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Electron-spin amplitudes in the exchange quenching of orthopositronium

Sudha R. Swaminathan,1 W. G. Merrill,2 S. Glynn,2 and J. G. Quattrucci2
1Department of Physical and Earth Sciences, Worcester State University, 486 Chandler Street, Worcester, Massachusetts 01602, USA

2Department of Chemistry, Worcester State University, 486 Chandler Street, Worcester, Massachusetts 01602, USA
(Received 12 July 2012; published 21 September 2012)

We study single collisions between orthopositronium beams and targets with unpaired electrons, in which the
conversion (quenching) of the long-lived orthopositronium into the short-lived parapositronium occurs as a result
of electron exchange. We consider unpolarized and polarized targets with one and two unpaired electrons. Angular-
momentum coupling and density-matrix techniques are used to calculate the probabilities of obtaining either
para- or orthopositronium after the collisions. The probability of the initial orthopositronium being converted to
parapositronium (quenching probability) is given in terms of complex scattering amplitudes labeled with total
electron spin. Quenching probabilities are calculated for polarized and unpolarized targets, with and without
detection of the spins of the targets after the collisions. Ratios of the probabilities of producing parapositronium
to that of obtaining orthopositronium are given in terms of electron-spin amplitudes.
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I. INTRODUCTION

We study elastic collisions between orthopositronium
beams and atomic or molecular targets with two outgoing
products, a positronium atom and a target atom or molecule.
Orthopositronium is the spin-1 bound state of an electron and
a positron, which decays into three photons after 142.05 ns
[1], while parapositronium is the spin-0 bound state, which
decays into two photons after 0.125 16 ns [2]. We consider
collisions between orthopositronium and two types of targets:
(i) doublets with one unpaired electron and a total unpaired-
electron spin of 1/2 and (ii) triplets with two unpaired electrons
and a total unpaired-electron spin of 1. During the interaction,
an electron from the target can be exchanged with the electron
in the orthopositronium, and either parapositronium with a
spin of 0 or orthopositronium with a spin of 1 can be produced
along with targets in ground states having spins of 1/2 or 1. The
conversion of orthopositronium to parapositronium is referred
to as the quenching of the long lifetime of orthopositronium.
As we will show in the Method section, for singlets with no
unpaired electrons and a total unpaired-electron spin of 0, there
is no quenching if the target remains in the ground state.

Theoretical studies of the quenching of orthopositronium as
well as the results of scattering experiments with positronium
beams are extensively reviewed in Ref. [3]. The authors note
that for targets with no unpaired electrons (singlets) such as
helium, exchange quenching can occur only if the positronium
energy is above that of the first triplet excited state, but for
targets with one unpaired electron (doublets) such as hydrogen,
or targets with two unpaired electrons (triplets) such as oxygen,
quenching can occur for any positronium energy [3].

For elastic scattering of positronium with hydrogen, scatter-
ing lengths as well as ratios of conversion cross sections to total
elastic scattering cross sections have been calculated using a
static exchange approximation [4] and through an extraction of
s-wave phase shifts from generalized Hylleraas wave functions
[5,6]. In Ref. [4], for positronium kinetic energies ranging from
0 to 4.352 eV, the ratios of conversion cross sections to total
elastic scattering cross sections ranged from 8.1% to 12.5%,
while in Ref. [6], for five positronium energies ranging from
0 to 3.801 eV, the ratios ranged from 3.7% to 4.9%. The effect

of electron exchange was studied in positronium-hydrogen
scattering using a close-coupling approximation in Ref. [7].
For positronium energies ranging from 0.068 to 4.352 eV, the
ratios of conversion cross sections to total elastic scattering
cross sections ranged from 8.11% to 14.1% when electron
exchange was taken into account [7]. Moreover, the elastic
cross section without electron exchange was approximately
two orders of magnitude less than that with electron exchange
[7]. Calculations of spin-averaged total cross sections have
also been made using the coupled-pseudostate method in the
energy range from 0 to 40 eV [8]. The authors noted that when
electron exchange was accounted for, there was little variation
in the cross sections calculated using different approximations
[8]. More recently, positronium-hydrogen scattering has been
studied in the 0–5.1 eV range with the Kohn variational method
[9] and in the 0–6.5 eV range with the coupled-pseudostate
method [10]. We compare our analysis for doublet targets to
the differential cross sections presented in Ref. [10].

