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Energy as a witness of multipartite entanglement in chains of arbitrary spins
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We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary
spins s, and we report numerical results for spin values s � 5/2 (with N � 8). The minima provide a set of
threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in
one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins
has a nondegenerate N -partite entangled ground state, and it can thus witness such correlations in all finite spin
chains.
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Entanglement is one of the most striking peculiarities
of quantum systems, and promises to play a crucial role
in emerging quantum technologies [1]. This has fueled the
development of theoretical and experimental means for its
detection in diverse physical systems [2]. One of the most
convenient of such tools is represented by entanglement
witnesses. These are observables whose expectation value
can exceed given bounds only in the presence of specific
forms of entanglement. Macroscopic observables such as
magnetic susceptibility [3–5] and internal energy [6–8], allow,
for example, to discriminate between fully separable and
entangled spin states. In qubit systems, further inequalities for
energy have been derived, whose violation implies multipartite
entanglement [9,10]. Along the same lines, the measurement
of collective observables [11] allows to detect multipartite
entanglement in the vicinity of prototypical quantum states
through the spin-squeezing inequalities [12,13]. The connec-
tion of these studies with quantum-information processing
has, however, focused most of the attention on entanglement
between qubits. Limited attention has instead been devoted
to multipartite entanglement between composite systems of
s > 1/2 (pseudo)spins [14].

In the present paper, we address the problem of detecting
multipartite entanglement in clusters of arbitrary spins s

[15,16] using exchange energy as a witness. We develop
a general approach for deriving the energy minima ĒN

bs of
biseparable states |ψA〉 ⊗ |ψB〉 in chains of N spins, that ex-
ploits the rotational symmetry of the system Hamiltonian. This
allows us to reduce the minimization problem to calculating
the ground states of effective spin Hamiltonians within each
subsystem A and B. Minima derived for k-spin chains provide
in turn a set of threshold values for energy, corresponding
to k-partite entanglement in chains of nk(k − 1) + 1 spins or
rings with nk(k − 1). Analytical expressions of the minima
are derived for the simplest cases, while numerical solutions
are provided for s � 5/2, that correspond to prototypical
models of molecular nanomagnets [17–20]. As a general result,
we finally demonstrate that the ground state of an N -spin
chain with a Heisenberg Hamiltonian is N -partite entangled.
This implies an energy gap between biseparable and N -spin
entangled states, and the possibility of detecting the latter ones
by exchange energy, in finite spin chains with arbitrary N

and s.

I. TRIPARTITE ENTANGLEMENT

Tripartite entangled states are detected by a three-spin
Hamiltonian H123 if their energy exceeds the lower bound
that applies to biseparable states [9]. Here, we seek such
a bound for H123 = s1 · s2 + s2 · s3 ≡ H12 + H23, and for a
generic biseparable state |ψ1〉 ⊗ |ψ23〉:
Ē3

bs = min
|ψ1〉,|ψ23〉

{〈ψ1|s1|ψ1〉 · 〈ψ23|s2|ψ23〉 + 〈ψ23|s2 · s3|ψ23〉}.
(1)

If we identify the direction of 〈ψ23|s2|ψ23〉 with the z

axis, the first term in Eq. (1) simplifies to 〈H12〉 =
〈ψ1|s1,z|ψ1〉〈ψ23|s2,z|ψ23〉, where 〈ψ23|s2,z|ψ23〉 � 0 by defi-
nition. For any given |ψ23〉, the state of s1 that minimizes 〈H123〉
is thus given by |m1 = −s1〉, and the problem of deriving Ē3

bs
reduces to finding the state |ψ23〉 that minimizes

〈ψ23|H̃23|ψ23〉 ≡ 〈ψ23| − s1s2,z + s2 · s3|ψ23〉, (2)

i.e., the ground state of the two-spin Hamiltonian H̃23. To
derive the energy minima, it is convenient to expand |ψ23〉 in
the form

|ψ23〉 =
s2+s3∑

M=−s2−s3

√
PM

s2+s3∑

S=|M|
AM

S |S,M〉

≡
s2+s3∑

M=−s2−s3

√
PM

∣∣ψM
23

〉
, (3)

where S = s2 + s3 and M is its projection along z. Each real
coefficient PM gives the probability that S has a z projection M

