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We relate the principle of quantum-memory-assisted entropic uncertainty to quantum teleportation and show
geometrically that any two-qubit state which lowers the upper bound of this uncertainty relation is useful for
teleportation. We also explore the efficiency of this entropic uncertainty principle on witnessing entanglement in
a general class of bosonic structured reservoirs. The entanglement regions witnessed by different estimates are
determined, which may have no relation with the explicit form of the spectral density of the reservoir for certain
special chosen sets of the initial states.
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I. INTRODUCTION

The uncertainty principle initially observed by Heisenberg
[1] for the case of position and momentum, and further
formulated by Robertson [2] for arbitrary pairs of observ-
ables is a central in quantum theory. It sets limits on our
ability to predict the precise outcomes of two incompatible
measurements on a quantum system, and at the same time
provides the basis for new technologies such as quantum
cryptography [3] in quantum information. Originally, the
uncertainty relation is expressed in terms of the standard
deviation �R�S � 1

2 |〈[R,S]〉| for two observables R and
S [2]. However, this uncertainty bound is state dependent
and also trivial for finite-valued observables [4]. To remove
this pitfall and to precisely capture its physical meanings, the
original form has subsequently been recast to the entropic
one [5], which reads

H (R) + H (S) � log2
1

c
, (1)

where H (R) denotes the Shannon entropy of the probability
distribution of the outcomes when R is measured, and likewise
for H (S). 1/c quantifies the complementarity of R and S,
where c = maxr,s |〈�r |�s〉|2 for nondegenerate observables,
with |�r〉 and |�s〉 being the eigenvectors of R and S.

The above uncertainty limitation applies to the case that
the observer can access only the classical information. It may
be violated through clever use of entanglement, which plays
a central role in quantum information. This is the quantum-
memory-assisted entropic uncertainty principle, which was
previously conjectured by Renes and Boileau [6] and later was
strictly proven by Berta et al. [7]. It states that if the observer
can entangle the particle A that he wishes to measure with
another particle B which serves as a quantum memory, then
the uncertainty of this observer about any pair of observables
can be dramatically reduced. Particularly, if A and B are
maximally entangled, then the observer is able to correctly
predict the outcomes of whichever measurement is chosen.
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This new entropic uncertainty relation reads

H (R|B) + H (S|B) � log2
1

c
+ H (A|B), (2)

where H (R|B) is the conditional von Neumann en-
tropy of the postmeasurement state ρRB = ∑

r (|�r〉〈�r | ⊗
I)ρAB(|�r〉〈�r | ⊗ I), and likewise for H (S|B). Compared
with Eq. (1), there is an extra term H (A|B) (the conditional
von Neumann entropy of ρAB) appearing on the right-hand
side of Eq. (2). In particular, if H (A|B) is negative, the Berta
et al. bound (BB) of uncertainty in Eq. (2) can be reduced
by comparing with the previous uncertainty relation. It is also
found that this negative value gives the lower bound of the
one-way distillable entanglement between A and B [8].

This new entropic uncertainty principle has been recently
confirmed experimentally [4,9] and ignites the interest of
people to investigate its potential applications from various
aspects [10]. In this work, we will first relate it to quantum
teleportation and show that any two-qubit ρAB with negative
H (A|B) gives nonclassical teleportation fidelity. It is known
that teleportation is one fundamental protocol in quantum
information processing [11]. It is crucial, both theoretically and
experimentally, to know whether the fidelity of teleportation
is in classical regime or in quantum regime. Our result relates
this important problem to the entropic uncertainty principle.

We will also investigate efficiency of this new entropic
uncertainty relation on witnessing entanglement in a class of
bosonic structured reservoirs. It is known that entanglement
plays a key role in quantum information processing, such
as in teleportation and in condensed matter physics; see, for
example, Refs. [12,13]. The point of departure for this practical
application (i.e., entanglement witness) is Eq. (2), from which
one can note that if H (R|B) + H (S|B) < log2(1/c), then
H (A|B) < 0, and hence ρAB is entangled [8]. Experimentally,
the value of H (R|B) + H (S|B) can be estimated by condi-
tional single-qubit tomography on B [4], and this estimate is
termed tomographic estimate (TE).