The quenching of orthopositronium in oxygen has been
studied using the angular correlation of annihilation radiation
(ACAR) technique [11,12]. With this technique, (i) only
two-photon annihilation events are detected [13], (ii) after the
conversion from ortho- to parapositronium, an increase in the
number of two-photon annihilation events is observed [12],
and (iii) in many situations, two-photon events following a
conversion are easily distinguished from other two-photon
events [12]. The authors concluded that the conversion of
orthopositronium to parapositronium has two components:
(i) elastic conversion, in which the oxygen molecule is in
the ground state with two unpaired electrons (triplet) and
(ii) inelastic conversion, in which the oxygen molecule is in
an excited state with no unpaired electrons (singlet) [12]. The
cross section was measured to be 1.0 ± 0.3 × 10−23 m2 for the
elastic-conversion process and approximately 5 × 10−21 m2

for the inelastic-conversion process [12]. More recently, the
age-momentum correlation (AMOC) technique was used to
determine the cross section for the elastic-conversion process
to be (1.16 ± 0.01) × 10−23 m2 [14].

The conversion of orthopositronium to parapositronium
may also be important in the annihilation of positrons from the
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center of the Milky Way galaxy [15,16]. The annihilation of the
galactic positrons can occur after the formation of positronium
in the interstellar medium [17]. The annihilation occurs by
either (i) two-photon decays in which the energy of each
photon equals the rest mass of the electron (positron), that is,
a discrete value of 0.511 MeV, or (ii) three-photon decays in
which the energies of the photons can be distributed over a con-
tinuous range from 0 to 0.511 MeV [15–17]. Based on analysis
of the electron-positron annihilation spectrum from the center
of the Milky Way galaxy, the ratio of three-photon fluxes to
that of two-photon fluxes was reported to be 3.95 ± 0.32
[18]. Based on spin-counting arguments, one can assume that
in collisions between positrons and the interstellar medium,
triplet orthopositronium is three times more likely to form
than singlet parapositronium. For each positron that forms
parapositronium and decays to two photons, three positrons
can form orthopositronium, each of which can decay to three
photons. The theoretical ratio of the fluxes should therefore
equal 4.5 [15]. One explanation for the lower measured ratio
of the fluxes is that some of the orthopositronium converts
to parapositronium in the grains of interstellar dust before its
subsequent annihilation to photons [15].

In 1958, Ferrell used the Pauli exclusion principle to
point out that when the electron in the orthopositronium is
exchanged either with the one unpaired electron of a nitric
oxide molecule, or with either of the two unpaired electrons of
the oxygen molecule, quenching can be achieved without a spin
flip of the exchange electrons [19]. An exchange of electrons
without a spin flip is referred to as Majorana exchange [20,21].
We assume that interaction terms in the Hamiltonian that lead
to a spin flip are negligible, and require that the total spin of
all the electrons in the target-positronium system, the spin of
the positron, the total spin of the target-positronium system,
and the total spin magnetic quantum number are conserved.
Ferrell’s results are given in terms of scattering amplitudes
for direct interactions (D) and exchange interactions (E). Our
results are given in terms of scattering amplitudes f Se , where
Se is the total electron spin. The electron-spin amplitudes f Se

are independent of the positron spin, the total spin, as well as
the total magnetic quantum number, and can be expressed in
terms of the scattering amplitudes D and E. We have included
all the possible spin states in a given collision process, while
in Ferrell’s paper, only the states relevant to the discussion on
quenching were emphasized; for example, he noted a missing
term in Fig. 1d of Ref. [19] for oxygen (triplet). There is also a
discrepancy between our spin-scattering matrix elements and
Ferrell’s which arises from the signs for the exchange interac-
tions in Figs. 1b and 1c of Ref. [19] for nitric oxide (doublet).

