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Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal
resource for quantum computation
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Universal quantum computation can be achieved by simply performing single-qubit measurements on a
highly entangled resource state. Resource states can arise from ground states of carefully designed two-body
interacting Hamiltonians. This opens up an appealing possibility of creating them by cooling. The family of
Affleck-Kennedy-Lieb-Tasaki (AKLT) states are the ground states of particularly simple Hamiltonians with high
symmetry, and their potential use in quantum computation gives rise to a new research direction. Expanding on
our prior work [T.-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett. 106, 070501 (2011)], we give a detailed
analysis to explain why the spin-3/2 AKLT state on a two-dimensional honeycomb lattice is a universal resource
for measurement-based quantum computation. Along the way, we also provide an alternative proof that the 1D
spin-1 AKLT state can be used to simulate arbitrary one-qubit unitary gates. Moreover, we connect the quantum
computational universality of 2D random graph states to their percolation property and show that these states
whose graphs are in the supercritical (i.e., percolated) phase are also universal resources for measurement-based
quantum computation.
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I. INTRODUCTION

The rules of quantum mechanics appear to perform certain
tasks much more efficiently than those of classical mechanics.
The most celebrated example is the factoring of a large
integer by Shor’s quantum algorithm [1] that offers exponential
speedup over existing classical algorithms. Quantum comput-
ers that implement generic quantum algorithms can take form
in various computational models, such as the standard circuit
model [2], adiabatic quantum computer [3,4], and quantum
walk [5], all of which proceed via the important feature of
quantum mechanics—the unitary evolution.

A different but equally powerful framework is the
measurement-based quantum computation [6–8]. A particular
computational model within this class is one-way quantum
computation [8] which we subsequently denote by MBQC.
It proceeds by single-qubit measurements alone on a highly
entangled initial resource state [8–10]. For MBQC, resource
states that allow universal quantum computation turns out to
be very rare [12], but examples do exist [13–16]. The first
identified universal resource state is the 2D cluster state on the
square lattice [8,13]. It was also shown that 2D cluster states
defined on regular lattices, such as triangular, hexagonal and
Kagomé, are also universal resources [11]. Cluster states and
related graph states can be created by the Ising interaction from
unentangled states [13] and they have been created with cold
atoms in optical lattices [17]. However, they do not arise as
unique ground states of two-body interacting Hamiltonians
[18], although they can be an approximate unique ground
state [19]. However, by going beyond qubit systems and by
careful design of Hamiltonians, a few quantum states have
been found that are both unique ground states and universal
for MBQC [20–23]. This opens up an alternative possibility
of creating universal resource states by cooling the systems.

Independently of the development on quantum computa-
tion, Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed
a family of states that were ground states of isotropic
antiferromagnet-like Hamiltonians [24–26]. In any dimension,
AKLT states are ground states of particularly simple Hamilto-
nians which only have nearest-neighbor two-body interactions,
are rotationally invariant in spin space, and share all spatial
symmetries of the underlying lattice. In particular, AKLT
provided an explicit example of a one-dimensional spin-1
chain that has a finite spectral gap above the ground state,
supporting Haldane’s hypothesis on integer spin chains with
spin rotation symmetry [27]. These valence-bond states turned
out to be the first examples of matrix product states (MPS) [28]
and projected entangled pairs states (PEPS) [15,29]. The
use of MPS and PEPS also gives rise to a new perspective
on MBQC [14,15]. In particular, it was recently discovered
that the one-dimensional spin-1 AKLT state [24,25] can
serve as a resource for restricted computations [14,30], i.e.,
implementation of arbitrary one-qubit rotations. The discovery
of the resourcefulness of AKLT states creates additional
avenues for its experimental realization [31] and has instilled
novel concepts in MBQC, such as the renormalization group
and the holographic principle [32,33]. However, to achieve
universal quantum computation within the measured-based
architecture, a two-dimensional structure is needed.

In Ref. [21], Cai et al. considered stacking up 1D AKLT
quasichains to form a 2D structure. Their construction showed
that the resulting state, even though it is longer an AKLT
state of spin-3/2, can nevertheless provide universal quantum
computation. Later, independently by us [34] and by Miayke
[35], it was shown that, indeed, the 2D AKLT state on the
honeycomb lattice provides a universal resource for MQBC.
Here, expanding on our prior work [34], we provide an
alternative proof that the 1D spin-1 AKLT state can be used
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to simulate arbitrary one-qubit unitary gates and generalize
the method and give detailed analysis to the proof that
the spin-3/2 AKLT state on a two-dimensional honeycomb
lattice is a universal resource for measurement-based quantum
computation. We do this by showing that a 2D cluster state
can be distilled by local operations. Along the way, we
have connected the quantum computational universality of
2D random graph states to their percolation property. We
note that extension of our approach using a positive operator
valued measure (POVM) and percolation consideration to
computational universality have been successfully applied to
a deformed AKLT model in Ref. [36].

The structure of the present paper is as follows. In Sec. II
we discuss how to locally convert a 1D AKLT to a 1D cluster
state. In Sec. III we outline and illustrate the method of how
to locally convert the 2D AKLT state to a random graph state.
We then give the general proof in Sec IV. In Sec. V we show
the quantum computational universality of these graph states
is related to the percolation of the graph and show how to
convert these graph states to a 2D cluster state on a square
lattice. We support our assertion with Monte Carlo simulations
in Sec. VI and conclude in Sec. VII. In the appendices, we use
a different approach to obtain the probability of getting any
POVM outcomes.

II. ONE DIMENSION

We begin by investigating the 1D AKLT state and how it can
be locally converted to a 1D cluster state. By doing so, we have
thus proved the equivalence of the capability to simulate one-
qubit unitary gates for both types of states. Many of the meth-
ods developed in this section can be extended to the more in-
teresting case of the 2D AKLT state on the honeycomb lattice.

A. 1D spin-1 AKLT state and 1D cluster state

The 1D AKLT state [24] can be understood by using the
valence-bond-solid (VBS) picture, as illustrated in Fig. 1(a).
(1) First, one regards a spin-1 particle at each site as consisting
of two virtual spin-1/2 particles (qubits), each of which forms
a singlet with the virtual qubit on the neighboring site: |φ〉e ≡
|01〉e − |10〉e, where the normalization is omitted, |0〉 ≡ |↑〉
and |1〉 ≡ |↓〉 are eigenstates of Pauli σz, and e denotes the
edge that links the two virtual qubits. (2) A local projection is
then made at every site that maps the state of the two virtual
qubits to their symmetric subspace, which is then identified as
the Hilbert space of spin-1 particle,

FIG. 1. The 1D AKLT state (a) and the 1D cluster state (b).

