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Relativistic linearized coupled-cluster single-double calculations of positron-atom bound states
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Relativistic linearized coupled-cluster single-double approximation with third-order corrections is used to
calculate positron-atom bound states. The method is tested on closed-shell atoms such as Be, Mg, Ca, Zn, Cd,
and Hg, where a number of accurate calculations are available. It is then used to calculate positron binding
energies for a range of open-shell transition metal atoms from Sc to Cu, from Y to Pd, and from Lu to Pt. These
systems possess Feshbach resonances, which can be used to search for positron-atom binding experimentally
through resonant annihilation or scattering.
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I. INTRODUCTION

In this paper we apply the relativistic linearized coupled-
cluster single-double (SD) approximation to calculate positron
binding energies for a number of atoms, including open-
shell transition metal atoms. Positron-atom bound states are
characterized by strong electron-positron correlation effects.
These effects for the positron-bound states are even stronger
than for their electron counterparts, i.e., the atomic negative
ions. This is due to the electron-positron attraction and, in
particular, the large role of virtual positronium (Ps) formation
[1–3]. This makes calculations of positron-atom bound states a
challenging theoretical problem. Using the SD method allows
us to include all of the main correlation effects for atoms with
several electrons in the open valence shell.

The existence of positron-atom bound states was predicted
by many-body theory calculations [4] and verified varia-
tionally [5,6] more than a decade ago. Since then, positron
binding energies have been calculated for many ground-state
and excited atoms: He 2 3S, Li, Be, Be 2 3P , Na, Mg, Ca,
Cu, Zn, Sr, Ag, Cd, and Hg (see Refs. [7–12] and references
therein). There are strong indications that many more atoms,
possibly over a quarter of the whole Periodic Table, should
be able to bind positrons [4,9,13,14]. Such conclusions are
based on the analysis of the atomic ionization potentials and
dipole polarizabilities, which are relevant for positron binding,
and on the calculations of positron binding to a “model alkali
atom” [15] (see also review on positron compounds [16]). In
spite of this wealth of predictions, experimental verification of
positron binding to neutral atoms is still lacking.

Recently, we proposed [13] that positron binding to
many open-shell atoms could be studied experimentally by
measuring resonant positron-atom annihilation. Such resonant
annihilation is similar to the resonant annihilation observed
for positrons in many polyatomic molecules [17]. In this
process the incident positron is captured into a bound state
with the target, with the excess energy being transferred (in
the case of molecules) to vibrations. Since the vibrational
motion of the molecules is quantized, these transitions can
only take place at specific positron energies, which means
they have a resonant character. These energies correspond
to vibrational Feshbach resonances of the positron-molecule
complex [17–19]. The majority of the resonances observed are
associated with individual vibrational modes of the molecule.

The negative energy of the positron-bound state ε0 is then
related to the downshift of the resonance energy,

εν = ων + ε0, (1)

with respect to the energy ων of the vibrational excitation
[20,21]. Hence, by observing the resonances, the positron
binding energy εb = |ε0| can be found. In this way, binding
energies for over 60 polyatomic species have been determined
[22–25] by measuring positron annihilation using a high-
resolution, tunable, trap-based positron beam [26]. In our
previous paper [13] we suggested that one can search for a
similar effect in atoms. In this case the resonances will be
associated with low-lying electronic excitations. These can be
found in open-shell atoms, where they often have the same
configuration as the ground state. If the positron can bind to
such an atom in the ground state, then it can likely bind to this
atom in an excited state as well. One can then consider the
following process:

A + e+ → A∗e+ → A+ + 2γ. (2)

Here the positron first loses energy by exciting the atom and
becoming trapped in the bound state with the excited atom.
It then annihilates with one of the electrons, and the resulting
γ quanta can be detected. The first step of the process (2)
is obviously reversible. Hence, to estimate the efficiency of
resonant annihilation one needs to evaluate the rates of both
positron annihilation and autodetachment [13].