We use angular-momentum coupling techniques to con-
struct the spin-scattering matrices which contain the ampli-
tudes for the transitions from the spin states of the initial
(target-orthopositronium) system to the spin states of the
final (target-positronium) system. We construct spin-density
matrices for describing the initial and final system from Pauli
spin matrices, and polarization vectors and tensors, using
techniques described in Refs. [22–24]. In the collisions we
study, the incoming orthopositronium beam is unpolarized,
but the targets can be either polarized or unpolarized. A
beam is considered to be polarized if its spins are aligned
along the positive or negative direction of its momentum

vector, which is chosen to be along a specific axis. A beam
is considered to be unpolarized if it contains a mixture of
spins in both directions. Para- and orthopositronium formation
probabilities were obtained from spin-density matrices in the
study of collisions between spin-polarized positron beams and
atomic or molecular targets [25,26]. In this work, we calculate
the probabilities of mixed-spin systems such as the target-
positronium system being in specific spin states. Specifically,
from the diagonal elements of spin-density matrices for the
final system, we calculate the probabilities for obtaining both
types of positronium, for both polarized and unpolarized
targets, with and without detection of the spins of the targets
just after the collisions. We present three types of results:
(i) total probabilities for obtaining both types of positronium,
(ii) quenching probabilities for producing parapositronium
after electron exchange, and (iii) ratios of para- to orthopositro-
nium production probabilities.

II. METHOD

In this section we describe the construction of the spin-
scattering matrices, M , and the spin-density matrices, ρin,
for the initial system. The spin-density matrices for the final
system, ρout, are calculated from the product MρinM

†, where
M† represents the conjugate-transpose matrices of M . We
introduce projection operators P (para,target) and P (ortho,target)

in order to select the para- and orthopositronium states
which are produced in coincidence with particular target
states. The probability of producing parapositronium equals
the expectation value of P (para,target) which equals the trace
of ρoutP

(para,target), while the probability of obtaining or-
thopositronium equals the expectation value of P (ortho,target)

which equals the trace of ρoutP
(ortho,target). Probabilities of

obtaining para- or orthopositronium in coincidence with
particular target states are calculated from appropriate diagonal
elements of ρoutP

(para,target) or ρoutP
(ortho,target), respectively.

We express the collisions as f + c → g + d, where
f represents the target in the initial system, c represents the
incoming orthopositronium, g represents the target in the final
system, and d represents both types of positronium. The target
f and orthopositronium c interact to form intermediate states
in which electron exchange can occur. After the electron
exchange, the intermediate states develop into the target
g and either type of positronium d. As the initial system
evolves from f and c to g and d, the quantum numbers
representing the total electron spin Se of the target-positronium
system, the positron spin Sp = 1

2 , the total spin St of
the target-positronium system, and the total spin magnetic
quantum numbers Mt are all conserved. The intermediate
states are labeled with the conserved quantum numbers as
|[Se

1
2 ]StMt 〉. We define complex scattering amplitudes f Se

and their complex conjugates (f Se )∗ which are independent of
St , Mt , and the positron spin, as follows:

f Se = 〈[
Se

1
2

]
StMt

∣∣M∣∣ [Se
1
2

]
StMt

〉
, (1)

(f Se )∗ = 〈[
Se

1
2

]
StMt

∣∣M†∣∣ [Se
1
2

]
StMt

〉
. (2)

The amplitudes for transitions from particular states of f and
c to particular states of g and d are given by the elements
of the spin-scattering matrices M with rows and columns
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TABLE I. Matrix elements 〈SgMg|〈SdMd |M|Sf Mf 〉|ScMc〉 of spin-scattering matrices for the reactions f + c → g + d . The columns
are labeled with the initial state basis vectors |Sf Mf 〉|ScMc〉 where f represents a doublet with Sf = 1

2 , or a triplet with Sf = 1. The rows
are labeled with the final state basis vectors 〈SgMg|〈SdMd | where g represents a doublet with Sg = 1

2 or a triplet with Sg = 1. The incoming
orthopositronium spin Sc = 1, while the outgoing positronium spins are Sd = 0 for parapositronium and Sd = 1 for orthopositronium. The
matrix elements for doublets are given in terms of D2 and E2, with D2 = 1

2 f 0 + 1
2 f 1 and E2 = 1

3 f 1/2 − 1
3 f 3/2. The matrix elements for triplets

are given in terms of D3 and E3, with D3 = 2
3 f 1/2 + 1

3 f 3/2 and E3 = 1
3 f 1/2 − 1

3 f 3/2.