There are other ways for estimating the uncertainty. The
first is the measurement estimate (ME) denoted by H (R|R) +
H (S|S), which corresponds to the same measurements on both
A and B, and are favored for its ease of implementation [4].
This estimate provides an upper bound for the new uncertainty
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relation in that quantum measurements never decrease entropy.
The second is the Fano estimate (FE) obtained by using
Fano’s inequality H (X|B) � h(pX) + pX log2(d − 1) [14],
where h(pX) is the binary entropy function, with pX being
the probability that the outcomes of X on A and X on B are
different, and d is the dimension of A. For the two-qubit system
(i.e., d = 2), the inequality h(pR) + h(pS) < log2(1/c) is a
signature of entanglement between A and B.

II. LINKING THE NEW ENTROPIC UNCERTAINTY
RELATION TO TELEPORTATION

In this section we relate the quantum-memory-assisted
entropic uncertainty principle to quantum teleportation. We
will show that any two-qubit state with negative conditional
von Neumann entropy, which thus lowers the upper bound
of the uncertainty, is a manifestation of its usefulness for
nonclassical teleportation.

Without loss of generality, we suppose the sender Alice
wants to teleport to the receiver Bob a general one-qubit state,
with a two-qubit state τAB (pure or mixed) being used as the
quantum channel. Then if they adopt the standard teleportation
scheme (i.e., Alice performs the Bell-basis measurement while
Bob is equipped to perform any unitary transformation), the
maximal average fidelity achievable can be evaluated as [15]

Fav = 1
2 + 1

6N (τAB), (3)

where N (τAB) = tr
√

T †T , with T being the 3 × 3 positive ma-
trix with elements tij related to the Bloch sphere representation
of τAB below:

τAB = 1

4

⎛
⎝I ⊗ I + �x · �σ ⊗ I + I ⊗ �y · �σ+

3∑
i,j=1

tij σi ⊗ σj

⎞
⎠,

(4)

where I is the 2 × 2 identity operator, �σ = (σ1,σ2,σ3) is
the vector of the Pauli spin matrices, and �x = (x1,x2,x3)
and �y = (y1,y2,y3) are the local Bloch vectors in R3 with
�x · �σ = ∑3

i=1 xiσi and �y · �σ = ∑3
i=1 yiσi .

Since the teleportation fidelity is a local unitary invariant,
and since we can always find unitary operators UA and UB

which transform the state τAB into

ρAB = 1

4

(
I ⊗ I + �r · �σ ⊗ I + I ⊗ �s · �σ+

3∑
k=1

vkσk ⊗ σk

)
,

(5)

with �r = (r1,r2,r3) and �s = (s1,s2,s3), it suffices to restrict
our concern to the representative class of quantum channels
expressed in Eq. (5) with less number of parameters, for which
we always have

N (ρAB) =
3∑

k=1

|vk|. (6)

N (ρAB) > 1 gives Fav > 2/3 and thus ρAB is competent for
teleportation.

The real numbers rk , sk , and vk (k = 1,2,3) in Eq. (5)
must satisfy certain constraints such that ρAB is a well-defined
density operator. Particularly, for the special case of �r = �s = 0,
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FIG. 1. (Color online) Geometry of tetrahedronT and octahedron
O associated with vector �v of ρAB (a), and valid regions of �v
constrained by H (A|B) < 0 for �r = �s = (0,0,0) (b), (0,0,0.25) (c),
and (0.1,0.1,0.25) (d).

physical ρAB are those with (v1,v2,v3) (for simplicity, we
just refer to �v in the following) belongs to the tetrahedron
T (see Fig. 1) with vertices (−1,1,1), (1, −1,1), (1,1, −1),
and (−1, −1, −1), among which separable ones are confined
to the octahedron O with vertices (±1,0,0), (0, ±1,0), and
(0,0, ±1) [16]. The Bell states sit at the four vertices of T ,
while the Werner states [17] are those represented by the lines
connecting the vertices of T with the origin of O.