To prove the feasibility of such a process one also needs to
estimate the positron binding energies to open-shell atoms
in their ground and excited states. At the moment, there
is no simple, universal theoretical method to do this. All
previous calculations deal with a positron interacting with
either a closed-shell atom or an atom with a single electron
above a closed-shell core. Positron interaction with a many-
electron system is a challenging problem due to strong
electron-positron attraction. This attraction leads to virtual Ps
formation, which is difficult to describe using a single-center
basis with the origin on the atomic nucleus. In particular, to
achieve convergence one needs to include basis states with
large values of the orbital angular momentum l. The required
maximum value should satisfy lmax > d/RPs, where RPs is
the radius of Ps and d is the distance between Ps and the
atomic nucleus. This can easily lead to lmax � 10. Large
values of lmax required to describe the total wave function
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at small electron-positron separations lead to large sizes of
the electron and positron single-particle bases. While there are
many methods for accurate treatment of various many-electron
systems, their application to the positron-atom problem is
not straightforward due to much larger basis sizes needed
to achieve similar accuracy. Development of methods for
accurate calculations of positron binding to many-electron
open-shell atoms is an important direction for future studies,
but one that goes beyond the scope of the present work. Our
aim is to survey a large number of open-shell atoms. We want
to demonstrate that many of them can bind positrons not only
in the ground state but also in excited states, and to provide
rough estimates of the corresponding binding energies.

In Ref. [13] we used a simple approach in which the second-
order correlation potential of the positron-atom interaction
was scaled up to account for the effect of higher-order
electron-positron correlations (i.e., virtual Ps formation). It
was assumed that the scaling factor is the same for all atoms,
and its value was chosen by fitting the results for those atoms
where accurate positron binding calculations are available.
Open shells were treated by using fractional occupation num-
bers in the standard expressions for a closed-shell system. It is
well known that the fractional occupation numbers approach
works very well on the Hartree-Fock level. For example, such
calculations were used as a starting point for the configuration
interaction (CI) calculations for many-valence-electron atoms
[27–29]. It looks even more reasonable in the positron-atom
problem, because the positron is not affected by the Pauli
principle. The positron-atom interaction has, thus, no direct
sensitivity to the valence shell being open or closed (unlike
the electron-atom interaction in the negative ion problem).

In the present paper we use a more sophisticated fully
ab initio approach in which the strong electron-positron
correlations are included explicitly through the use of an
all-order technique.

Accurate treatment of the strong electron-positron correla-
tions is the main challenge in the calculation of positron-atom
interaction. It calls for the use of nonperturbative approaches.
For systems with few active electrons accurate results were
obtained using the stochastic variation method [5,9]. The
most obvious choice for a generic many-electron atom is the
CI technique. It was successfully employed in a number of
previous calculations for atoms with one or two electrons in
the valence s shell (see, e.g., Refs. [7,8,30,31]). However, it
becomes too complicated for more than two valence electrons
and, in particular, for atoms with open d shells, which
we want to consider in the present work. Another suitable
all-order technique is the coupled-cluster approach. In this
approach the interparticle interaction is included to all orders
via an iterative procedure. The corresponding subset of terms
includes the so-called ladder diagrams [32]. This class of
diagrams is very important in the positron-atom problem, as it
describes the effect of virtual Ps formation. Summation of the
electron-positron ladder-diagram series was performed earlier
by solving a linear matrix equation for the electron-positron
vertex function for hydrogen [33], noble gas atoms [34], and
halogen negative ions [35].

The coupled-cluster approach in its linearized single-double
approximation has been widely used for atoms and ions
with one external electron above closed shells (see, e.g.,

Refs. [36–40]). It is relatively easy to modify the corresponding
equations for the case of a positron interacting with a closed-
shell atom. We will do this in the next section.

To test the method we first apply it to positron binding
to closed-shell atoms: Be, Mg, Ca, Zn, Cd, and Hg, for
which a number of accurate calculations are available. We
then apply the same approach to open-shell atoms, treating
them in a simplified manner similar to that of Ref. [13].
Fractional occupation numbers are used to rescale the terms
containing contributions from the open shells. The main
advance of the present method compared with Ref. [13] is
the all-order treatment of the positron-electron interaction in
the correlation potential. No further fitting is used or needed.
Remarkably, the results of the all-order calculations turn out to
be close to the estimates obtained in our previous work. These
calculations lend further support to the proposal to search for
positron-bound states with open-shell atoms through resonant
annihilation or scattering.

