From Eq. (17), we see the decrease in the autoionization widths
is approximately inversely proportional to (n∗)3. The real part
of the quantum defect (Reμkn) varies linearly with E2,k,n

following Eqs. (14)–(17), as seen in Figs. 1 and 2 up to quantum
number n = 15 (a and b). The imaginary part (Imμkn) also has
a linear variation up to n = 15a (Fig. 1) and n = 13b (Fig. 2).
However, our results show that at higher doubly excited states
n � 13, the parametrized equations [Eqs. (14)–(17)] can no

FIG. 1. Quantum defect (real and imaginary part) for the n = 10–
20(a) 1Se doubly-excited Rydberg states below the N = 2 threshold.

FIG. 2. (Color online) Quantum defect (real and imaginary part)
for the n = 10–20(b) 1Se doubly-excited Rydberg states below the
N = 2 threshold. Also shown are the results from Ref. [30] for
comparison.

longer be used to describe the states as seen in Figs. 1 and
2. Similar observation has been reported earlier for the lower
states. For example, we plot the data (n � 15) from Ref. [30]
shown in Table I in Fig. 2 (red dotted curve) and similar
deviations (n = 13–15) from linear variation are observed.
In other words, they do not follow the parametrized equations
Eqs. (14)–(17) either.

As another example, Wintgen et al. [38] used the frozen
planet method (where one electron is held fixed) to calculate
the resonances for 1Se and 3Se (n � 15) and found the quantum
defect fluctuated rapidly and did not follow the linear variation
trend as shown in Eqs. (14)–(17).

To our knowledge, there is no earlier published results on
quantum defects for 1Se (2,n � 15,(a,b)) below the N = 2
threshold. Our results presented here represent results in this
higher Rydberg regime (n > 15).

B. The dc Stark effects on the high-lying doubly excited
resonance states

In the presence of an external dc electric field, the
Hamiltonian for a two-electron atom is

H = H0 + V = H0 + F(r1 + r2), (18)

where H0 is the field-free Hamiltonian, and F is the uniform
external electric field in the z axis. The matrix elements of
Fz1 and Fz2 are the same for a given pair of wavefunctions.
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Here we present only the matrix element of Fz1 explicitly as follows:

〈
�L

k

∣∣F (z1)
∣∣�L′

k′
〉 = 1

2
F

∑
μ,μ′

∑
l1,l2

∑
l′1,l

′
2

[ ∑
i

F L(Rie
iθ )Rie

iθFL′
(Rie

iθ )ωi

]{ ∑
j

�l1l2L
μ (Rie

iθ ,αj ) cos αj�
l′1l

′
2L

′

μ′ (Rie
iθ ,αj )

× λj�
l′1l

′
2L

′M ′

l1l2LM + (−1)A
∑

j

�l1l2L
μ (Rie

iθ ,π/2 − αj ) cos αj�
l′1l

′
2L

′

μ′ (Rie
iθ ,αj )λj�

l′1l
′
2L

′M ′

l2l1LM

}
, (19)

where

�
l′1l

′
2L

′M ′

l1l2LM = 〈
YLM

l1,l2
(�1,�2)

∣∣ cos θ1

∣∣YL′M ′
l′1,l

′
2

(�1,�2)
〉
. (20)

Here ωi and λj are the corresponding Gauss-Legendre
weights to the hyperradial and hyperangle spatial coordinate,
respectively. For states in dc field along the z direction, the
total magnetic quantum number M is a conserved quantity,
while the parity along the z axis (πz) is not conserved.
We will focus our attention on the M = 0 manifolds. Since
the parity is not conserved, the angular momentum states
1Se, 1P o, 1De, 1Fo, etc. are coupled together in Eq. (19)
by the external electric field. This ten-symmetry (Lmax = 9)
calculation is sufficient to achieve the convergency for such
doubly excited states in electric field. We investigate here the
1P o (2,n,a,b) resonance states, where n = 8–15, in the dc
electric field. We use a mesh of NR × Nα = 400 × 400, and
20 adiabatic channels (μmax = 20) to compute the field-free
wave functions �L

k , where L = 0–9. Our calculated widths
are converged when the rotation angle θ is varied from 0.1 to
0.3 rad. We have tested the convergency of the calculations
by including more partial waves and more grid points. For
example, we have incorporated 25 partial waves (l1,l2), with
Rmax = 600 a.u. and the test showed that the calculation was
converged for all the data shown in the tables. Similarly, we
have tested the convergency by adding more mesh points
(NR × Nα = 450 × 420), and again the calculated results are
identical to the previous results using the mesh of NR × Nα =
400 × 400.