P̂v = |Sz = 1〉〈00| + |Sz = −1〉〈11| + |Sz = 0〉〈ψ+|, (1)

|ψ+〉 ≡ 1√
2

(|01〉 + |10〉), (2)

where |Sz = ±1,0〉 are the three S = 1 angular-momentum
eigenstates: Ŝz|Sz〉 = Sz|Sz〉. For convenience we shall take
the periodic boundary condition, so the last site of the 1D
chain is actually connected to the first site of the chain. Open
boundary condition can be dealt with by attaching qubits at
the ends. The 1D AKLT is, therefore, given by∣∣�(1D)

AKLT

〉 ≡
⊗

v

P̂v

⊗
e

|φ〉e, (3)

which is the unique ground state of the following spin-isotropic
Hamiltonian with a finite gap [24,25],

HS=1
AKLT =

∑
v

[
�Sv · �Sv+1 + 1

3
(�Sv · �Sv+1)2 + 2

3

]
, (4)

where �Sv denotes the vector of the spin operator at site v. This
AKLT model provided strong evidence in support of Haldane’s
hypothesis [27].

On the other hand, the 1D cluster state |C1D〉 also can
be understood similarly by projecting virtual entangled pairs
to physical spins, known as projected entangled pairs states
(PEPS) [29], where the virtual entangled pair is replaced by
|φH 〉e ≡ |00〉 + |01〉 + |10〉 − |11〉 and the local projection is
given by P̂ C

v ≡ |0〉〈00| + |1〉〈11|, giving rise to

|C(1D)〉 ≡
⊗

v

P̂ C
v

⊗
e

|φH 〉e. (5)

However, for our purposes, it will be useful to define
equivalently the cluster state as the common eigenstate of the
following operators:

Zv−1XvZv+1|C(1D)〉 = |C(1D)〉, (6)

for all sites v, where v ± 1 are the two neighboring sites of v on
the chain. Note that for convenience we denote the three Pauli
matrices by X ≡ σx , Y ≡ σy , and Z ≡ σz, and use the two
notations interchangeably. Moreover, the choice of “ + 1” or
“−1” eigenvalue is arbitrary, as the resulting states are related
by local unitary transformation. The 1D cluster state can be
used to simulate one-qubit unitary operation on one qubit and
is the basic ingredient in MBQC [8].

In fact, the 1D AKLT state has been shown to be able
to simulate one-qubit unitary operation as the 1D cluster state
[14,30,32] by explicitly constructing one-qubit universal gates.
It has also been realized that the spin-1 AKLT state can actually
be converted, via local operations, to the 1D spin-1/2 cluster
state with a random length [37]. In the following section, we
provide an alternative method for the reduction of the 1D
AKLT state to a 1D cluster state. This method will then be
generalized later for the reduction of the 2D AKLT state.

B. Reducing 1D AKLT state to a 1D cluster state

As spin-1 Hilbert space is of dimensionality 3, in order
to convert to dimensionality 2 of a qubit, a projection or a
generalized measurement is needed. In the mapping P̂v in
Eq. (1), there is a two-dimensional subspace spanned by |S =
1,Sz = 1〉 and |S = 1,Sz = −1〉 or, equivalently, by the two
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virtual qubits |00〉 and |11〉. One can, therefore, consider

Fz = (|Sz = 1〉〈Sz = 1| + |Sz = −1〉〈Sz = −1|)/
√

2 (7)

as a projection that preserves a two-dimensional subspace,
where we suppress the label S = 1. However, what happens if
the projection is not successful and it ends up in the subspace
orthogonal to that spanned by |Sz = 1〉 and |Sz = −1〉? To
solve this “leakage” problem, one takes advantage of the
rotation symmetry and adds two more projections:

Fx = (|Sx = 1〉〈Sx = 1| + |Sx = −1〉〈Sx = −1|)/
√

2, (8)

Fy = (|Sy = 1〉〈Sy = 1| + |Sy = −1〉〈Sy = −1|)/
√

2, (9)

and notice the completeness relation in the spin-1 Hilbert
space, ∑

α=x,y,z

F †
αFα = 1S=1. (10)

The above F ’s constitute the so-called generalized mea-
surement or POVM, characterized by {F †

αFα}. Their physical
meaning is to define a two-dimensional subspace and to specify
a preferred quantization axis x, y, or z. In principle, the POVM
can be realized by a unitary transformation U jointly on a
spin-1 state, denoted by |ψ〉, and a meter state |0〉m such that

U |ψ〉|0〉m =
∑

α

Fα|ψ〉|α〉m, (11)

where for the meter states 〈α|α′〉 = δα,α′ . A measurement on
the meter state will result in a random outcome α, for which
the spin state is projected to Fα|ψ〉 [2].

Claim. We shall show that after performing the generalized
measurement on all sites with {av} denoting the measurement
outcome the resulting state

|ψ({av})〉 ≡
⊗

v

Fv,av

∣∣�(1D)
AKLT

〉
(12)

is an “encoded” 1D cluster state.
In the following, we shall make use of the equivalent

representation of the AKLT state by the virtual qubits; see
Eq. (1), e.g., |Sz = 1〉 = |00〉 and |Sz = −1〉 = |11〉, where
the right-hand sides are two-qubit states. In this regard, we can
think of F operators in terms of two-qubit operators,

F̃z = (|00〉〈00| + |11〉〈11|)/
√

2, (13a)

F̃x = (| ++〉〈++ |+| −−〉〈−− |)/
√

2, (13b)

F̃y = (|i,i〉〈i,i| + |−i,−i〉〈−i,−i|)/
√

2, (13c)

where |±〉 satisfy σx |±〉 = ±|±〉 and | ± i〉 satisfy σy | ± i〉 =
±| ± i〉. Thus, in terms of these F̃ ’s, the postmeasurement
state (12) is simply given by

|ψ({av})〉 ≡
⊗

v

F̃v,av

⊗
e

|φ〉e, (14)

where we have added a site label v, in addition to the
quantization axis label av . Naturally, as with |Sz = ±1〉, there
is also the correspondence between the other two S = 1 states
and the two-qubit states in x and y bases: |Sx = 1〉 = | + +〉,
|Sx = −1〉 = | − −〉, |Sy = 1〉 = |i,i〉, and |Sy = −1〉 = | −

FIG. 2. (Color online) Illustration of (a) encoding and (b) and (c)
stabilizer operator.

i, − i〉. The use of qubit enables us to take the advantage of the
stabilizer formalism [38], even though its use is not essential.