II. THEORY

A. Electron and positron basis sets

The use of the coupled-cluster technique requires construc-
tion of a single-particle basis. For a positron interacting with
an atom one must have two separate basis sets: one for electron
states and one for positron states. We use a standard B-spline
technique in both cases [41]. The electron basis states are
constructed by diagonalizing the matrix of the relativistic
Hartree-Fock (RHF) Hamiltonian in the B-spline basis. The
positron basis states are constructed using the same set of
B splines and the RHF Hamiltonian in which the sign of
the direct potential is changed and the exchange potential is
omitted. Below we will use the following notation for the basis
states: Indices a,b,c refer to electron states in the core, indices
m,n,k,l refer to electron states above the core, indices v,r,w

refer to positron states, and indices i,j refer to any states.
Numerical results reported in Secs. III and IV were obtained
using the basis sets built from 30 B splines of order 7 spanning
the radial coordinate from the origin to R = 30 a.u., with
angular momenta between 0 and 10.

B. Single-double equations

The wave function of an atom with a positron in state v can
be written in the SD approximation as an expansion

|�v〉 =
[

1 +
∑
na

ρnaa
†
naa + 1

2

∑
mnab

ρmnaba
†
ma†

naaab

+
∑
r �=v

prva
†
r av +

∑
rna

prnvaa
†
r ava

†
naa

]
|	v〉, (3)

where |	v〉 is the zeroth-order wave function of the frozen-core
atom in the relativistic Hartree-Fock approximation with the
positron in state v. It can be written as

|	v〉 = a†
v|0C〉, (4)

where |0C〉 is the RHF wave function of the atomic core.
The expansion coefficients ρna and ρmnab in Eq. (3)

represent single- and double-electron excitations from the
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core. The coefficients prv represent excitations of the positron,
and the coefficients prnwa represent simultaneous excitations
of the positron and one of the electrons.

The SD equations for the core excitation coefficients do not
depend on the external particle and are the same in the electron
and positron cases. They are written as a set of equations for
the single-excitation coefficients ρma and double-excitation
coefficients ρmnab (see, e.g., Ref. [36]):

(εa − εm)ρma =
∑
bn

g̃mbanρnb +
∑
bnk

gmbnkρ̃nkab

−
∑
bcn

gbcanρ̃mnbc (5)

and

(εa + εb − εm − εn)ρmnab

= gmnab +
∑
cd

gcdabρmncd +
∑
kl

gmnklρklab

+
∑

k

gmnkbρka −
∑

c

gcnabρmc +
∑
kc

g̃cnkbρ̃mkac

+
∑

k

gnmkaρkb −
∑

c

gcmbaρnc +
∑
kc

g̃cmkaρ̃nkbc . (6)

In these equations g̃mnkl ≡ gmnkl − gmnlk and ρ̃mnkl ≡ ρmnkl −
ρmnlk , and the coefficients g are the Coulomb integrals,

gmnkl =
∫ ∫

ψ†
m(r1)ψ†

n(r2)
e2

|r1 − r2|ψk(r1)ψl(r2)dr1dr2,

(7)

involving electron states ψk , ψl , etc.
The core SD equations (5) and (6) are solved iteratively until

convergence is achieved. This is controlled by the correlation
correction to the energy of the core:

δEC = 1

2

∑
mnab

gabmnρ̃nmba. (8)

After solving the SD equations for the core one can start
iterating the SD equations for the external particle. The SD
equations for the positron can be obtained by substituting
the state |�v〉 from Eq. (3) into the relativistic many-body
Schrödinger equation:

H |�v〉 = ε0|�v〉. (9)

Projecting the Schrödinger equation onto a†
w|0C〉 gives the

equation for pwv ,

(ε0 − εw)pwv = −
∑
bm

qwbvmρmb +
∑
bmr

qwbrmprmvb, (10)

Projecting Eq. (9) onto a†
wa

†
naa|0C〉 gives the equation for the

double-excitation coefficient pwnva ,

(ε0 + εa − εw − εn)pwnva

= qwnva −
∑
rm

qwnrmprmva +
∑
m

qwnvmρma

−
∑

b

qwavbρnb +
∑
mb

pwmvbg̃mabn

+
∑
rb

qwarbprbvn +
∑
mb

qwmvbρ̃mabn . (11)

ww rv wv v

m

b

m

b

FIG. 1. Diagrammatic form of the SD equation (10) for the
positron single-excitation coefficient. Lines with arrows to the right
are positron and excited electron states, and those with arrows to the
left are core electron states (“holes”). The vertical solid line is the
double-excitation coefficient, and the solid line terminated by a circle
is the single-excitation coefficient. Dashed lines are the Coulomb
interactions.