For the nonzero values of �r and/or �s, the vector �v which
admits the positive semidefiniteness of ρAB also belongs to
T [16]. But now some �v inside T may not correspond to the
physical states. Moreover, while all the separable states are still
confined to O, there are also entangled ones where �v belongs
to O, which is different from the case of �r = �s = 0.

Since the octahedron O is specified by
∑3

k=1 |vk| � 1, one
can see from Eq. (6) that any physical ρAB with �v belongs to
the four small tetrahedra divided by O (i.e., the regions inside
T and outside O) gives N (ρAB) > 1 and thus is useful for
quantum teleportation. Physical ρAB confined to O may also
be entangled when the inner product (�r,�s) �= 0, but they are
useless for teleportation.

Now we begin to discuss the operational identification
of ρAB useful for teleportation, and to what degree this
identification can cover the whole set of physical ρAB useful
for teleportation. When considering the standard protocol,
Horodecki et al. proved that any ρAB which violates the
Bell–Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality is
useful for teleportation [15]. Here, we will show that the
negativity of the conditional von Neumann entropy of ρAB is
also a signature of its usefulness for teleportation. Particularly,
these ρAB can be witnessed by means of the new entropic
uncertainty relation and therefore is expected to have potential
applications in experiments.

To prove the above argument, we consider first ρAB

associated with the vertices of O. The positive semidefinite-
ness requires that the matrix elements ρ11

ABρ44
AB � |ρ14

AB |2 and
ρ22

ABρ33
AB � |ρ23

AB |2, which yield r3 = s3 = 0 for physical states.
For example, if �v = (1,0,0) the above requirements turn to
1 − (r3 + s3)2 � 1 and 1 − (r3 − s3)2 � 1, which are satisfied
only when r3 = s3 = 0.
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Under the conditions of r3 = s3 = 0, we can write the
explicit forms of ρAB at the vertices of O and further
determine the constraints imposed on the parameters by the
positive semidefiniteness of ρAB . We use another property of
the physical ρAB , which says that if a Hermitian matrix is
positive semidefinite then all of its principal minors must be
nonnegative.

For ρAB with �v = (1,0,0), we derive the second- and third-
order leading principal minors as

D2 = 1 − s2
1 − s2

2

16
, D3 = − (r1 − s1)2 + (r2 − s2)2

64
. (7)

We see that s2
1 + s2

2 � 1, r1 = s1, and r2 = s2 must be satisfied
for ensuring the positive semidefiniteness of ρAB . Furthermore,
the determinant of the (3,3) minor formed by removing from
ρAB its third row and third column (i.e., one of the third-order
principal minors) can be determined as �3 = −r2

2 /16, �3 �
0 further gives r2 = 0. Then under the conditions of r2,3 =
s2,3 = 0 and −1 � r1 = s1 � 1 we obtain the eigenvalues of
ρAB as ε1,2 = 0, ε3,4 = (1 ± r1)/2, and the eigenvalues of the
reduced ρB = trAρAB as ε1,2 = (1 ± r1)/2. These give rise to
the quantum conditional entropy H (A|B) = 0.

In fact, one can also determine r2 = 0 by the argument that
ρAB is positive semidefinite if tr(ρABP) � 0 for any projector
P . Taking P = uu† with u = (u1,u2,u3,u4)T and T denoting
transpose, we obtain

tr(ρABP) = 1
4 (|u+

14|2 + |u+
23|2) + 1

2 [r1Re(u+
14u

+∗
23 )

− r2Im(u−
14u

+∗
23 )], (8)

where u±
ij = ui ± uj , with Re(f ) and Im(f ) representing the

real and imaginary parts of f , respectively. One can check
directly that only when r2 = 0 can tr(ρABP) � 0 for any P .