(
∑

M PM = 1). The normalization condition for the complex
coefficients AM

S = aM
S eiαS

M reads
∑

S(aM
S )2 = 1 (with aM

S =
|AM

S |). Given that both the operators s2,z and s2 · s3 commute
with Sz, the energy expectation value can be written as 〈H̃23〉 =∑

M PME
3,M
bs , where

E
3,M
bs = 〈

ψM
23

∣∣H̃23

∣∣ψM
23

〉 ≡ −s1fM (aM,αM ) + gM (aM,αM ),

(4)

with aM = (aM
|M|, . . . ,a

M
si+sj

) and αM = (αM
|M|, . . . ,α

M
si+sj

). The
energy expectation value is thus given by an average, with
probabilities PM , of functions E

3,M
bs that depend on disjoint

groups of variables AM , each corresponding to a given M .

032330-11050-2947/2012/86(3)/032330(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.032330


F. TROIANI AND I. SILOI PHYSICAL REVIEW A 86, 032330 (2012)

TABLE I. Minima Ē3
bs of H123 for biseparable states |ψ1〉 ⊗ |ψ23〉 and corresponding coefficients āS and ᾱS . The ground state energies E0

of H123 are also reported, as well as Ē12 = −sf (ā,ᾱ) and Ē23 = g(ā,ᾱ).

s ā0 ā1 ā2 ā3 ā4 ā5 ᾱS+1 − ᾱS Ē3
bs Ē12 Ē23 E0

1/2 0.973 0.230 0 −0.8090 −0.1118 −0.6972 −1.0
1 0.858 0.506 0.0839 0 −2.481 −0.7583 −1.722 −3.0
3/2 0.749 0.631 0.198 0.0269 0 −5.162 −1.933 −3.230 −6.0
2 0.671 0.676 0.298 0.0696 0.00819 0 −8.849 −3.601 −5.248 −10.0
5/2 0.612 0.687 0.373 0.120 0.0232 0.00244 0 −13.74 −5.768 −7.771 −15.0

This allows to minimize the terms E
3,M
bs independently from

one another, and to identify the overall minimum with the
lowest Ē

3,M
bs :

Ē3
bs = min

M
Ē

3,M
bs (āM,ᾱM ). (5)

The dependence of E
3,M
bs on the variables AM

S is derived
as follows. The first contribution in Eq. (4) is propor-
tional to fM = 〈s2,z〉 = ∑

S,S ′ (AM
S )∗(AM

S ′ )〈S,M|s2,z|S ′,M〉.
Here, the matrix element can be expressed in terms of
the Clebsch-Gordan coefficients [21]: 〈S,M|s2,z|S ′,M〉 =∑

m2
〈S,M|m2,m3〉〈m2,m3|S ′,M〉m2 (with m3 = M − m2).

The second contribution in Eq. (4) is instead diagonal in
the basis |S,M〉, and reads gM = 〈s2 · s3〉 = ∑

S(aM
S )2[S(S +

1) − s2(s2 + 1) − s3(s3 + 1)]/2.
To analytically minimize—for s � 3/2—the function E

3,M
bs

subject to the normalization constraints, we apply the method
of Lagrange multipliers. The stationary points of the Lagrange
function �M (AM

S ,λ) = E
3,M
bs + λ[

∑
S(aM

S )2 − 1] are identi-
fied by the equations ∂�M/∂aM

S = ∂�M/∂αM
S = ∂�M/∂λ =

0 for |M| � S � s2 + s3. In all the cases considered below, the
lowest minima correspond to M = 0: Ē3

bs = Ē
3,M=0
bs . We shall

thus refer only to this subspace, and omit the superscripts M

from the notation. In addition, we focus on the case of identical
spins.