Here qwnva is the Coulomb integral (7) involving positron
states.

Equations (10) and (11) are presented graphically in Figs. 1
and 2. When solving these equations, the correction to the
energy of the positron state v,

δεv = −
∑
mb

qvbvmρmb +
∑
bmr

qvbrmprmvb, (12)

is used to control convergence.

C. Positron-bound state

Apart from the absence of the exchange terms involving the
positron, there is another important difference between the SD
equation (11) for the positron and those for external electrons in
atoms or ions. In the latter cases the SD equation for the double-
excitation coefficient also contains a term

∑
r qwnraprv . The

corresponding diagram is “reducible,” i.e., it contains two parts
connected by the single line of the excited valence particle.
Including it ensures that the correction to the energy of the
valence state v is determined in all orders.

When using the SD method for the positron, its eigenstate
and energy eigenvalue ε0 are obtained by matrix diagonaliza-
tion (see below). The need for this procedure arises because of
the absence of a good zeroth-order approximation for the wave
function of the bound positron. In the RHF approximation

ww rv

n m

a

b

w vv

v

a

n

wwv

n

a

m

v

v w v w

m

b

w

r

n

m

b
b

a

n a

v w

v w

m

b

a

n

n

a

n

aa

n

m

b
n

a

FIG. 2. Diagrammatic form of the SD equation (11) for the
positron double-excitation coefficient.
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the positron-atom interaction is repulsive, and all of the
single-particle positron basis states lie in the continuum. On
the other hand, the B-spline basis is effectively complete for the
positron-bound state to be obtained by matrix diagonalization.
To do this, the SD equations (10) and (11) should be iterated
for every positron basis state used to construct an effective
single-particle Hamiltonian matrix. A similar situation occurs
for negative ions [42,43] and when combining the SD method
with the CI technique to obtain many-electron wave functions
[44]. In all of these cases the term

∑
r qwnraprv should be

removed from the SD equations, as it is taken into account via
matrix diagonalization.

The wave function of the bound positron is found as an
expansion over the positron basis states:

ψp =
∑

v

cvψv. (13)

Equations (10) and (11) are iterated for every basis state v in
the expansion (13). The energy parameter ε0 in these equations
is the (unknown) energy of the positron state (13). The energy
ε0 and the expansion coefficients cv are found by solving the
eigenvalue problem

�̂X = ε0X, (14)

where X is the vector of expansion coefficients cv , ε0 is the
lowest eigenvalue (which must be negative), and the elements
of the effective Hamiltonian matrix �̂ are given by

σvw = εvδvw −
∑
mb

qwbvmρmb +
∑
bmr

qwbrmprmvb. (15)

The first term on the right-hand side of Eq. (15) represents
the positron energies in the static RHF approximation. The
second and third terms describe the effect of electron-positron
correlations. These two terms are the positron-atom self-
energy, which is given by right-hand side of the diagrammatic
equation in Fig. 1.

Since the SD equations (10) and (11) depend on the energy
ε0 which is found later from Eq. (14), we start with an initial
guess for ε0. The calculations are then performed iteratively,
solving the SD equations (10) and (11) and diagonalizing the
matrix (15) several times until ε0 has converged. In practice
this takes about five global iterations.

D. Third-order corrections

The SD equations account for the second-order contribution
and selected classes of higher-order correlation diagrams in
all orders. In particular, the electron-positron ladder diagram
series, which describes virtual Ps formation, is included in full.
However, beginning with the third order, the SD approximation
misses certain terms. It is well known that the missing third-
order terms can give sizable corrections to the energy in atomic
systems (see, e.g., Ref. [38]). Including these terms can lead
to significant improvements in the accuracy of the results, and
we include these contributions for the positron-bound states
with atoms.