Doublet
∣∣∣ 1

2
1
2

〉
|11〉

∣∣∣ 1
2

1
2

〉
|10〉

∣∣∣ 1
2

1
2

〉
|1−1〉

∣∣∣ 1
2 − 1

2

〉
|11〉

∣∣∣ 1
2 − 1

2

〉
|10〉

∣∣∣ 1
2 − 1

2

〉
|1−1〉

〈
1
2

1
2

∣∣∣〈00| − 1
2 E2

√
1
2 E2〈

1
2 − 1

2

∣∣∣〈00| −
√

1
2 E2

1
2 E2〈

1
2

1
2

∣∣∣〈11| D2–E2〈
1
2

1
2

∣∣∣〈10| D2 − 1
2 E2 −

√
1
2 E2〈

1
2

1
2

∣∣∣〈1−1| D2 −
√

1
2 E2〈

1
2 − 1

2

∣∣∣〈11| −
√

1
2 E2 D2〈

1
2 − 1

2

∣∣∣〈10| −
√

1
2 E2 D2− 1

2 E2〈
1
2 − 1

2

∣∣∣〈1−1| D2–E2

Triplet |11〉|11〉 |11〉|10〉 |11〉|1−1〉 |10〉|11〉 |10〉|10〉 |10〉|1−1〉 |1−1〉|11〉 |1−1〉|10〉 |1−1〉|1−1〉
〈11|〈00| –E3 E3

〈10|〈00| −E3 E3

〈1−1|〈00| −E3 E3

〈11|〈11| D3–2E3

〈11|〈10| D3–E3 −E3

〈11|〈1−1| D3 −E3

〈10|〈11| −E3 D3–E3

〈10|〈10| −E3 D3–E3 −E3

〈10|〈1−1| D3–E3 −E3

〈1−1|〈11| –E3 D3

〈1−1|〈10| –E3 D3–E3

〈1−1|〈1−1| D3–2E3

representing the final and initial states, respectively. The states
are labeled with spin and magnetic quantum numbers and the

elements are expressed in terms of the complex scattering
amplitudes as follows:

〈SgMg|〈SdMd |M|Sf Mf 〉|ScMc〉 =
∑
StMt

〈SgMg|〈SdMd |
∣∣[Se

1
2

]
StMt

〉
f Se

〈[
Se

1
2

]
StMt

∣∣ |Sf Mf 〉|ScMc〉. (3)

To calculate the matrix elements, we (i) couple the initial
target and orthopositronium state spins, (ii) transform the
coupled initial states to the intermediate states, (iii) trans-
form the intermediate states to the coupled final states, and
(iv) uncouple the coupled final states. Clebsch-Gordan coeffi-
cients are used in steps (i) and (iv), and the U coefficients of
Jahn are used in steps (ii) and (iii) as shown in Eqs. (4)–(7)
below. The U coefficients are equal to

√
(2Se + 1)(2Sc + 1)

times the standard Racah coefficients W [27].

|Sf Mf 〉|ScMc〉 =
∑
StMt

〈Sf Mf ScMc |StMt 〉|[Sf Sc]StMt 〉, (4)

|[Sf Sc]StMt 〉 =
∑
Se

U
(
Sf

1
2St

1
2 ; SeSc

)|[Se
1
2 ]StMt 〉, (5)

∣∣[Se
1
2

]
StMt

〉 =
∑
Sd

U
(
Sg

1
2St

1
2 ; SeSd

)|[SgSd ]StMt 〉, (6)

|[SgSd ] StMt 〉 =
∑

MgMd

〈SgMg SdMd |StMt 〉|SgMg〉|SdMd〉.

(7)

The spin assignments are as follows: Sc = Sd = 1, Mc =
Md = 1, 0, −1, for orthopositronium and Sd = Md = 0,
for parapositronium. For a singlet target with no unpaired
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electrons, Sf = Sg = 0, and the total spin of the initial system,
St = 1. Due to conservation, the total spin of the final system
is also equal to 1, which can occur only if Sd = 1. In other
words, in a collision between a singlet and orthopositronium
in which electron exchange occurs without a spin flip, if
the target remains in the ground state after the collision,
there will be no quenching of the incoming orthopositronium.
For doublet targets with one unpaired electron, Sf = Sg = 1

2 ,
Mf = Mg = 1

2 , − 1
2 , and for triplet targets with two unpaired

electrons, Sf = Sg = 1, Mf = Mg = 1, 0, −1. With one
electron in orthopositronium, the total electron spin Se can
be 0 or 1 for collisions with doublets and 1

2 or 3
2 for triplets.

The matrix elements 〈SgMg|〈SdMd |M|Sf Mf 〉|ScMc〉, shown
in Table I were calculated using the spin values given above.
As mentioned in the Introduction, these matrix elements can
be compared to the scattering amplitudes of Ref. [19].