In the s = 1/2 case, a lower bound for 〈H123〉 in the
absence of tripartite entanglement has already been derived by
different means [9]. Here we show that such a value actually
corresponds to a minimum, and derive the corresponding
biseparable state. The dependence of E3

bs on the parameters aS

and αS is given by [see Eq. (4)] fM = a0a1 cos(α0 − α1) and
gM = (−3a2

0 + a2
1)/4. As far as the phases αS are concerned,

E3
bs is minimized by ᾱ1 − ᾱ0 = 0. The remaining conditions

give rise to the energy minimum Ē3
bs = −(1 + √

5)/4, which
coincides with the lower bound derived in Ref. [9]. The
corresponding biseparable state is given by

ā0 = (1/2 + 1/
√

5)1/2, ā1 = (1/2 − 1/
√

5)1/2. (6)

We proceed in the same way in the case s = 1, where the
expression of energy is given by fM = 2 a1(a0

√
2 + a2)/

√
3

and gM = −2a2
0 − a2

1 + a2
2 . Here, the conditions ᾱS+1 − ᾱS =

0, derived from ∂�M/∂αS = 0, have already been included.
The analytic expression of the energy minimum is

Ē3
bs = −2/3{1 +

√
5/2[cos(ϕ/3) +

√
3 sin(ϕ/3)]}, (7)

where ϕ = arccos[1/(10
√

10)].
For the spin values s = 3/2, 2, and 5/2, we directly report

the energy minima, and the corresponding biseparable states

(Table I), that have been obtained through a conjugate gradient
algorithm [22].

The comparison between the different spin values shows
that the relative weight of the singlet state (ā0) decreases with
increasing s, as well as the ratio between the energies of the
entangled and unentangled spin pairs (Ē23/Ē12). In all cases,
the inequality 〈H123〉 < Ē3

bs implies tripartite entanglement in
the three-spin system. The criterion becomes 〈H 〉 < n3Ē

3
bs

for any H that can be written as the sum of n3 three-spin
Hamiltonians, such as chains of 2n3 + 1 spins or rings with
2n3. Here, the violation of the above inequality implies 3-
producibility [9].

II. QUADRIPARTITE ENTANGLEMENT

We consider the expectation values of the four-spin
Hamiltonian H1234 = s1 · s2 + s2 · s3 + s3 · s4, corresponding
to the biseparable states |ψ4

22〉 = |ψ12〉 ⊗ |ψ34〉 and |ψ4
13〉 =

|ψ1〉 ⊗ |ψ234〉. In the former case, we compute

Ē4
22 = min

|ψ12〉,|ψ34〉
{〈ψ12|s1 · s2|ψ12〉 + 〈ψ34|s3 · s4|ψ34〉

+ 〈ψ12|s2,z|ψ12〉〈ψ34|s3,z|ψ34〉}, (8)

where z is defined as the direction of 〈ψ34|s3,z|ψ34〉. The
states |ψ12〉 and |ψ34〉 are expanded in the bases |S =
S12,M = M12〉 and |S ′ = S43,M

′ = M43〉, respectively. For
|ψ12〉, we use the expression in Eq. (3), and replace
the indices 23 with 21. Similarly, |ψ34〉 is expressed as

|ψ34〉 = ∑
M ′

√
QM ′

∑
S BM ′

S ′ |S ′,M ′〉, with BM ′
S ′ = bM ′

S ′ eiβM′
S′ ,∑

M ′ QM ′ = ∑
S ′ (bM ′

S ′ )2 = 1. The indices 23 in Eq. (3) are
replaced here by 34. Being both M and M ′ good quantum num-
bers, one can write E4

22 = ∑
M

∑
M ′ PMQM ′E

4,MM ′
22 , where

E
4,MM ′
22 = gM (AM ) + fM (AM )fM ′ (BM ′

) + gM ′(BM ′
) (9)

and the functions fM = 〈s2,z〉 and gM = 〈s3,z〉. The energy
E

4,MM ′
22 is minimized numerically by the conjugate gradient

approach as a function of aM and bM , while the minimization
with respect to αM and βM is straightforward. The minimum
Ē4