The third-order terms not included in the SD approximation
are listed in Ref. [38] for the case of an electron interacting
with a closed-shell ion. Similar terms for the positron case
can be obtained by changing the sign of Coulomb integrals

ppprp
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FIG. 3. Third-order positron-atom interaction diagrams not in-
cluded into the SD equations. Notation of Ref. [45] is used.

involving the positron and removing exchange. All resulting
third-order diagrams are shown in Fig. 3. The corresponding
perturbation theory corrections to the energy of the positron
state p are

E
(3)
C =

∑
abmnr

qpmrbqrnpag̃bamn

(ε0a − εrn)(εab − εmn)
, (16)

E
(3)
I =

∑
abcmn

qpapbgacmng̃mnbc

(εbc − εmn)(εab − εmn)
, (17)

E
(3)
J = −

∑
abmnk

qpmpngbamkg̃bank

(εab − εmk)(εab − εnk)
, (18)

E
(3)
K =

∑
abcmn

qpmpbgacmng̃acnb

(εac − εnm)(εb − εm)
, (19)

E
(3)
L = −

∑
abmnk

qpapngabmkg̃mbnk

(εab − εmk)(εa − εn)
. (20)

Here εij = εi + εj , ε0 is the positron energy found by solving
the eigenvalue problem (14), and the positron state p is given
by Eq. (13).

III. CLOSED-SHELL ATOMS

For a positron interacting with a closed-shell atom, all
sums over the projections of angular momenta of electron
and positron states in the SD equations (5), (6), (10), and (11)
and third-order corrections (16)–(20) are done analytically,
together with the angular reduction of the Coulomb integrals.
Such systems are easiest from the computational point of view.
There are also a number of other calculations of positron
binding of different levels of sophistication for several such
atoms. We use these systems to test our approach. The results
of calculations of positron s-wave bound states with Be, Mg,
Ca, Zn, Cd, and Hg are shown in Table I. These six atoms
share the following features. First, they have closed electronic
shells. Second, the dipole polarizabilities αd of these atoms
are sufficiently large to provide strong attraction and ensure
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TABLE I. Positron binding energies (BE, in meV) for closed-shell atoms obtained using the SD equations (SD) with third-order correction
(E3), and by other methods, with best available predictions in bold.

BE, this work
I αd

a

Atom (Z) (eV) (a.u.) SD E3 Total BE from other calculations

4 Be 9.32 38 157 26 184 45.90 [46], 85.63 [47], 83.8 [48], 3.0 [50], 33 [51]
12 Mg 7.64 72 475 37 512 870 [4], 425 [47], 439 [30], 985 [52], 15 [50], 457 [51], 125 [53]
20 Ca 6.11 154 1114 50 1164 1139b [30]
30 Zn 9.39 42 143 40 183 230 [4], 39 [54], 103 [31], 0.01 [55], 53 [53]
48 Cd 8.99 49 204 70 274 350 [4], 166 [31], 1.5 [55]
80 Hg 10.43 38 59 53 112 45 [4]

aStatic dipole polarizabilities from Ref. [56].
bPositron-atom BE obtained from the calculated BE of 449 meV with respect to the Ca++Ps threshold.

positron binding. Finally, the ionization potentials I of these
atoms (with the exception of calcium) are greater than the Ps
binding energy (6.8 eV). Hence, the Ps-formation channel is
closed at low positron energies, and the positron-atom bound
states are stable against dissociation into positive ion + Ps.

The SD column of Table I shows the binding energies (BE)
|ε0| (in meV) found by solving the eigenvalue problem (14).
The E3 column gives the third-order corrections (16)–(20). The
next column is the total obtained by adding the third-order
correction to the BE from the SD calculations. We also
examined the effect of finite box size on the binding energy [7]
and found it negligible. The rest of the table shows the results
of earlier calculations. The most accurate among them are
probably the calculations by the Mitroy group [30,31,46–48].
Our results are generally slightly larger, but within 100 meV
of the best earlier predictions. Adding third-order corrections
increases the BE in all the systems, and in most cases
increases the difference between the present and best earlier
results.

Note the scatter of the results between different groups
and even between different calculations by the same group.
This reflects the fact that the positron-atom binding energy
is very sensitive to the correlations. In the static field RHF
approximation the positron is repelled from the neutral atom.
The binding is solely due to correlations. Most of the
correlation energy is required to get the system across the
threshold for binding, while the final binding energy is a result
of a relatively small “surplus” of the correlation energy. For
this reason, absolute difference in binding energies is the better
indication of the accuracy of the calculations. This difference
between ours and best earlier results is roughly the same for
all atoms (∼100 meV). We take this value as an estimate of
the accuracy of our method.