First, let us explain the meaning of “encoding” used in
the claim. Suppose two neighboring sites u and v have the
same outcome a = z; see Fig. 2(a). The two-dimensional
subspaces at sites u and v then are both spanned by |00〉 and
|11〉. However, the singlet state between the two virtual qubits
connecting u and v dictates that the appearance of the basis
states are anticorrelated. For example, |(00)u〉 at site u cannot
coexist with |(00)v〉 at site v. There are only two possible
basis states for the two sites u and v: |“0′′〉 ≡ |(00)u(11)v〉
and |“1′′〉 ≡ |(11)u(00)v〉. These two states “encode” a log-
ical qubit {|“0′′〉,|“1′′〉}. In terms of spin-1 notation, they
are |Sz = 1,Sz = −1〉u,v and |Sz = −1,Sz = 1〉uv , showing
the antiferromagnetic properties of the AKLT state. From
these two states, logical Z and X operators can be defined:
Z ≡ |“0′′〉〈“0′′| − |“1′′〉〈“1′′| and X ≡ |“0′′〉〈“1′′| + |“1′′〉〈“0′′|
(and, thus, the Pauli operator Y = −iZX can be determined).
In the same manner, for k consecutive sites with the same
outcome a, only one qubit is encoded by the k physical spins
with quantization axis being in the a direction. We shall refer
to these sites collectively as a domain. On the other hand, for
two neighboring sites having different outcome au 
= av , the
four combination |Sau

= ±1,Sav
= ±1〉 can appear and each

site is effectively a qubit.
The above analysis can be expressed in terms of the

stabilizer formalism. In the example where neighboring u and
v share the same outcome a = z (i.e., the domain consists
of two sites u and v), for the two virtual qubits of site u

(denoted by the 1 and 2) we have σ [1]
z ⊗ σ [2]

z F̃u,z = F̃u,z. This
means σ [1]

z ⊗ σ [2]
z |ψ({av})〉 = |ψ({av})〉. Similarly, for site v

(with two virtual qubits labeled as 3 and 4) we have σ [3]
z ⊗

σ [3]
z |ψ({av})〉 = |ψ({av})〉. However, because of the singlet

between 2 and 3, we have −σ [2]
z ⊗ σ [3]

z |ψ({av})〉 = |ψ({av})〉.
The above three operators {σ [1]

z ⊗ σ [2]
z ,σ [3]

z ⊗ σ [4]
z , − σ [2]

z ⊗
σ [3]

z } are called the stabilizer generators and they define the
logical qubit basis states: |“0′′〉 ≡ |(00)u(11)v〉 and |“1′′〉 ≡
|(11)u(00)v〉, as one can verify that they are the common
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TABLE I. The dependence of stabilizers and encodings for the
random graphs on the local POVM outcome in the case of 1D AKLT
state. |C| denotes the total number of virtual qubits contained in
a domain. In the first line, i = 1 to 2|C| − 1, and in the third line
i = 1 to 2|C|. One choice of the sign is λi = 1 if the virtual qubit i

is on the odd number of sites (relative to, e.g., the left end) in the
domain and λi = −1 otherwise.

POVM
outcome z x y

Stabilizer λiλi+1σ
[i]
z σ [i+1]

z λiλi+1σ
[i]
x σ [i+1]

x λiλi+1σ
[i]
y σ [i+1]

y

generator

X
⊗2|C|

j=1 σ [j ]
x

⊗2|C|
j=1 σ [j ]

z

⊗2|C|
j=1 σ [j ]

z

Z λiσ
[i]
z λiσ

[i]
x λiσ

[i]
y

eigenstates of these operators with eigenvalue +1. The stabi-
lizer generators are effectively identity operators in the logical-
qubit Hilbert space. To define the logical Z operator, there are
many equivalent choices: e.g., σ [1]

z , σ [2]
z , −σ [3]

z , and −σ [4]
z .

Any of them can be taken to one another by multiplication
of some combination of the stabilizer generators. To complete
the logical qubit operators, the X operator can be taken as
X ≡ σ [1]

x σ [2]
x σ [3]

x σ [4]
x , which flips |“0′′〉 to |“1′′〉, and vice versa.

Other outcomes can be dealt with in a similar way, and these
are summarized in Table I. Two important properties are that
(i) each domain can contain more than one physical qubit and
is only one logical qubit and (2) the qubit basis depends on the
shared outcome of the POVM.

We remark that even though a domain may contain two
or more sites one can perform projective measurement on all
but one site in the basis defined by {|Sa = 1〉 ± |Sa = −1〉},
where a is the label of the POVM outcome for the domain.
The domain is then reduced to a single site but still preserves
the same degree of entanglement with its neighbors.

To show that the post-POVM state is an (encoded) cluster
state, let us illustrate with the example shown in Fig. 2(b). Let
us label the three sites by u, v. and w, respectively. Suppose
the POVM outcomes on these sites are au = x, av = z, and
aw = x, respectively. First, note that −σ [2]

x σ [3]
x commutes

with F̃u,x and −σ [4]
x σ [5]

x commutes with F̃w,x . Note also that
−σ [2]

x σ [3]
x is a stabilizer operator of the singlet between 2 and

3, but it does not commute with F̃v,z. Similarly, −σ [4]
x σ [5]

x is a
stabilizer operator of the singlet between 4 and 5, but it does
not commute with F̃v,z, either. However, if we multiply all the
above operators, we obtain

Kv ≡ σ [2]
x σ [3]

x σ [4]
x σ [5]

x . (15)

Because σ [3]
x σ [4]

x commutes with F̃v,z, due to the identity

σx ⊗ σx(|00〉〈00| + |11〉〈11|)
= (|11〉〈00| + |00〉〈11|)
= (|00〉〈00| + |11〉〈11|) σx ⊗ σx, (16)

Kv is, thus, a stabilizer operator for the post-POVM state.
In terms of logical Pauli operators Zu ≡ σ [2]

x , Zw ≡ σ [5]
x ,

and Xv ≡ σ [3]
x σ [4]

x , we arrive at the stabilizer operator KV =
ZUXV ZW . This is the stabilizer operator defining a linear
cluster state; see Eq. (6).

As a further illustration, let us consider the same three
sites in Fig. 2(b) but with au = x, av = z, and aw = y, i.e.,
the last site has a different outcome aw = y than the above
example. Because of this, one now considers −σ [4]

y σ [5]
y instead

of −σ [4]
x σ [5]

x and can show that the following operator is a
stabilizer generator,

KV ≡ σ [2]
x σ [3]

x σ [4]
y σ [5]

y . (17)

We now use the logical operators Zu ≡ σ [2]
x , Zw ≡ σ [5]

y , Xv ≡
σ [3]

x σ [4]
x , and Zv ≡ σ [4]

z and we arrive at

KV = Zu(iXvZv)Zw = ZuY vZw. (18)

Although the stabilizer operator Kv is not of the canonical
form of the cluster-state stabilizer ZuXvZw, they are related
by local unitary transformation that leaves Zv invariant.