By using the same methodology we obtain constraints
imposed on the parameters of ρAB associated with the
remaining five vertices of O; they are r1,3 = s1,3 = 0 and
−1 � r2 = ±s2 � 1 for �v = (0, ±1,0), r1,2,3 = s1,2,3 = 0 for
�v = (0,0, ±1), and r2,3 = s2,3 = 0 and −1 � r1 = −s1 � 1
for �v = (−1,0,0). All of these correspond to physical ρAB

with H (A|B) = 0.
On the other hand, physical states ρAB with �v belonging

to O can always be written as a convex combination of states
with �v at the vertices of O, so by using the concavity of
the quantum conditional entropy [14], we obtain H (A|B) �
0 for any density matrix ρAB that belongs to O [it is also
possible for H (A|B) � 0 with ρAB lying beyond O]. This
means that for any physical ρAB with negative conditional
entropy, �v must belong to the four tetrahedra separated by
O, which gives

∑3
k=1 |vk| > 1 and thus makes it useful for

nonclassical teleportation.
We would like to point out here that the negativity of

the conditional von Neumann entropy and the violation
of the Bell-CHSH inequality [15] identify different subsets
of density matrices useful for teleportation; namely, there are
ρAB with H (A|B) < 0 but they do not violate the Bell-CHSH
inequality [e.g., ρAB of Eq. (5) with �r = �s = (0,0,0.25) and
�v = (±0.95, ∓ 0.25,0.30)], while there are also ρAB which
violate the Bell-CHSH inequality but with H (A|B) > 0 (e.g.,
the partial of the extended Werner-like states [17]).

In Fig. 1 we presented regions of the valid �v determined by
H (A|B) < 0 with different �r and �s, from which one can see
that, for the Bell-diagonal states (i.e., �r = �s = 0), they locate
near the four vertices of T and are symmetric with respect to
the origin of O. For the general case (�r,�s) �= 0, however, the
valid �v makes H (A|B) < 0 will shrink to small regions and
their distribution are not symmetric with respect to the origin
of O.

The geometric characterization of ρAB also allows us to
determine fractions of different kinds of ρAB over the ensemble
of physical ρAB . This can be estimated by calculating the ratio
of volumes of the three-dimensional spaces occupied by �v
associated with different ρAB . Here, we obtained the corre-
sponding volumes by performing Monte Carlo simulations,
generating 109 random �v uniformly distributed in the cube
illustrated in Fig. 1(a), and checking if they correspond to
physical ρAB ; if they give rise to Fav > 2/3 and if they make
H (A|B) < 0. In this way we confirmed that 50% of the Bell-
diagonal states ρAB give Fav > 2/3 (the volume of T is twice
that of O), and about 4.17% of the Bell-diagonal ρAB make
H (A|B) < 0. Therefore, about 8.34% of the Bell-diagonal
ρAB that are useful for teleportation can be identified by
negativity of the conditional entropy. Using the same method,
we have also performed simulations for �r and �s chosen in
Figs. 1(c) and 1(d), and confirmed that, for the former (latter)
case, about 41.68% (35.51%) of the physical ρAB are useful
for teleportation, among which about 6.16% (3.30%) of them
have negative quantum conditional entropy.

III. ENTANGLEMENT WITNESS IN STRUCTURED
RESERVOIRS

Entanglement is a precious resource for quantum com-
puting, but it is fragile and can be easily destroyed by
the environment. The measure of entanglement including
the operational methods to distinguish it from the separable
case, however, is a tricky problem. So it is of practical
significance to find a straightforward witnessing method. Here,
we discuss the efficiency of the new entropic uncertainty
relation on witnessing entanglement in open quantum systems.
We consider a system that consists of two identical qubits
which interact independently with their own reservoir, with
the single “qubit + reservoir” Hamiltonian given by [18]

H = ω0σ+σ− +
∑

k

ωkb
†
kbk +

∑
k

(gkbkσ+ + H.c.), (9)

where ω0 is the transition frequency of the qubit, and σ± are
the Pauli raising and lowering operators. The index k labels
the reservoir field mode with frequency ωk , with b

†
k (bk) being

the bosonic creation (annihilation) operator and gk being the
coupling strength.

When the reservoir is at zero temperature and there is
no correlation between the qubit and the reservoir initially,
the single-qubit reduced density matrix ρS(t) can then be
determined as [18]

ρS(t) =
(

ρS
11(0)|p(t)|2 ρS

10(0)p(t)

ρS
01(0)p∗(t) 1 − ρS

11(0)|p(t)|2
)

, (10)
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where ρS
ij (0) = 〈i|ρS(0)|j 〉 in the standard basis {|1〉,|0〉},

and the explicit time dependence of the single function p(t)
contains the information on the reservoir spectral density and
the coupling constants.