IV. OPEN-SHELL ATOMS

In this section we consider open-shell atoms, which were
suggested in our previous work [13] as good candidates
for experimental detection of positron-atom bound states
via resonant annihilation or scattering. We treat open-shell
systems in an approximate way, by introducing fractional
occupation numbers. For example, the ground-state electron
configuration of neutral iron is 3d64s2 above the Ar-like core.
We treat it as a closed-shell system but reduce the contribution

of the 3d subshell to the correlation potential by the factor
0.6. Both members of the fine-structure multiplet, 3d3/2 and
3d5/2, are treated identically, and the corresponding terms are
rescaled by the same factor 0.6.

Note, however, that the SD equations (11) are left un-
changed. There is strong cancellation between different terms
in these equations, and rescaling of the core contribution is an
insufficiently accurate procedure. It breaks the delicate balance
between different terms, leading to unreliable results. The
rescaling is done when constructing the correlation potential
matrix σvw, by reducing the terms corresponding to the open
subshells when summing over the hole states b in Eq. (15).
The fact that this procedure works well is supported by
good agreement between the present calculations of positron
binding to copper with our previous calculations (see Table II).
In the table we also compare the positron binding energy
obtained for Li with the accurate variational calculation of
Mitroy [49]. The difference is larger than for the closed-shell
systems in Table I and for Cu. This is mostly due to poor
convergence with respect to lmax. Since the ionization potential
of Li is smaller than the Ps binding energy, this system
is best described as Ps bound to the Li+ ion. Its accurate
description requires even higher values of the maximum
angular momentum lmax. The results shown in Table II are
obtained using lmax = 10. We have checked that for Li the
binding energy obtained for lmax = 8 is significantly smaller
(670 meV), which means that convergence has not been
achieved for this system. Recall also that for atoms with
ionization potentials smaller than 6.8 eV, the Ps formation
channel is open at all incident positron energies. Even if
such systems could form electronic Feshbach resonances with
the positron, these resonances will likely be too broad to be
observed.

The present approach does not distinguish between differ-
ent states of the same configuration. This means that if the
positron is found to be bound to an atom in a given electronic
configuration, it is predicted to be bound to all states of this
configuration. This should be expected at least for the states
where the excitation energy is smaller than the binding energy.
However, this may still be true for higher-lying states. The
ability of an atom in an excited state to bind the positron is
what is needed for the resonant process proposed in Ref. [13].
As it was argued in Ref. [13] and as we will see below, there
are many such atoms.
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TABLE II. Positron binding energies (BE, in eV) for open-shell atoms obtained using the SD equations (SD) with third-order correction
(E3). In this table I is the ionization energy from the lowest state of a given configuration. The last column shows semiempirical values from
Ref. [14].

BE, this work BE, other predictions
Valence I αd

a

Atom (Z) configuration (eV) (a.u.) SD E3 Total Ref. [13] Ref. [14]