C. General proof of 1D encoded cluster state

The examples in the previous section prepare us for the
general proof that the post-POVM state is an encoded 1D
cluster state. Consider Fig. 2(c), in which there are three
blocks, labeled U , V , and W , that may contain multiple sites
having same POVM outcome, au, av , and aw, respectively. Let
us label the last virtual qubit in block U by l, the first virtual
qubit in block W by r , and the virtual qubits in block V by
1,2, . . . ,2k. Because av 
= au and av 
= aw, we can separate
the proof into two cases: (1) au = aw, just as the first example
(au,av,aw) = (x,z,x) given in last section; (2) au 
= aw, just as
the second example (au,av,aw) = (x,z,y) given in last section.
The proof given below is a straightforward generalization of
these examples.

Case (1). Let us define a ≡ aw = au. For the edges
connecting V to U and to W , consider the two operators:
−σ [l]

a σ [1]
a and −σ [2k]

a σ [r]
a . Denote by α the label such that

XV ≡ ⊗2k
j=1σ

[j ]
α is the logical X operator for the block V .

For the edges connecting virtual qubits inside V , consider the
operator: σ [2]

α σ [3]
α ..σ [2k−1]

α . The product of these three operators
can be verified to be the stabilizer operator for the post-POVM
state,

KV ≡ σ [l]
a σ [1]

a σ [1]
α XV σ [2k]

α σ [2k]
a σ [r]

a . (19)

As a 
= av , either σa = σα or σa = ±iσασav
and, thus, either

σaσα = 1 or ∓iσav
, with ±σav

being a logical Z for block V

(and Z
2 = 1 from contributions of virtual qubits 1 and 2r).

Using the encoded Z for block U and W , i.e., ZU = ±σ [l]
a and

ZW = ±σ [r]
a , we have

KV = ±ZUXV ZW (20)

as a stabilizer operator. (The choice of ± depends on the
convention; see Table I.)

Case (2). For the edges connecting V to U and to W ,
consider the two operators: −σ [l]

au
σ [1]

au
and −σ [2k]

aw
σ [r]

aw
. Denote

by α the label such that XV = ⊗2k
j=1σ

[j ]
α is the logical X

operator for the block V . For the edges connecting virtual
qubits inside V , consider the operator: σ [2]

α σ [3]
α . . . σ [2k−1]

α . The
product of these three operators is the stabilizer operator for
the post-POVM state,

KV ≡ σ [l]
au

σ [1]
au

σ [1]
α XV σ [2k]

α σ [2k]
aw

σ [r]
aw

. (21)
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As au 
= aw, α is either equal to au or aw and, hence, the product
of σ [1]

au
σ [1]

α σ [2k]
α σ [2k]

aw
becomes either σ [1]

au
σ [1]

α or σ [2k]
α σ [2k]

aw
.

Either of them is a logical ±iZV . Thus, we have

KV = ±iZU (ZV XV )ZW = ±ZUYV ZW (22)

as a stabilizer operator. This concludes the proof that the post-
POVM state is an encoded 1D cluster state.

D. The issue of encoding?

From the above discussions, we realize that one logical
qubit can be encoded among several physical spins. Does this
mean that MBQC needs to be done with measurement on
joint spins, i.e., possibly an entangled basis of several spins?
We shall see that this is not necessary and measurement can
be still be performed at the individual spin level. It suffices
to illustrate this by an example. Suppose a logical qubit is
encoded in two spins and the total state of the logical qubit
and the rest of the spins is in a state |	〉 = α| + 1,−1〉12 ⊗
|ψ1〉 + β|−1, + 1〉12 ⊗ |ψ2〉, where |ψ1〉 and |ψ2〉 are the
corresponding states of the rest of the spins to | + 1,−1〉12 and
|−1, + 1〉12, respectively. We shall see that by measuring on
the first spin, we can effectively reduce the state |	〉 to |	 ′〉 =
α|−1〉2 ⊗ |ψ1〉 + β| + 1〉2 ⊗ |ψ2〉. To do this, we measure the
first spin in the basis {|±〉 ≡ (| + 1〉 ± |−1〉)/√2}. If it is the
“plus” outcome, then the state becomes |	 ′〉 ∼ 1〈+|	〉 ∼
α|−1〉2 ⊗ |ψ1〉 + β| + 1〉2 ⊗ |ψ2〉. If it is the “minus” out
come, then the state becomes |	 ′〉 ∼ 1〈−|	〉 ∼ α|−1〉2 ⊗
|ψ1〉−β| + 1〉2 ⊗ |ψ2〉. The difference of the two outcomes
is only a (−1) relative phase factor between the two terms and
the information content is essentially the same. If the encoding
contains n spins, we can perform similar measurement on
n − 1 spins and reduce the encoding to the a single spin.
Thus, the encoding with multiple spins does not require the
measurement of MBQC to be joint (entangled) measurement.

E. Probability of a POVM outcome

Given a set of POVM outcome {av}, what is the probability
p({av}) that this occurs? This is can be obtained from the
norm square of the resulting un-normalized post-POVM state
|ψ({av})〉, namely

p({av}) = 〈ψ({av})|ψ({av})〉/
〈
�

(1D)
AKLT

∣∣�(1D)
AKLT

〉
. (23)

Let us denote by |V | the total number of domains, which
is the number of logical qubits and |E | the total number
of edges connecting domains. As we consider the periodic
boundary condition, trivially |E | = |V |, except when all sites
have the same POVM outcome, i.e., av = a for all v. Note
that this latter case can never occur if the total number of
the original spins is odd, as the frustrated configurations
|+1,−1,+1,−1, . . . ,+1〉 and |−1,+1,−1,+1, . . . ,−1〉 (with
the first and last sites being connected next to each other)
cannot appear [24,25]. It turns out that, barring the exception
of zero probability, p({av}) ∼ 2|V |−|E |. This is because for
contracting 〈ψ({av})|ψ({av})〉 to compute the norm we need
to evaluate |〈α,β|(|01〉 − |10〉)|2, where α,β can be any of
the six possibilities: {0,1,+,−,+i,−i}. The ratio of the above
expressions in the case were α and β belong to different bases
to the case where they belong to the same basis (thus α = −β)

is 1/2. In total, there are 2|V | terms of equal contribution to
the norm square, each reduced by a factor 2−|E |. This results
in the probability p({av}) ∼ 2|V |−|E |.