22 is then identified with the lowest Ē4MM ′
22 :

Ē4
22 = min

M,M ′
Ē

4,MM ′
22 (āM,ᾱM,b̄M ′

,β̄M ′
). (10)

For all values of s, the lowest minima belong to the subspace
M = M ′ = 0. The minimum of Ē4

13 is instead identified
with the ground state energy of the three-spin Hamiltonian
H̃234 = −s1s2,z + s2 · s3 + s3 · s4, which belongs, in all the
considered cases, to the subspace with M = s. The energy
minima and the corresponding states are reported in the left
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TABLE II. Left: minima Ē4
22 and Ē4

13 for biseparable four-spin states |ψ12〉 ⊗ |ψ34〉 and |ψ1〉 ⊗ |ψ234〉, respectively. The states corresponding
to the former partition are given by the displayed values of āS , and by b̄S = āS , ᾱS+1 − ᾱS = π , and β̄S′+1 − β̄S′ = 0. Right: energy minima
ĒN

bs of N -spin systems.

s ā0 ā1 ā2 ā3 ā4 ā5 Ē4
bs = Ē4

22 Ē4
13 Ē5

bs Ē6
bs Ē7

bs Ē8
bs

1/2 1 0 −1.500 −1.190 −1.780 −2.366 −2.697 −3.244
1 0.921 0.387 0.0418 −4.051 −3.828 −5.343 −6.771 −8.133 −9.537
3/2 0.775 0.607 0.171 0.0281 −8.131 −7.957 −10.90 −13.75 −16.56 −19.39
2 0.687 0.669 0.278 0.0602 0.00649 −13.74 −13.59 −18.46 −23.24 −27.99 −32.75
5/2 0.627 0.669 0.359 0.134 0.110 <10−4 −21.18 −20.71 −28.03 −35.23 −42.42 −49.62

part of Table II. We note that the bipartition |ψ12〉 ⊗ |ψ34〉
always gives lower minima with respect to |ψ4

13〉 = |ψ1〉 ⊗
|ψ234〉: therefore, Ē4

bs = Ē4
22. For the four-qubit system, the

expectation value of energy is minimized by the dimerized
state [9]. This is not the case for s > 1/2, where the coupling
between s2 and s3 induces a significant admixture with states
of higher S and S ′. In addition, the energy is minimized by
the state with 〈s2,z〉 = −〈s3,z〉 (ā0 = b̄0, β̄0

S ′+1 − β̄0
S ′ = 0, and

ᾱ0
S+1 − ᾱ0

S = π ). We thus conclude that, for all the considered
spin values, the inequality 〈H1234〉 < Ē4

bs implies quadripartite
entanglement in the four-spin system. The criterion generalizes
to 〈H 〉 < n4Ē

4
bs for any H that can be written as the sum of

n4 four-spin Hamiltonians, such as chains of 3n4 + 1 spins
or rings with 3n4, where the violation of the above inequality
implies 4-producibility.

III. N-PARTITE ENTANGLEMENT

For larger spin numbers N , the analytic derivation of the
functions fM and gM becomes cumbersome, and a fully
numerical approach is preferable. Given a partition of the spin
chain in two subsystems, A and B, consisting of NA and NB =
N − NA consecutive spins, the Hamiltonian can be written as
H = HA + HB + HAB , where HA = ∑NA−1

i=1 si · si+1, HB =∑N−1
i=NA+1 si · si+1, and HAB = sNA

· sNA+1. The energy minima
for biseparable states |ψ〉 = |ψA〉 ⊗ |ψB〉 are

ĒN
NANB

= min
|ψA〉,|ψB 〉

{〈ψA|HA|ψA〉 + 〈ψB |HB |ψB〉
+ 〈ψA|sNA

|ψA〉 · 〈ψB |sNA+1|ψB〉}. (11)