After obtaining ρS(t), the two-qubit density matrix ρ(t) can
then be determined by the procedure presented in Ref. [19].
Here, we suppose the two qubits are prepared initially in the
extended Werner-like (EWL) states [17]

ρ�(0) = r|�〉〈�| + 1 − r

4
I, (11)

where |�〉 = |ψ〉 or |φ〉, with |ψ〉 = α|00〉 + eiθ
√

1 − α2|11〉
and |φ〉 = α|10〉 + eiθ

√
1 − α2|01〉.

The density matrix ρ�(t) depends only on the chosen initial
state ρ�(0) and values of the function p(t) associated with
the Hamiltonian model of Eq. (9), regardless of the reservoir
structure. Thus in the following we ignore temporarily the
explicit form of p(t) and consider only the dependence of
the uncertainties on p. The results obtained here thus apply
to all cases where the single-qubit dynamics has the form of
Eq. (10).

To witness the smallest amount of entanglement [4,7], we
choose the two observables as R = σ1 and S = σ3 in the
following discussion. This choice of measurement operators
gives the maximal complementarity between R and S; that is,
c = 1/2 and thus log2(1/c) = 1.

Consider first the initial state ρψ (0), for which the nonzero
elements of ρψ (t) can be expressed in terms of |p|2 (the
diagonal elements) or p2 (the antidiagonal elements) [19,20].
Then one can check directly that uncertainty of the TE, BB,
as well as the concurrence (a measure of entanglement) [21]
are determined only by |p|2 (they are also independent of θ ),
while the other two estimates (i.e., ME and FE) are determined
by p2.

In Fig. 2(a) we plot the uncertainties versus |p| (the
ME and FE are plotted only with p ∈ R), while in Fig. 3
we plot uncertainties of the ME and FE versus the real
and imaginary parts of p, both for the initial state |�〉 =
(|00〉 + |11〉)/√2. Clearly, when |p| is larger than a critical
value |p|c, the entanglement can always be witnessed by
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FIG. 2. (Color online) The |p| dependence of FE, ME, TE, BB
(from top to bottom), and concurrence (the bottommost) for the initial
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FIG. 3. (Color online) Dependence of ME (left) and FE (right)
on real and imaginary parts of p for initial |�〉.

TE, and the related entanglement region does not explicitly
depend on the particular choice of the reservoir. |p|c depends
on the chosen initial state ρψ (0), and for |�〉 it is of about
0.9101, which gives the entanglement region witnessed by it
as CT ∈ [0.6858,1].

From Fig. 3 one can see that the ME and FE are
determined, however, by both Re(p) and Im(p), for there
are p1 and p2 (those with the same distance to the origin
of the coordinates) with |p1| = |p2| but the uncertainties
U (M,F)(p1) < 1 and U (M,F)(p2) > 1 (here U (M,F) represents
uncertainties estimated by ME and FE). This means that,
for this case, the entanglement regions witnessed by them
are determined by the explicit structures of the reservoir and
the coupling constant between the system and the reservoir.
Of course, if p ∈ R we still have the entanglement regions
depending only on |p|, and for the initial |�〉 we obtained
numerically |p|c � 0.9116, CM ∈ [0.6905,1] for the ME and
|p|c � 0.9121, CF ∈ [0.6921,1] for the FE.

For the initial ρφ(0), the density matrix ρφ(t) is determined
only by |p|2, therefore all the uncertainty estimates as well
as the entanglement regions witnessed by them are also deter-
mined by |p|2 and thus are independent of the explicit structure
of the reservoir. In Fig. 2(b) we give an exemplified plot of
the |p| dependence of different estimates for the initial state
|�〉 = (|10〉 + |01〉)/√2, for which we have |p|c � 0.8962,
CT ∈ [0.8031,1] for the TE, |p|c � 0.8982, CM ∈ [0.8068,1]
for the ME, and |p|c � 0.8982, CF ∈ [0.8486,1] for the FE.

In the following we give some explicit examples of the
structured reservoir to deepen our understanding of the above
general arguments.