For the total number of sites n being even, all the 3n

possible POVM outcomes can occur, each with probability
p0, except for the three configurations (with all av being the
same) having probability 2p0. Solving (3n − 3)p0 + 3(2p0) =
1, we obtain p0 = 1/(3n + 3). For n being odd, the three
configurations with all av being the same cannot occur. All
other configurations occur with a probability 1/(3n − 3) each.
For large n, it is a very good approximation to regard all
configurations {av} as occurring with equal probability and
hence the resulting 1D cluster state contains on average 2n/3
qubits, which agrees with the result in Ref. [37].

III. REDUCTION OF THE 2D AKLT STATE

Now that we have understood the 1D case, to show that
the 2D AKLT state is a universal resource for quantum
computation, we proceed in three steps. First, we show that
it can be mapped to a random planar graph state |G(A)〉
by local generalized measurement, with the graph G(A)
depending on the set A of measurement outcomes on all
sites. Second, we show that the computational universality
of a typical resulting graph state |G(A)〉 hinges solely on
the connectivity of G(A) and is, thus, a percolation problem.
Third, we demonstrate through Monte Carlo simulation that
the typical graphs G(A) are indeed deep in the connected
phase. We remark that extension of our approach using POVM
and percolation consideration have been applied to a deformed
AKLT model in Ref. [36].

The AKLT state [24,25] on the honeycomb latticeL has one
spin-3/2 per site of L. The state space of each spin-3/2 can be
viewed as the symmetric subspace of three virtual spin-1/2’s,
i.e., qubits. In terms of these virtual qubits, the AKLT state
on L is

|�AKLT〉 ≡
⊗

v∈V (L)

PS,v

⊗
e∈E(L)

|φ〉e, (24)

where V (L) and E(L) denote the set of vertices and edges
of L, respectively. PS,v is the projection onto the symmetric
(equivalently, spin-3/2) subspace at site v of L,

PS ≡ |000〉〈000| + |111〉〈111| + |W 〉〈W | + |W 〉〈W |, (25)

where

|W 〉 ≡ 1√
3

(|001〉 + |010〉 + |100〉), (26)

|W 〉 ≡ 1√
3

(|110〉 + |101〉 + |011〉). (27)

The mapping between three virtual qubits and spin-3/2 is
given by |000〉 ↔ |3/2,3/2〉, |111〉 ↔ |3/2, − 3/2〉, |W 〉 ↔
|3/2,1/2〉, and |W 〉 ↔ |3/2, − 1/2〉. For an edge e = (v,w),
|φ〉e denotes a singlet state, with one spin-1/2 at vertex v and
the other at w. For illustration, see Fig. 3(a). The AKLT state
is the ground state of the following Hamiltonian:

H
S=3/2
AKLT =

∑
edge 〈i,j〉

[
�Si · �Sj + 116

243
(�Si · �Sj )2 + 16

243
(�Si · �Sj )3

]
,

(28)
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FIG. 3. Illustrations of the AKLT state on the honeycomb lattice,
a graph state, and the 2D cluster state on a square lattice. (a) AKLT
state. Spin singlets of two virtual spins-1/2 are located on the edges
of the honeycomb lattice. A projection PS,v at each lattice site v onto
the symmetric subspace of three virtual spins creates the AKLT state.
(b) A graph state. One qubit (i.e., spin-1/2) resides at vertex of the
graph. One stabilizer generator of the form Xv

⊗
u∈nb(v) Zu is shown.

(c) 2D Cluster state is a special case of graph states, where the graph
is a two-dimensional square lattice.

where an irrelevant constant term has been dropped.
We next give the definition of a graph state [39], to which

we shall prove that the AKLT state can be locally converted.
A graph state |G〉 is a stabilizer state [38] with one qubit
per vertex of the graph G. It is the unique eigenstate of a
set of commuting operators [13], usually called the stabilizer
generators,

Xv

⊗
u∈nb(v)

Zu |G〉 = |G〉, ∀v ∈ V (G), (29)

where nb(v) denotes the neighbors of vertex v and X ≡ σx ,
Y ≡ σy , and Z ≡ σz are the three Pauli matrices. A cluster
state is a special case of graph states, with the underlying graph
being a regular lattice; see, e.g., Fig. 3(b) for the illustration.
Any 2D cluster state is a universal resource for measurement-
based quantum computation [8,11].

To show that the 2D AKLT state of four-level spin-3/2
particles can be converted to a graph state of two-level qubits,
we need to preserve a local two-dimensional structure at each
site. This is achieved by a local generalized measurement [2],
also called POVM, on every site v on the honeycomb lattice
L. The POVM consists of three rank-two elements

F̃v,z =
√

2

3
(|000〉〈000| + |111〉〈111|), (30a)

F̃v,x =
√

2

3
(| +++〉〈+++|+| −−−〉〈−−−|), (30b)

F̃v,y =
√

2

3
(|i,i,i〉〈i,i,i| + | −i, −i, −i〉〈−i, −i, −i|),

(30c)

which extend those in Eq. (13) to three virtual qubits. Note that
|0/1〉, |±〉 ≡ (|0〉 ± |1〉)/√2 and | ± i〉 ≡ (|0〉 ± i|1〉)/√2 are
eigenstates of Pauli operators Z, X, and Y , respectively.
Physically, F̃v,a is proportional to a projector onto the two-
dimensional subspace spanned by the Sa = ±3/2 states, i.e.,
|Sa = ±3/2〉〈Sa = ±3/2| [see also Eqs. (42)–(44)]. We have
simply used the three-virtual-qubit representation, and it will
be useful for our proof. The above POVM elements obey
the relation

∑
ν∈{x,y,z} F̃ †

v,νF̃v,ν = PS,v , i.e., project onto the
symmetric subspace of three qubits, equivalently, the identity
in S = 3/2 Hilbert space, as required. The outcome of the
POVM at any site v is random, x, y or z, and it can be
correlated with the outcomes at other sites due to correlations
in the AKLT state. As we demonstrate below, the resulting
quantum state, dependent on the random POVM outcomes
A = {av,v ∈ V (L)},

|	(A)〉 =
⊗

v∈V (L)

F̃v,av
|�AKLT〉 =

⊗
v∈V (L)

F̃v,av

⊗
e∈E(L)

|φ〉e (31)

is equivalent under local unitary transformations to an en-
coded graph state |G(A)〉. The graph G(A) determines the
corresponding graph state, and we show that it is constructed
from the honeycomb lattice graph by applying the following
two rules, given A:

(i) (Edge contraction): Contract all edges e ∈ E(L) that
connect sites with the same POVM outcome.