In Table V, we present the dc electric field effects on
the resonance energies and autoionization (half) widths for
doubly excited Rydberg states of He, where the electric field
strength is varied from 3915 to 10,440 V/cm. For the low-lying
resonance states (n = 6) in a dc electric field strength F of
84.4 kV/cm, our results are in very good agreement with the
previous theoretical and experimental data [8]. For higher-
lying Rydberg resonance states (n = 8–15) in a dc electric
field, to our knowledge, there are currently no theoretical
and experimental results available. We note that experimental
determination of the resonance energies and widths for such
high-lying doubly excited states in the presence of electric
fields are currently difficult to perform due to the limited
spectral resolution and complicated peak splitting pattern [39].
Since the field-free autoionization rates in the states of interest
are small to begin with, see, for example, 1P o338 (2,10a)
(� = 7.987 × 10−6 a.u.), even small electric field strength
has significant effects on these doubly excited states. From
Table V, we notice that the doubly excited state energies and

widths are modified by the presence of the electric field, and
the effect becomes stronger with increasing n.

In Figs. 3 and 4, we compare our calculated resonance
energies with the fluorescence yield (FY) spectra from Såthe
et al. [5] at various dc field strengths for the 1P o (N = 2,n =
8–15, a,b) series below the N = 2 threshold. In their work [5],
they used the WKB method [40] for their theoretical calcula-
tions and comparisons with the experimental FY spectra. In
Fig. 1 of Såthe et al. work [5], it is shown that their theoretical
FY spectra (based on the WKB method [40]) are shifted in
energies and deviated substantially from the experimental
spectra. The WKB method assumes the Rydberg-electron
wave function is purely bound, and the main physical effects
are not included in the theoretical simulation in [5]. In our
present fully ab initio CSGPS-HSC approach, the calculated
resonance energies are in good agreement with the peak
positions of the experimental FY spectra, as shown in Figs. 3
and 4. In Fig. 3 (bottom panel) the nb series is shown for
the field-free case. Note that as the dc-electric field strength

FIG. 3. (Color online) Experimental fluorescence yield spectra
[5] and calculated resonance energies Er for the n = 8–15(a,b) 1P o

doubly excited Rydberg states below the N = 2 threshold in dc fields.
Here the red (dashed) line and blue (solid) line correspond to (na)
and (nb) series, respectively, and the peaks at the lowest energy
correspond to 8(a).

032506-7



JOHN HESLAR AND SHIH-I CHU PHYSICAL REVIEW A 86, 032506 (2012)

FIG. 4. (Color online) Experimental fluorescence yield spectra
[5] and calculated resonance energies Er for the n = 8–15(a) 1P o

doubly excited Rydberg states below the N = 2 threshold in dc fields.
Here the red dashed line corresponds to (na) series and the peaks at
the lowest energy correspond to 8(a).

is increased above zero, the nb and nc series FY quickly
disappear (unresolved experimentally) [5].

IV. CONCLUSION

In conclusion, we have presented a CSGPS method in
hyperspherical coordinates for the accurate ab initio nonpertur-
bative treatment of the resonance energies and autoionzation
widths of doubly-excited high-lying resonance states of He
in the field-free case and in the presence of dc-electric
fields. Our theoretical predictions for low-lying resonance
states are in good agreement with available theoretical and
experimental data. In addition, we present results for high-
lying resonance states which are currently difficult to achieve
by either experimentally or other theoretical methods. Our
CSGPS-HSC approach is shown to be capable of providing
accurate resonance energies and widths for 1Se, 1P o, 1De,
and 1Fo doubly-excited Rydberg states with the use of only
a modest number of grid points. The effects of dc-field on
the autoionization rates for the odd-parity 1P o states where
n = 8–15 have been identified. We hope that our presented
predictions and findings will stimulate further experimental
and theoretical activities in the future.
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