3 Li 1s22s 5.39 164 0.800 0.044 0.845 1.341b

21 Sc 3d4s2 6.56 120 0.908 0.129 1.037 0.75(2)
3d24s 5.13 0.849 0.109 0.958

22 Ti 3d24s2 6.83 98.5 0.785 0.110 0.896 0.84(3)
3d34s 6.02 0.727 0.097 0.825

23 V 3d34s2 6.74 83.7 0.678 0.097 0.775 0.81(3)
3d44s 6.48 0.602 0.086 0.689

24 Cr 3d54s 6.76 78.3 0.488 0.077 0.565 0.54(8)
3d44s2 5.80 0.590 0.086 0.676

25 Mn 3d54s2 7.43 63 0.496 0.077 0.574 0.53(3)
3d64s 5.32 0.382 0.068 0.450

26 Fe 3d64s2 7.90 56.7 0.429 0.069 0.498 0.28 0.37(3)
3d74s 7.04 0.315 0.061 0.376 0.09

27 Co 3d74s2 7.88 50.7 0.360 0.061 0.422 0.26 0.36(3)
3d84s 7.45 0.243 0.053 0.297 0.08

28 Ni 3d84s2 7.64 45.9 0.295 0.055 0.350 0.24 0.42(3)
3d94s 7.61 0.173 0.046 0.220 0.07

29 Cu 3d104s 7.72 41 0.125 0.040 0.166 0.17(2)c 0.152(2)d

39 Y 4d5s2 6.22 153 0.845 0.256 1.102 0.6(19)
4d25s 4.86 0.683 0.258 0.942

40 Zr 4d25s2 6.63 121 0.729 0.209 0.939 0.8(11)
4d35s 6.12 0.623 0.208 0.831

41 Nb 4d45s 6.76 106 0.527 0.172 0.699 0.6(14)
4d35s2 6.62 0.658 0.178 0.836

42 Mo 4d55s 7.09 86.4 0.442 0.145 0.587 0.45(4)
4d45s2 5.73 0.583 0.155 0.739

43 Tc 4d55s2 7.28 76.9 0.461 0.133 0.594 0.46 0.62(4)
4d65s 6.96 0.355 0.124 0.479 0.23

44 Ru 4d75s 7.36 65 0.310 0.109 0.419 0.21 0.30(95)
4d65s2 6.43 0.461 0.121 0.583

45 Rh 4d85s 7.46 58 0.260 0.095 0.355 0.20 0.24(86)
46 Pd 4d10 8.34 32 <0 − <0 <0

4d95s 7.52 0.205 0.083 0.288
4d85s2 5.23 0.361 0.097 0.459

71 Lu 5d6s2 5.43 148 0.188 0.221 0.410 0.2(11)
72 Hf 5d26s2 6.83 109 0.305 0.198 0.503 0.8(10)

5d36s 5.08 0.349 0.190 0.539
73 Ta 5d36s2 7.55 88.4 0.274 0.166 0.441 0.45 0.6(8)

5d46s 6.34 0.126 0.147 0.273
74 W 5d46s2 7.86 74.9 0.235 0.141 0.377 0.46 0.4(7)

5d56s 7.50 0.083 0.118 0.201 0.30
75 Re 5d56s2 7.83 65 0.202 0.121 0.324 0.42(12)

5d66s 6.38 0.051 0.096 0.147
76 Os 5d66s2 8.44 57 0.167 0.105 0.273 0.47 0.3(5)

5d76s 7.80 0.025 0.079 0.105 0.29
77 Ir 5d76s2 8.97 51 0.137 0.091 0.229 0.46 0.2(4)

5d86s 8.62 0.005 0.067 0.072 0.28
78 Pt 5d96s 8.96 44 <0 − <0 0.27 <0

5d86s2 8.86 0.111 0.080 0.191 0.46
5d10 8.20 0.020 0.023 0.044 0.23

aGround-state atomic static dipole polarizabilities from Ref. [56].
bStochastic variation method, Ref. [49].
cConfiguration-interaction with many-body theory, Ref. [7].
dStochastic variation method, Ref. [9].

032503-6



RELATIVISTIC LINEARIZED COUPLED-CLUSTER . . . PHYSICAL REVIEW A 86, 032503 (2012)

Table II shows the results of our calculations of positron
binding energies for a number of atoms with an open d

shell. These values are compared with the binding energies
calculated in Ref. [13] and with semiempirical estimates of
Ref. [14]. Within the accuracy of the current approach all
results appear to be in good accord with each other. There is
a correlation between the occupation of the d shell and the
binding energies. In most cases the closer the occupation is
to 100% the smaller is the binding energy, and the smaller
are the differences between the values obtained using different

approaches. In the end, the results of the present work confirm
the claim of Ref. [13] that many open-shell atoms do bind the
positron not only in the ground state but also in excited states.
Note that according to our calculations, positrons do not bind
to either Pd or Pt in their ground states. However, both atoms
bind in excited states.

The final energies of positron-bound states and resonances
are presented in Table III. The resonant energy is the energy
of the incident positron ε for which capture into a bound state
with an excited atom is possible. The resonant and binding

TABLE III. Final binding and resonant energies (εb and εr , in eV) for the detection of positron-atom bound states through resonant
annihilation or scattering.