(ii) (Mod 2 edge deletion): In the resultant multigraph,
delete all edges of even multiplicity and convert all edges
of odd multiplicity into conventional edges of multiplicity 1.

These two rules are illustrated in Fig. 4. A set of sites in L
that is contracted into a single vertex of G(A) by the above rule
R1 is called a domain, which we have already encountered in
the reduction of 1D AKLT state. Each domain supports a single
encoded qubit. The stabilizer generators and the encoded
operators for the resulting codes are summarized in Table II.
Below we demonstrate the post-POVM state |	(A)〉 is a graph
state and justify rules R1 and R2 with simple examples.

Rule 1: Merging of sites. Physically, this rule derives from
the antiferromagnetic property of the AKLT state: neighboring
spin-3/2 particles must not have the same Sa = 3/2 (or
−3/2) configuration [24–26]. Hence, after the projection
onto Sa = ±3/2 subspace by the POVM, the configurations
for all sites inside a domain can only be |3/2, − 3/2, . . . 〉
or | − 3/2,3/2, . . . 〉, and, intuitively, these form the basis
of a single qubit. This encoding of a qubit can also be
understood in terms of the stabilizer. Consider the case where
two neighboring POVMs yield the same outcome, say z;
see Fig. 5(a). As a result of the projections F̃u,z and F̃v,z

(with u = {1,2,3} and v = {4,5,6} each containing three
virtual qubits), the operators Z1Z2, Z2Z3, and Z4Z5, Z5Z6

become stabilizer generators of the post-POVM state |	(A)〉.
In addition, the stabilizer −Z3Z4 of the singlet state |φ〉34

commutes with the projection F̃u,z ⊗ F̃v,z and, thus, remains
a stabilizer element for |	(A)〉. In summary, the stabilizer
generators are Z1Z2,Z2Z3, − Z3Z4,Z4Z5,Z5Z6, giving rise
to a single encoded qubit,

α|(000)u(111)v〉 + β|(111)u(000)v〉,
which is supported by the two sites u and v jointly. We
observe here the antiferromagnetic ordering [24–26] among
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FIG. 4. Graphical rules for transformation of the lattice L into the
graph G(A), depending on the POVM outcomes A. (a) Graph Rule
1: A single edge between neighboring sites with the same POVM
outcome i ∈ {x,y,z} is contracted. (b) Rule 2: Pairs of edges between
the same vertices are deleted. (b) An example for the application of
rules 1 and 2 to a small honeycomb lattice. The alphabets (j 
= k)
inside the circle indicate the POVM outcomes. (c) An example to
illustrate the applications of the graph rules.

groups of three virtual qubits. To reduce the support of this
logical qubit to an individual site of L, a measurement in the
basis {|(000)v〉 ± |(111)v〉} is performed. The resulting state
is α|(000)u〉 ± β|(111)u〉, with the sign “±” known from the
measurement outcome (see also Sec. II D). This is the proper
encoding for a domain consisting of a single site. Domains of
more than two sites are thereby reduced to a single site in the
same manner.

To see that the state |	(A)〉 is indeed equivalent under local
unitary transformations to the encoded graph state |G(A)〉,
we consider the example of four domains c, u, v, w, each
consisting of a single site of L, where the POVM outcome is z

on the central domain c and x on all lateral domains u, v and

TABLE II. The dependence of stabilizers and encodings for the
random graphs on the local POVM outcome. |C| denotes the total
number of virtual qubits contained in a domain. In the first line,
i = 1 to 3|C| − 1, and in the third line i = 1 to 3|C|. The honeycomb
lattice L is bicolorable or bipartite and all sites can be divided into
either A or B sublattice, V (L) = A ∪ B. One choice of the sign then
is λi = 1 if the virtual qubit i ∈ v ∈ A and λi = −1 if i ∈ v′ ∈ B.

POVM outcome z x y

Stabilizer generator λiλi+1ZiZi+1, λiλi+1XiXi+1 λiλi+1YiYi+1

X
⊗3|C|

j=1 Xj

⊗3|C|
j=1 Zj

⊗3|C|
j=1 Zj

Z λiZi λiXi λiYi

FIG. 5. Illustrations of the encoding and the cluster graph sta-
bilizer. (a) If two neighboring sites u and v share the same POVM
outcome, e.g., au = av = z, then collectively these two sites form a
logical qubit. More generally, if a set of connected sites share the same
POVM outcome, then these sites effective encode a logical qubit. (b)
An example of four sites u, v, w, and c with POVM outcomes ac = z,
and au = av = aw = x is used to illustrate the stabilizer generator
Kc = ±X̄cZ̄uZ̄vZ̄w .

w; see Fig. 5(b). By similar arguments as above, the operator
O ≡ −X1X1′X2X2′X3X3′ is in the stabilizer of |	(A)〉. Using
the encoding in Table II, i.e., with the encoded Pauli operators
Xc = Z1Z2Z3, Zu = ±X1′ , Zv = ±X2′ , and Zw = ±X3′ , we
find that O = ±XcZuZvZw, which is (up to a possible sign of
convention) one of the stabilizer generators defining the graph
state. Intuitively, we see that each edge from an outer domain
contributes to an encoded Z from that domain and the operator
restricted at the center domain is clearly not an identity nor
an encoded Z as its POVM outcome differs from the outer
ones. This gives rise to a stabilizer generator local-unitarily
equivalent to the one given in Eq. (29).

Rule 2: Mod 2 edge deletion. By the above construction,
if two domains u, v are connected by an edge of multiplicity
m, the inferred graph state stabilizer generators will contain
factors of XuZv

m
or XvZu

m
. We observe that Z2 = I , from

which Rule 2 follows.
Generalizing the above ideas, it is straightforward to

rigorously prove that for any POVM outcomes for any A,
the state |	(A)〉 is local equivalent to an encoded graph state
|G(A)〉; see below. We shall denote by |G(A)〉 the graph state
after reducing multiple sites in every domain to a single site,
i.e., to the proper qubit encoding by domains, as the graph
remains the same.

IV. FROM THE AKLT STATE TO GRAPH STATES:
GENERAL PROOF

Let us recall the POVM to be performed on all sites can be
rewritten as

F̃v,z =
√

2

3

I12 + Z1Z2

2

I23 + Z2Z3

2
,

F̃v,x =
√

2

3

I12 + X1X2

2

I23 + X2X3

2
, (32)

F̃v,y =
√

2

3

I12 + Y1Y2

2

I23 + Y2Y3

2
.