We identify the z direction with that of 〈ψA|sNA
|ψA〉, and

define zA ≡ 〈ψA|sNA,z|ψA〉 � 0 and zB ≡ 〈ψB |sNA+1,z|ψB〉. In
addition, the state |ψ̄B〉 that minimizes E

NA,NB

bs necessarily
has an expectation value 〈sNA+1〉 antiparallel to ẑ (and thus
zB � 0): any rotation of the subsystem B with respect
to such orientation would in fact increase 〈HAB〉 while
leaving 〈HA + HB〉 unaffected. The minimization can now
be split into two correlated eigenvalue problems that consist
in finding the ground states of H̃A(zB) = HA + zBsNA,z and
H̃B(zA) = HB + zAsNA+1,z. The self-consistent solution of the
minimization problem Eq. (11) is thus represented by the state
|ψ̄〉 = |ψ0

A(z̄B)〉 ⊗ |ψ0
B(z̄A)〉 with

z̄A = 〈
ψ0

A(z̄B)
∣∣sNA,z

∣∣ψ0
A(z̄B)

〉
, (12)

z̄B = 〈
ψ0

B(z̄A)
∣∣sNA+1,z

∣∣ψ0
B(z̄A)

〉
, (13)

where |ψ0
A(z̄B)〉 is the ground state of H̃A(z̄B) and |ψ0

B(z̄A)〉
is that of H̃B(z̄A). The corresponding value of energy is
given by

ĒN
NANB

= E0
A(z̄B) + E0

B(z̄A) − z̄Az̄B, (14)

where the last term avoids the double counting of the
contribution from sNA

· sNA+1. The values of the overall minima
for biseparable states, given by

ĒN
bs = min

NA,NB

Ē
NANB

N , (15)

are reported in the right part of Table II for N � 8. For
all the considered values of s and N , the partition with the
lowest energy minimum is that with NA = 2. We note that
for even NA and NB , the qubits only present a solution with
〈HAB〉 = 0; for s > 1/2, instead, the minimum corresponds to
the additional solution, with finite 〈HAB〉. As in the cases
of tripartite and quadripartite entanglement, these minima
provide a criterion, namely 〈H 〉 < nkĒ

k
bs, for the detection of

k-partite entanglement in chains and rings with nk(k − 1) + 1
and nk(k − 1) spins, respectively.

We finally demonstrate the presence of N -partite entangle-
ment in the ground state of all spin chains with even N .

Theorem. The ground state |ψ0〉 of the spin Hamiltonian
H = ∑N−1

i=1 si · si+1, with even N , cannot be written in any
biseparable form |ψAB〉 = |ψA〉 ⊗ |ψB〉, and is thus N -partite
entangled. The same applies to any nondegenerate eigenstate
of H .

Proof. According to Marshall’s theorems [23], |ψ0〉 is a
nondegenerate singlet state.

A biseparable state |ψAB〉 can only be a singlet if Sχ = 0
(χ = A,B). In fact, one can write |ψχ 〉 as a linear super-
position of eigenstates of S2

χ : |ψχ 〉 = ∑
Sχ

C
χ

Sχ
|φχ

Sχ
〉. The

following inequality applies: 〈S2〉 �
∑

SA,SB
|CA

SA
CB

SB
|2[(SA −

SB)2 + SA + SB] �
∑

SA,SB
|CA

SA
CB

SB
|2(SA + SB), where we

make use of 〈φA
SA

|SA|φA
SA

〉 · 〈φB
SB

|SB |φB
SB

〉 � −SASB . There-
fore, 〈S2〉 can only vanish if CA

SA
= δSA,0 and CB

SB
= δSB,0.