The individual spin-density matrices, ρin, for the incoming
orthopositronium and the targets are constructed using the
methods of Refs. [24–26]. We choose the momentum direction
of the targets to be along the positive z axis. A target is
considered to be unpolarized when the beam contains a mixture
of spins along positive z and negative z. For unpolarized
orthopositronium,

ρin = 1
3 (E), (8)

where E is a 3 × 3 unit matrix. For doublets with only a z

component of the vector polarization,

ρin = 1
2 (ε + Pzσz), (9)

where ε is a 2 × 2 unit matrix, σ z is a Pauli matrix, and the
polarization vector, Pz = Tr(ρinσ z) = ±1. For unpolarized
targets, Pz = 0. For triplet vector and tensor polarizations with
only z components,

ρin = 1
3

(
E1 + 3

2PzSz + 1
2PzzSzz

)
, (10)

where E1 is a 3 × 3 unit matrix, Sz is a 3 × 3 spin matrix,
Szz = 3S2

z − 2E1, Pz = Tr(ρinSz), and Pzz = Tr(ρinSzz). For
Pz = ±1, Pzz = 1, for Pz = 0, Pzz = −2, and for unpolarized
targets, Pz = Pzz = 0. The spin-density matrices for the initial
doublet-orthopositronium system are calculated by taking
direct products of the individual matrices from Eqs. (8) and
(9). We get

ρin = 1
6 [(ε × E) + Pz(σz × E)] . (11)

Similarly, for the initial triplet-orthopositronium system, from
Eqs. (8) and (10), we get

ρin = 1
9

[
(E1 × E) + 3

2Pz(Sz × E) + 1
2Pzz(Szz × E)

]
. (12)

The projection operators P (para,target) and P (ortho,target)

are defined such that for specific Sg and Mg only ele-
ments 〈SgMg|〈Sd = 0 Md = 0|ρoutP

(para,target)|SgMg〉|00〉 and
〈SgMg|〈Sd = 1Md |ρoutP

(ortho,target)|SgMg〉|1Md〉 are nonzero.
The matrix elements, ρout are as follows:

〈SgMg|〈00|ρoutP
(para,target)|SgMg〉|00〉

=
∑

Mf Mc

∑
M ′′

f M ′′
c

〈SgMg|〈00|M|Sf Mf 〉|ScMc〉

× 〈Sf Mf |〈ScMc|ρin|Sf M ′′
f 〉|ScM

′′
c 〉

× 〈Sf M ′′
f |〈ScM

′′
c |M†|SgMg〉|00〉, (13)

and

〈SgMg|〈1Md |ρoutP
(ortho,target)|SgMg〉|1Md〉

=
∑
Md

∑
Mf Mc

∑
M ′′

f M ′′
c

〈SgMg|〈1Md |M|Sf Mf 〉|ScMc〉

× 〈Sf Mf |〈ScMc|ρin|Sf M ′′
f 〉|ScM

′′
c 〉

× 〈Sf M ′′
f |〈ScM

′′
c |M†|SgMg〉|1Md〉, (14)

with ρin given by Eq. (11) for doublets and by Eq. (12) for
triplets. The probabilities of obtaining para- or orthopositron-
ium are calculated from the diagonal elements of ρout, both for
specific final states of the targets and for cases in which the
spins are not detected.

III. RESULTS

We present below (i) total probabilities for obtaining
both types of positronium, (ii) quenching probabilities, and
(iii) ratios of para- to orthopositronium production probabili-
ties, for doublet and triplet targets. We consider the time just
after the collisions and give our results in terms of complex
scattering amplitudes f Se , which have units of length. As
explained in the Method section, the total electron spin Se =
0 or 1 for doublets, and 1

2 or 3
2 for triplets.