It turns out that, for any A, the state |	(A)〉 is local
equivalent to an encoded graph state |G(A)〉, with the graph
G(A) constructed as follows. An edge (v,w) ∈ E(L) is called
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internal if and only if at the sites v and w the local POVM
has resulted in the same outcome. The graph G(A) is obtained
from the lattice graph L by (1) contracting all internal edges,
and, in the resultant multigraph, (2a) deleting all edges of even
multiplicity and (2b) converting all edges of odd multiplicity
into conventional edges of multiplicity 1. See Fig. 2 for
illustration.

In step (1) of the above procedure, several sites of L are
merged into a single composite object C ∈ V (G(A)). Each
such C is both a vertex in the graph G(A) and a connected
set of same-type sites of L, i.e., a domain. Physically, in
a domain of type a, we have antiferromagnetic order along
the ±a direction, because two neighboring spins never have
the same Sa = 3/2 (or −3/2) in the AKLT state [24].
The state of the domain contains only two configurations
with respect to the quantization axis a: | + 3/2, − 3/2, +
3/2, . . . 〉 and | − 3/2,3/2, − 3/2, . . . 〉. Thus, it is effectively
one qubit.

The outlined construction leads to one of our main results.
Theorem 1. For any A that specifies all outcomes of

POVMs on L, quantum computation by local spin-3/2 mea-
surements on the state |	(A)〉 can efficiently simulate quantum
computation by local spin-1/2 measurement on the graph
state |G(A)〉.

Thus, the computational power of the AKLT state, as
harnessed by the POVMs Eq. (32), hinges on the connectivity
properties of G(A). If, for typical sets A of POVM outcomes,
the graph state |G(A)〉 is computationally universal, then so is
the AKLT state.

The proof proceeds in three steps. First, we show that
every domain C ∈ V (G(A)) gives rise to one encoded qubit.
Second, we show that |	(A)〉 is, up to local encoded unitaries,
equivalent to the encoded graph state |G(A)〉. Third, we
show that the encoding can be unraveled by local spin-3/2
measurements.

Step 1: Encoding. Consider a domain C ⊂ V (L). That
is, on all sites v ∈ C the same POVM outcome a ∈ {x,y,z}
was obtained. C contains 3|C| qubits. The projections Fv,a

on all v ∈ C enforce 2|C| stabilizer generators, cf. Eq. (30).
Furthermore, choose a tree T among the set of edges with
both end points in the domain C. Each edge (u,v) ∈ T
contributes a stabilizer generator −σ (u)

a σ (v)
a to the product of

Bell states
⊗

e∈E(L) |φ〉e. These stabilizers commute with the
local POVMs (32) and, therefore, are also stabilizer generators
for |	(A)〉. Since |T | = |C| − 1, in total there are 3|C| − 1
stabilizer generators with support only in C, acting on 3|C|
qubits. They give rise to one encoded qubit.

While the stabilizer generators for our code follow from the
construction, there is freedom in choosing the encoded Pauli
operators. Table II shows one such choice of encoding.

Step 2: We show that |	(A)〉 is an encoded graph state.
Consider a central vertex Cc ∈ V (G(A)) and all its neighboring
vertices Cμ ∈ V (G(A)). Denote the POVM outcome for all L
sites v ∈ Cc,Cμ by ac and aμ, respectively. Denote by Eμ the
set ofL edges that run between Cc and Cμ. Denote by Ec the set
ofL edges internal to Cc. Denote by Cc the set of all qubits in Cc

and by Cμ the set of all qubits in Cμ. (Recall that there are three
qubit locations per L vertex v ∈ Cc,Cμ.) We, first, consider the
stabilizer of the state

⊗
e∈E(L) |φ〉e. For any μ and any edge

e ∈ Eμ, let u(e) [v(e)] be the end point of e in Cμ [Cc]. Then,
for all μ and all e ∈ Eμ the Pauli operators −σ (u(e))

aμ
σ (v(e))

aμ

are in the stabilizer of
⊗

e∈E(L) |φ〉e. Choose b ∈ {x,y,z} such
that b 
= ac, and let, for any edge e′ ∈ Ec, v1(e′),v2(e′) ∈ Cc

be qubit locations such that e′ = (v1(e′),v2(e′)). Then, for all
e′ ∈ Ec, −σ

(v1(e′))
b σ

(v2(e′))
b is in the stabilizer of

⊗
e∈E(L) |φ〉e.

Therefore, the product of all these operators,

OCc
= ±

⎛
⎝⊗

μ

⊗
e∈Eμ

σ (u(e))
aμ

σ (v(e))
aμ

⎞
⎠
⎛
⎝⊗

e′∈Ec

σ
(v1(e′))
b σ

(v2(e′))
b

⎞
⎠ ,

(33)

is also in the stabilizer of
⊗

e∈E(L) |φ〉e.
We now show that OCc

commutes with the local POVMs and
is therefore also in the stabilizer of |	(A)〉. First, consider the
central domain Cc. The operator OCc

acts nontrivially on every
qubit in Cc, OCc

|l 
= Il for all qubits l ∈ Cc. Furthermore, for
all qubits l ∈ Cc, OCc

|l 
= σ (l)
ac

. Namely, if l ∈ Cc is connected
by an edge e ∈ Eμ to Cμ, for some μ, then OCc

|l = σ (l)
aμ


= σ (l)
ac

(for all μ, aμ 
= ac by construction of G(A). Or, if l ∈ Cc is the
end point of an internal edge e′ ∈ Ec, then OCc

|l = σ
(l)
b 
= σ (l)

ac

(ac 
= b by above choice). Therefore, for any i,j ∈ Cc, OCc

anticommutes with σ (i)
ac

and σ
(j )
ac

and, thus, commutes with all

σ (i)
ac

σ
(j )
ac

. Thus, OCc
commutes with the local POVMs Eq. (32)

on all v ∈ Cc.
Second, consider the neighboring domains Cμ. OCc

∣∣Cμ
=⊗

j σ
(j )
aμ

by construction. OC0 thus commutes with the local
POVMs Fv,aμ

for all v ∈ Cμ and for all μ.
Therefore, OCc

is in the stabilizer of |	(A)〉. Therefore,
OCc

is an encoded operator with respect to the code in
Table II, and we need to figure out which one. (1) Central
vertex Cc: OCc

|Cc
is an encoded operator on Cc, OCc

|Cc
∈

{±I , ± X, ± Y , ± Z}. Since OCc
|l 
= σ (l)

ac
for any l ∈ Cc, by

Table II, OCc
|Cc


= ±I , ± Z. Thus, OCc
|Cc

∈ {±X, ± Y }. (2)
Neighboring vertices Cμ: By Table II, σ (l)

aμ
= ±Z, for any

l ∈ Cμ. Thus, OCc
|Cμ

= ±Z
|Eμ|

. Now observe that Z2 = I

and that this justifies the above prescription in constructing
the graph G(A). Using the adjacency matrix AG(A), we have

|Eμ|mod2 = [AG(A)]c,μ and, hence, OCc
|Cμ

= ±Z
[AG(A)]c,μ .