We now prove that the state |ψA〉 ⊗ |ψB〉, with SA =
SB = 0, cannot be the ground state of H by showing that
H |ψAB〉 has a component |ψ⊥

AB〉 which is orthogonal to |ψAB〉.
To this end, we write HAB = sz,NA

sz,NA+1 + (s+,NA
s−,NA+1 +

H.c.)/2. We first show that |ψ⊥
AB〉 ≡ sz,NA

sz,NA+1|ψAB〉 is
finite and belongs to the subspace SA = SB = 1 and MA =
MB = 0. In the partial spin sum basis [21], the state of
A reads |ψA〉 = ∑

α DA
α |α,SA,MA〉, where α denotes the

quantum numbers S1, . . . ,SNA−1 corresponding to the partial
spin sums Sk ≡ ∑k

i=1 sk , and SA = 0 implies SNA−1 = s.
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The operator sz
NA

commutes with all S2
k with k � NA −

1. The matrix elements of the NAth spin can thus be
reduced to those between the states of two spins s:
〈α′,S ′

A,M ′
A|sz

NA
|α,SA,MA〉 = δα,α′ 〈S ′

A,M ′
A|sz

NA
|0,0〉. The lat-

ter matrix element is only finite, and equals −ηs , for S ′
A = 1

and M ′
A = 0; therefore, sz

NA
|ψA〉 = −ηs

∑
α DA

α |α,1,0〉, with
ηs = [(

∑s
m=−s m2)/(2s + 1)]1/2 > 0. The same procedure can

be applied to B, resulting in sz
NA+1|ψB〉 = −ηs

∑
β DB

β |β,1,0〉.
Here |ψB〉 = ∑

β DB
β |β,SB = 0,MB = 0〉, and β denotes

the quantum numbers S1, . . . ,SNB−1 corresponding to Sk =∑k
i=1 sN+1−i . As a result, |ψ⊥

AB〉 = η2
s

∑
α,β DA

α DB
β |α,1,0〉 ⊗

|β,1,0〉 has finite norm, belongs to the subspace SA = SB = 1
and MA = MB = 0, and is thus orthogonal to |ψAB〉.

We now show that |ψ⊥
AB〉 coincides with the component

of H |ψAB〉 with SA = SB = 1 and MA = MB = 0. In fact,
(HA + HB)|ψAB〉 belongs to the SA = SB = 0 subspace, being
[Hχ,S2

χ ′ ] = 0 for χ,χ ′ = A,B. The states s±
NA

s∓
NA+1|ψAB〉

belong instead to the subspaces MA = −MB = ±1. Therefore,
H |ψAB〉 has a finite component |ψ⊥

AB〉, and cannot be an
eigenstate of H .

We finally consider the case in which the spins of the
subsystems are not consecutive. In the simplest case, the
spins of A are split into two sequences of NA1 and NA2

consecutive spins, separated by the NB spins of B. If |ψA〉 =
|ψA1〉 ⊗ |ψA2〉, then this case can be recast into the previous
one by redefining A′ = A1 and B ′ = B ∪ A2. If instead A1

and A2 are entangled, then |ψAB〉 is degenerate with any

|ψ ′
AB〉, where |ψA〉 is replaced by a state |ψ ′

A〉 that gives the
same reduced density matrices ρAk

for A1 and A2; this is
because correlations between uncoupled spins do not affect
〈H 〉. Therefore, the state of |ψAB〉 would be degenerate,
which contradicts Marshall’s theorems. The same conclusion
can be drawn for any bipartition where A and B do not
consist of consecutive spins by recursively applying the above
argument. �

IV. CONCLUSION

In conclusion, we have developed a simple approach for
deriving the energy minima of biseparable states in chains
of arbitrary spins s. These minima can be used for detecting
k-partite entanglement in chains with nk(k − 1) + 1 and rings
with nk(n − 1) spins, respectively. This approach has been
applied here to spin chains of up to eight spins s, with s �
5/2. Finally, we have demonstrated on general grounds that
the Heisenberg interaction induces N partite entanglement in
the nondegenerate ground state of even-numbered chains with
arbitrary s. Such entanglement can thus always be detected by
using energy as a witness.
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