Valence
Atom (Z) configuration Excited states Eex

a εb εr
b

22 Ti 3d24s2 1D2 0.90 0.90 0.0

3d34s 5F1,
5F2 0.813, 0.818 0.825 −0.012, −0.007

27 Co 3d84s 4F9/2,
4F7/2,

4F5/2,
4F3/2 0.43, 0.51, 0.58, 0.63 0.30 0.13, 0.21, 0.28, 0.33

2F7/2 0.92 0.30 0.62

28 Ni 3d94s 1D2 0.42 0.22 0.20

43 Tc 4d65s 6D5/2,
6D3/2,

6D1/2 0.46, 0.50, 0.52 0.48 −0.02, 0.02, 0.04

44 Ru 4d75s 5F1 0.39 0.42 −0.03
3F4,

3F3 0.81, 1.00 0.42 0.39, 0.58
5P2 1.00 0.42 0.58

45 Rh 4d85s 4F5/2,
4F3/2 0.322, 0.43 0.355 −0.033, 0.08

2F7/2,
2F5/2 0.71, 0.96 0.36 0.35, 0.60

46 Pd 4d95s 2[5/2]3,
2[5/2]2 0.81, 0.96 0.29 0.52, 0.67

72 Hf 5d26s2 3F4 0.57 0.50 0.07

73 Ta 5d36s2 4F7/2,
4F9/2 0.49, 0.70 0.44 0.05, 0.26

4P1/2,
4P3/2,

4P5/2 0.75, 0.75, 1.15 0.44 0.31, 0.31, 0.71
2G7/2 1.20 0.44 0.76

74 W 5d46s2 5D2,
5D3 0.41, 0.60 0.38 0.03, 0.22

4D3 0.77 0.38 0.39
3P20 1.18 0.38 0.80

5d56s 7S3 0.36 0.20 0.16

75 Re 5d56s2 4P5/2 1.44 0.32 1.12

76 Os 5d66s2 5D2,
5D3,

5D1,
5D0 0.34, 0.52, 0.71, 0.76 0.27 0.07, 0.25, 0.44, 0.49

3H5,
3H4,

3H6 1.78, 1.84, 1.84 0.27 1.51, 1.57, 1.57

5d76s 5F5,
5F4 0.64, 1.08 0.10 0.54, 0.98

77 Ir 5d76s2 4F3/2,
4F5/2,

4F7/2 0.51, 0.72, 0.78 0.23 0.28, 0.49, 0.55
2G9/2,

2G7/2 1.73, 2.20 0.23 1.50, 1.97
4P5/2,

4P3/2,
4P1/2 2.00, 2.30, 2.51 0.23 1.77, 2.07, 2.27

2H11/2 2.43 0.23 2.20

5d86s 4F9/2,
4F7/2,

4F5/2,
4F3/2 0.35, 0.88, 1.22, 1.47 0.07 0.28, 0.81, 1.15, 1.40

2P3/2,
2P1/2 1.31, 1.55 0.07 1.24, 1.48

2F5/2,
2F7/2 1.51, 1.62 0.07 1.44, 1.55

4P5/2 1.60 0.07 1.53

78 Pt 5d86s2 3F3,
3F2 1.25, 1.92 0.19 1.06, 1.73

3P2 0.81 0.19 0.62

5d10 1S0 0.76 0.04 0.72

aAtomic excitation energy with respect to the ground state from Ref. [57].
bResonance energy from Eq. (21).
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energies are related to each other by

εr = Eex − εb, (21)

where Eex is the atomic excitation energy measured with
respect to the ground state. To observe the resonance, one
requires εr > 0, which means that the excitation energy must
be greater than binding energy (Eex > εb). In lighter atoms, the
fine-structure splitting of the ground state is too small to satisfy
this condition. However, in the heavier atoms, the fine structure
can be larger than εb, and the corresponding low-lying excited
states can form resonances. There is also another condition for
observing narrow resonances. The resonance energy should
be smaller than the Ps formation threshold, εr < I − 6.8. For
resonances lying above this energy, the Ps formation channel
will be open. This can reduce the resonance lifetimes and make
the resonances too broad to be observed. Also, at these energies
the positron-atom annihilation signal due to resonances will
be “drowned” by the annihilation within the positronium.
Table III shows resonances which satisfy or approximately
satisfy these two conditions. Note that we also show some

states with negative εr values, which correspond to weakly
bound positron states. Given the uncertainty in our calculation,
they may in fact turn out to be low-lying resonances.

V. CONCLUSION

The coupled-cluster single-double approach has been used
to calculate positron binding energy for a number of open-shell
atoms. The binding energies are in good agreement with
previous estimates and indicate that atoms with open d shells
can bind positron not only in their ground but also in excited
states. Many of the atoms considered appear to be good
candidates for studying positron binding to atoms through
resonant annihilation or resonant scattering.
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