A. Total probabilities

The total probability of obtaining both types of positronium
for either polarized or unpolarized targets, with or without
detection of the spins of the targets after the collisions, is
labeled Td for doublets and Tt for triplets, and is calculated to
be

Td = 1
4 |f 0|2 + 3

4 |f 1|2, (15)

and

Tt = 1
3 |f 1/2|2 + 2

3 |f 3/2|2. (16)

B. Quenching probabilities

The quenching probability is the probability of produc-
ing parapositronium from the conversion of the incoming
orthopositronium. The quenching probability in collisions with
unpolarized or polarized targets in which the spins of the
targets are not detected after the collisions is labeled Pd for
doublets and Pt for triplets and is calculated to be

Pd = 1
16 |f 0 − f 1|2, (17)

and

Pt = 2
27 |f 1/2 − f 3/2|2. (18)

C. Ratios

For unpolarized targets with or without detection of the
spins after the collisions, as well as for polarized targets
without detection of the spins after the collisions, the ratio
of the probability of producing parapositronium to that of
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obtaining orthopositronium is labeled Rud for doublets and
Rut for triplets and is calculated to be

Rud = Pd

Td − Pd

, (19)

and

Rut = Pt

Tt − Pt

. (20)

For polarized targets, when the spins are detected and Mg =
Mf but not zero, the ratio for doublets is

Rpd = Pd

3Td − 7Pd

, (21)

and for triplets is

Rpt = Pt

2Tt − 4Pt

. (22)

Quenching probabilities and ratios for unpolarized and
polarized targets, with and without detection of the spins of the
targets, are given in Table II. We note that for polarized doublet

and polarized triplet targets, the quenching probabilities and
ratios in the cases in which the spins of the targets are detected
are different than those in which the spins of the targets are
not detected.

The complex electron-spin amplitudes defined in Eq. (1)
are difficult to calculate exactly. However, they can be written
in terms of their real and imaginary parts as f 1 = r1eiθ1 and
f 0 = r0eiθ0 for doublets, and as f 3/2 = r3/2eiθ3/2 and f 1/2 =
r1/2eiθ1/2 for triplets. With only two independent equations
given by the ratios Rud and Rpd or Rut and Rpt , we cannot
solve for the four unknowns (two real parts, and two imaginary
parts). Our goal is to understand the nature of these amplitudes
by exploring the dependence of the real parts of the amplitudes
on measurable positronium probabilities obtained through
cross sections.

We begin by substituting f 1 = r1eiθ1 and f 0 = r0eiθ0 in the
expressions for Pd , Td , Rud , and Rpd . Then, we manipulate the
expressions for Rud and Rpd and obtain a quadratic equation
in the ratio r1

r0 , which we solve as

r1

r0
= −(Rud − 7Rpd ) cos(θ1 − θ0) ± √

(Rud − 7Rpd )2 cos2(θ1 − θ0) − (11Rud − 29Rpd )(3Rud − 5Rpd )

(11Rud − 29Rpd )
. (23)

Similarly, by substituting f 3/2 = r3/2eiθ3/2 and f 1/2 = r1/2eiθ1/2 in the expressions for Pt , Tt , Rut , and Rpt , and manipulating the
expressions for Rut and Rpt , we obtain a quadratic equation in the ratio r3/2

r1/2 , which we solve as

r3/2

r1/2
= −(Rut − 4Rpt ) cos(θ3/2 − θ1/2) ± √

(Rut − 4Rpt )2 cos2(θ3/2 − θ1/2) − (4Rut − 7Rpt )(7Rut − 10Rpt )

2(4Rut − 7Rpt )
. (24)

The ratios are functions of only two measurable parameters,
Rud and Rpd for doublets, and Rut and Rpt for triplets. Given
values for the parameters, the ratios can be plotted for 0 �
(θ1 − θ0) � 360◦ and 0 � (θ3/2 − θ1/2) � 360◦ and special
cases noted. For example, if orthopositronium is three times
more likely than parapositronium to be a product, then 75% of
the spin states of the final target-positronium system would be
orthopositronium states and 25% would be parapositronium
states. Then, for doublets, Pd = 1

4Td , Rud = 1
3 , and Rpd = 1

5 ,

and if θ1 − θ0 = 180◦, r1

r0 = 0 or 1. For triplets, Pt = 1
4Tt ,

Rut = 1
5 , and Rpt = 1

4 , and if θ3/2 − θ1/2 = 180◦, r3/2

r1/2 = 0.065
or 1.5345.

As mentioned in the Introduction, positronium-hydrogen
scattering has been studied with the coupled-pseudostate
method by Blackwood et al., and differential cross sections
are calculated in terms of electron-spin amplitudes [10]. The
results of the spin analysis in Ref. [10] are for collisions
between polarized orthopositronium beams and unpolarized
hydrogen targets (doublet) in which the final state spins of
the hydrogen and positronium are not measured. We consider
unpolarized orthopositronium beams and obtain our results
from diagonal elements of density matrices. We consider cases
in which both types of positronium are produced with or
without detection of the spins of the targets. The probabilities
Td and Pd given by Eqs. (15) and (17) above are consistent

with the differential cross sections given as Eqs. (21) and (20),
respectively, in Ref. [10], if (i) we assume that the electron-spin
amplitudes of Ref. [10] are defined in the same way as Eq. (1)
above, and (ii) we multiply our values by the ratio of the
momenta pab

p0
defined in Ref. [10].