A. Sub-Ohmic, Ohmic, and super-Ohmic reservoirs

We consider first the structured reservoirs with spectral
densities of the form [22]

J (ω) = ηωsω1−s
c e−ω/ωc , (12)

with η and ωc being the dimensionless coupling constant
and the cutoff frequency, which are related to the reservoir
correlation time τB and the relaxation time τR (over which
the state of the system changes in the Markovian limit of a
flat spectrum) by τB ≈ ω−1

c and τR ≈ η−1. Depending on the
value of s, the reservoir is classified as sub-Ohmic if 0 < s < 1,
Ohmic if s = 1, and super-Ohmic if s > 1.

For this kind of reservoir spectral densities, p(t) is deter-
mined by [23]

ṗ(t) + iω0p(t) +
∫ t

0
p(t1)f (t − t1)dt1 = 0, (13)
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FIG. 4. (Color online) Entanglement witness in the sub-Ohmic,
Ohmic, and super-Ohmic reservoirs for the initial |�〉 (left) and |�〉
(right), with η = 0.01, ωc = 2ω0. The green, blue, red, cyan, and
black lines from top to bottom represent FE, ME, TE, BB, and the
concurrence, respectively.

where the kernel function f (t − t1) = ∫
dωJ (ω)e−iω(t−t1) in

the continuum limit the spectral density.
In this work we take s = 1/2, 1, and 3 as three exam-

ples of the sub-Ohmic, Ohmic, and super-Ohmic spectral
densities. The kernel function can be integrated as f (x) =
ηs!ω2

c/(1 + iωcx)s+1 (x = t − t1) for s ∈ Z, and f (x) =
ηω2

c

√
πe−i� /[2(1 + ω2

cx
2)3/4] for s = 1/2, where s! denotes

the factorial of s, and � = 3
2 tan−1(ωcx). Then p(t) can be

solved numerically and the two-qubit density matrix can be
derived by the procedure of Ref. [19].

In Fig. 4 we presented theoretical predictions of entangle-
ment witness for the initial |�〉 and |�〉 in sub-Ohmic, Ohmic,
and super-Ohmic reservoirs, with η = 0.01 and ωc = 2ω0. One
can see that while the concurrence decays monotonically and
disappears in the infinite-time limit, the different uncertainty
estimates become larger than 1 after finite timescales. Thus
there are critical ω0tc after which the entanglement cannot be
witnessed by them. For the TE, although the time interval ω0tc
is different for different spectral densities of the reservoirs and
different system-reservoir coupling constants, the numerical
results confirm that the entanglement regions witnessed by
it agree with those predicted in the general arguments (i.e.,
CT ∈ [0.6858,1] for the initial |�〉 and CT ∈ [0.8031,1] for
the initial |�〉).

For the ME and FE, the regions of entanglement being
witnessed will shrink, particularly, for the initial |�〉, both
the ME and FE oscillate around 1 with increasing ω0t in the
short-time region (during which they are nearly overlapped),
and the entanglement regions witnessed by them are discon-
tinuous because here p(t) ∈ C. For example, for parameters
of Fig. 4(a) the discrete entanglement regions are CM ≈
CF ∈ [0.7501,0.7897], [0.8748,0.9491], and [0.9794,1]; that

is, some states with a small amount of entanglement can
be witnessed, while some others with a relatively large
amount of entanglement cannot be witnessed. This reveals a
counterintuitive fact; that is, not the more the state is entangled,
the easier it can be witnessed for some schemes. For the
initial |�〉, the related entanglement regions are in accord
with those predicted in the above general arguments, which
are independent of the explicit time dependence of p(t).

We also examined effects of the cutoff frequency ωc on the
entanglement witness (for concise presentation in the paper,
we did not plot them here) and found that for the sub-Ohmic
and Ohmic spectral densities, ω0tc decreases with increasing
ωc and their dependence on ωc are weak (ω0tc for |�〉 is
only a slightly larger than that for |�〉). But for the super-
Ohmic spectral density, ω0tc is strongly dependent on ωc; for
example, for the parameters of Figs. 4(e) and 4(f), they increase
dramatically from 8.125 and 9.55 for ωc = ω0 to 165.525 and
196.85 for ωc = 6ω0.