The elastic spin-conversion cross section for the quenching
of orthopositronium in oxygen given by Shinohara et al. in
Ref. [14] is proportional to the quenching probability Pt for
triplet targets. The total cross section for the scattering of
orthopositronium in oxygen in which both orthopositronium
and parapositronium are obtained after electron exchange, and
the oxygen is in the ground state, would be proportional to
the total probability Tt . Given the total cross section and the
proportionality constants, we could calculate the ratios Rut

or Rpt , substitute the values in Eq. (24), and plot specific
expressions for r3/2

r1/2 .
We study orthopositronium-target collisions in which

electron exchange occurs and two types of outgoing prod-
ucts are obtained, targets in the ground state and para- or
orthopositronium. If λo is the rate at which the outgoing
orthopositronium decays to three photons and λeq is the
rate at which the incoming orthopositronium converts to
parapositronium through exchange quenching, then, after the
collisions, (i) the fraction of the total number of decays which
are two-photon decays equals λeq

λo+λeq
and (ii) the ratio of the
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TABLE II. Quenching probabilities and ratios of the probabilities
of producing parapositronium to that of obtaining orthopositronium
just after collisions in which an orthopositronium beam collides
with an unpolarized doublet, a polarized doublet with Mf = ± 1

2 , an
unpolarized triplet, or a polarized triplet with Mf = ±1 or 0, to form
parapositronium with Sd = 0 or orthopositronium with Sd = 1. The
final state spins of the doublet and triplet targets are Sg = 1

2
and Sg = 1, respectively. For doublets, Pd = 1

16 |f 0 − f 1|2, Td =
1
4 |f 0|2 + 3

4 |f 1|2, Rud = Pd

Td−Pd
, and Rpd = Pd

3Td−7Pd
. For triplets, Pt =

2
27 |f 1/2 − f 3/2|2, Tt = 1

3 |f 1/2|2 + 2
3 |f 3/2|2, Rut = Pt

Tt −Pt
and Rpt =

Pt

2Tt −4Pt
.

Doublet Mg undetected Mg = 1
2 Mg = − 1

2

Unpolarized Pd
1
2 Pd

1
2 Pd

Mf = 1
2 Pd

1
3 Pd

2
3 Pd

Mf = − 1
2 Pd

2
3 Pd

1
3 Pd

Unpolarized Rud Rud Rud

Mf = 1
2 Rud Rpd 0.5

Mf = − 1
2 Rud 0.5 Rpd

Triplet Mg undetected Mg = 1 Mg = 0 Mg = −1

Unpolarized Pt
1
3 Pt

1
3 Pt

1
3 Pt

Mf = 1 Pt
1
2 Pt

1
2 Pt 0

Mf = 0 Pt
1
2 Pt 0 1

2 Pt

Mf = −1 Pt 0 1
2 Pt

1
2 Pt

Unpolarized Rut Rut Rut Rut

Mf = 1 Rut Rpt 0.5 0

Mf = 0 Rut 0.5 0 0.5

Mf = −1 Rut 0 0.5 Rpt

total number of two-photon decays to that of three-photon
decays equals λeq

λo
. For example, the rate of spin conversion on

the oxygen molecule reported as 24.7 ± 0.2/μs in Ref. [14],
is the exchange quenching rate λeq.

The ratio of three-photon fluxes to that of two-photon fluxes
from the annihilation of positronium in the center of the Milky
Way galaxy was reported to be 3.95 ± 0.32 [18], a value lower
than the expected value of 4.5 obtained from spin-counting
arguments [15]. As noted in the Introduction, one explanation
for the lower measured value is the quenching of orthopositro-
nium to parapositronium in the grains of the interstellar
dust, prior to photon annihilation. Since we do not know
(i) the cross section for the conversion of orthopositronium
to parapositronium after electron exchange or (ii) the total
cross section for the scattering of orthopositronium after
electron exchange, we cannot calculate ratios of para- to
orthopositronium production probabilities for doublet and
triplet targets and incorporate them in Eqs. (23) and (24).

However, we derive an expression for Rγ , the ratio of
the total number of photons from three-photon decays of
orthopositronium integrated over all time, to that from two-
photon decays of parapositronium integrated over all time. The
parapositronium is produced through exchange quenching of
orthopositronium. Given n positrons that form positronium
in some medium, if orthopositronium is three times more
likely to form than parapositronium, then n

4 positrons can

form parapositronium and 3n
4 can form orthopositronium. The

number of two-photon decays after exchange quenching equals
n
4 + 3n

4 ( λeq

λo+λeq
), while the number of three-photon decays after

exchange quenching equals 3n
4 − 3n

4 ( λeq

λo+λeq
). With each two-

photon decay producing two photons, and each three-photon
decay producing three photons,

Ry = 4.5

(
λo

λo + 4λeq

)
. (25)

Note that when λeq

λo+λeq
= 0, Rγ = 4.5, as expected in the

absence of exchange quenching and when λeq

λo+λeq
= 1, Rγ =

0, as expected in the absence of any outgoing orthopositro-
nium. Furthermore, when triplet orthopositronium is three
times more likely to be a final product compared to singlet
parapositronium, then the ratio λ0

λeq
= 3, and Ry = 13.5

7 = 1.93.

Eq. (25) can be rewritten so that λ0
λeq

= ( 4Rγ

4.5−Rγ
), and λ0

λeq
can be

obtained from measured values of Rγ .

IV. SUMMARY

The quenching of orthopositronium by electron exchange
is a fundamental process that can occur in laboratories on
Earth as well as in the Milky Way galaxy. In one review of
experimental measurements of positronium-gas cross sections,
the importance of the exchange interaction at low energies and
the need to measure partial cross sections was noted [28].
In another review, the production of intense positronium
beams for resolving discrepancies in cross-section calculations
and measurements at low energies was highlighted [29].
In the literature, spin analysis of exchange quenching is
built on Ferrell’s work in Ref. [19]. In Ref. [11], Kakimoto
et al. use probability density arguments similar to those
of Ref. [19] to estimate cross sections for nonconversion
and conversion scattering of orthopositronium from oxy-
gen. In Ref. [10], Blackwood et al. calculate probability
densities in collisions between polarized orthopositronium
beams and hydrogen targets. Spin-counting arguments are
made by Zurek in Ref. [15] to calculate galactic-photon-flux
ratios.

We have expanded the spin analysis in two ways. First,
in order to include all possible initial and final spin states
for polarized and unpolarized targets in a systematic way and
reduce inconsistencies in the signs of exchange terms, we
use angular-momentum coupling to calculate spin-scattering
matrices. Second, in order to describe unpolarized beams and
mixed-spin systems accurately, we construct density matrices.
This enables us to obtain probabilities for cases in which the
spins of the targets are or are not detected in coincidence with
the production of positronium.

We have presented quenching probabilities and total prob-
abilities for producing para- and orthopositronium in single
collisions of an unpolarized orthopositronium beam with
doublet and triplet targets. Our results are presented in terms
of complex electron-spin amplitudes f Se which are labeled
by the total electron spin Se of the target-positronium system.
The calculation of these amplitudes, which are not typical
scattering lengths, involves the scattering of the electron in
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the positronium with unpaired electrons in the targets. We will
postpone such calculations to the future.

In Ref. [10], Blackwood et al. point out that (i) orthopositro-
nium beams used in scattering experiments today are spin
polarized and (ii) in collisions with unpolarized hydrogen
targets in which the spins of the positronium and hydrogen
are not detected, the ortho to para conversion cross sections
are independent of the polarization of the orthopositronium
beam. In Ref. [11], Kakimoto et al. give cross sections for the
inelastic conversion of orthopositronium to parapositronium
in positronium-oxygen scattering. This is important, since the
lowest excited state of oxygen is only 0.98 eV above the ground
state, and if the initial kinetic energy of the positronium beam is
higher than that, both the inelastic-conversion process in which

the oxygen is in the singlet state and the elastic-conversion
process in which the oxygen is in the triplet state must be
considered [13].

In this work, we have not considered excited states of
the targets after the collisions or polarized orthopositronium
beams. Our next project is to use the techniques described
above to calculate quenching probabilities and total positron-
ium production probabilities for excited states and polarized
beams, and polarization vectors for outgoing beams.
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