B. Lorentzian reservoir

As the second example, we consider the structured reservoir
with the Lorentzian spectral density [18]

J (ω) = 1

2π

γ0λ
2

(ω − ωc)2 + λ2
, (14)

where λ denotes the spectral width of the reservoir and is
related to the reservoir correlation time via τB ≈ λ−1, and γ0

is related to the relaxation time τR via τR ≈ γ −1
0 . λ > 2γ0

(λ < 2γ0) corresponds to the Markovian (non-Markovian)
regime, and ωc = ω0 − δ is the central frequency of the
reservoir detuned from the transition frequency ω0 by an
amount δ.

The function p(t) can be derived analytically as [24]

p(t) = e− 1
2 (λ−iδ)t

[
cosh

dt

2
+ λ − iδ

d
sinh

dt

2

]
, (15)

with d = [(λ − iδ)2 − 2γ0λ]1/2. Thus the two-qubit density
matrix can also be derived analytically [19].
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FIG. 5. (Color online) Entanglement witness in Lorentzian reser-
voir with initial states |�〉 and |�〉, where λ = 0.1γ0, δ = 0 for panels
(a) and (b), δ = 0.8γ0 for panels (c) and (d). The green, blue, red,
cyan, and black lines from top to bottom represent FE, ME, TE, BB,
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and 5(d), respectively.

To explore the efficiency of the entanglement witness for
this kind of system-reservoir coupling, we plot in Fig. 5
theoretical predictions of uncertainties in the non-Markovian
regime (λ = 0.1γ0) with the initial |�〉 and |�〉. Clearly, they
oscillate with increasing γ0t , and the time regions during which
the entanglement can be witnessed depend on δ and λ. But in
the absence of detuning (i.e., δ = 0), the numerical results
show that the entanglement regions witnessed by different
estimates are independent of λ and are consistent with those
predicted in the above general arguments, which can be
understood from the fact that when δ = 0 we always have
p(t) ∈ R.

Introducing detuning will decrease the decay rate of
entanglement, and as can be seen from Figs. 5(c) and 5(d), the
time regions during which the entanglement can be witnessed
become discontinuous, even for the TE. But the entanglement
regions witnessed by TE remains the same (see the green
shaded regions in Fig. 6) as that for δ = 0. Furthermore, for
the initial |�〉, the entanglement regions witnessed by ME
and FE vary with the variation of λ (their dependence on λ

may be very weak for certain parameters; e.g., δ = 0.8γ0 and
λ > 0.5γ0), which is caused by p(t) ∈ C when δ �= 0. For the

initial |�〉, they remain the same as those for δ = 0 and do not
depend on the parameter λ.

IV. SUMMARY

In summary, we have studied relations between the
quantum-memory-assisted entropic uncertainty principle, tele-
portation, and entanglement witness. We proved geometrically
that any two-qubit state with negative conditional von Neu-
mann entropy, which thus lowers down the upper bound of the
entropic uncertainty relation, is useful for teleportation (i.e.,
Fav > 2/3). We have also examined efficiency of this new
entropic uncertainty principle on witnessing entanglement in
a general class of bosonic structured reservoirs and found that
the entanglement regions witnessed by TE for the initial EWL
state ρψ (0) or that witnessed by all the three estimates TE,
ME, and FE for the initial EWL state ρφ(0) are determined
only by a function p, which has no relation with the explicit
form of its time dependence. These general arguments are
corroborated by explicit examples of structured reservoirs with
the sub-Ohmic, Ohmic, super-Ohmic, and Lorentzian spectral
densities. As a by-product, we also found that it is not a general
result that the more the state is entangled, the easier it can be
witnessed for certain chosen schemes.

As the quantum-memory-assisted entropic uncertainty
principle has been experimentally realized [4,9], and it is possi-
ble to simulate and control the Markovian and non-Markovian
environments [25–27], we expect the results demonstrated
in this work may be certified in future experiments with
currently available technologies; for example, by using two-
level atoms confined in optical microcavities [28] or simulated
reservoirs [29].
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