Thus, finally, for all Cc ∈ V (G(A)),

OCc
∈

⎧⎨
⎩±RCc

⊗
Cμ∈V (G(A))

Z
[AG(A)]c,μ
Cμ

, with R = X,Y

⎫⎬
⎭ . (34)

This is, up to conjugation by one of the local encoded
gates I Cc

,ZCc
, exp(±iπ/4 ZCc

), a stabilizer generator for the
encoded graph state |G(A)〉. The code stabilizers in Table II
and the stabilizer operators in Eq. (34) together define the state
|	(A)〉 uniquely. |	(A)〉 is, up to the action of local encoded
phase gates, an encoded graph state |G(A)〉.

Step 3: Decoding of the code. We show that any domain
C ∈ V (G(A)) can be reduced to a single elementary site w ∈
V (L) by local measurement on all other sites v ∈ C, v 
= w.
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For any such v, choose the measurement basisBa , a ∈ {x,y,z},
as follows:

Bx = {(| +++〉 ± | −−−〉)/
√

2},
By = {(|i,i,i〉 ± | − i, − i, − i〉)/

√
2}, (35)

Bz = {(|000〉 ± |111〉)/
√

2}.
These measurements map the symmetric subspace of the three-
qubit states into itself and they can, therefore, be performed
on the physical spin-3/2 systems.

Denote by SC and SC\v the code stabilizer on the domain
C ∈ V (G(A)) and on the reduced domain C\v, respectively.
Using standard stabilizer techniques [38], it can be shown
that the measurement Eq. (35) has the following effect on the
encoding:

SC −→ SC\v, XC −→ ±XC\v, ZC −→ ZC\v. (36)

The measurement (35) thus removes from C by one lat-
tice site v ∈ V (L). We repeat the procedure until only
one site, w, remains in C, for each C ∈ V (G(A)). In
this way, SC −→ S{w}, XC −→ ±X{w}, ZC −→ Z{w}. Thus,
|	(A)〉 −→ U loc|G(A)〉 =: |G(A)〉, where Uloc is a local
unitary, and the encoding in Table II has now shrunk to one
site of L per encoded qubit, i.e., to three auxiliary qubits.

To complete the computation, the remaining encoded qubits
are measured individually. Again, the measurement of an
encoded qubit on a site w ∈ L is an operation on the symmetric
subspace of three auxiliary qubits at w and thus can be realized
as a measurement on the equivalent physical spin-3/2. �

V. RANDOM GRAPH STATES, PERCOLATION, AND 2D
CLUSTER STATES

Whether or not typical graph states |G(A)〉 are universal
resources hinges solely on the connectivity properties of G(A),
and is, thus, a percolation problem [40]. We test whether, for
typical graphs G(A),

(1) The size of the largest domain scales at most logarith-
mically with the total number of sites |V (L)|.

(2) Let S ⊂ L be a rectangle of size l × 2l (2l × l). Then,
a path through G|S from the left to the right (top to bottom)
exists with probability approaching 1 in the limit of large L.

Note that Condition C1 is obeyed whenever the domains
are microscopic, i.e., their size distribution is independent of
|L| in the limit of large L. Then, the size of the largest domain
scales logarithmically in |L| [40]. Condition C2 ensures that
the system is in the percolating phase.

Together with planarity, which holds for all graphs G(A)
by construction, the conditions C1 and C2 are sufficient
for the reduction of the random graph state to a standard
universal cluster state. The proof given below extends a similar
result already established for site percolation on a square
lattice [41]. The physical intuition comes from percolation
theory. In the percolating (or supercritical) phase, the spanning
cluster contains a subgraph which is topologically equivalent
to a coarse-grained two-dimensional lattice structure. This
subgraph can be carved out and subsequently cleaned off all
imperfections by local Pauli measurements, leading to a perfect
two-dimensional lattice.

A. Reduction of |G(A)〉 to a 2D cluster state above the
percolation threshold

We define the distance distL(v,w) between two vertices
v,w ∈ V (L) as the minimum number of edges on a path
between u and v and consider two further properties of graphs
G(A) as follows:

(1) G(A) can be embedded in L such that the maximum
distance between the end points of an edge in E(G) scales at
most logarithmically in |L|,

(2) Let S ⊂ L be a rectangle of size l × 5l (5l × l). Then,
a path through G|S from the left to the right (top to bottom)
exists with probability approaching 1 in the limit of large L.

Lemma 1. G(A) is planar for all POVM outcomes A.
Property C1 implies property C1′, and property C2 implies
property C2 ′.

Proof of Lemma 1. Planarity: G(A) is obtained from the
honeycomb lattice L, which is planar, by the graph rules R1
and R2. They only perform edge deletion and edge contraction,
which preserve the planarity of L. G(A) is, thus, planar for
all A.

Property C1′: For any domain d ⊂ V (L), place the
corresponding vertex v(d) ∈ V (G(A)) inside d such that
the distance r(d) := maxw∈d distL(w,v) is minimized. Then,
r(d) � |d|/2. Now, consider two vertices v(d1),v(d2) ∈ V (G)
connected by an edge e ∈ E(G). Then, the domains d1, d2

are connected by a single edge in E(L). Thus, for any pair
(v(d1),v(d2)) of vertices in G connected by an edge in E(G),
distL(v(d1),v(d2)) � (|d1| + |d2|)/2 + 1. By property C1, this
length scales at most logarithmically in |L|.

Property C2′: See Fig. 6(a).
Lemma 2. Consider a planar graph G(AL) embedded into

the lattice L of size  × , satisfying the properties C1′ and
C2 ′. The graph state |G(AL)〉 then can be converted by local
measurements to a two-dimensional cluster state of size ′ ×
′, with ′ ∼ / log .

Both lemmata combined give the desired result as follows:
Theorem 2. Consider an AKLT state on a honeycomb lattice

L converted into a random graph state |G(A)〉 by the POVM
(30). If for typical POVM outcomesA the corresponding graph
G(A) satisfies the conditions C1 and C2, then the AKLT state is

A C

B(b)

(a)
etc

(c)

JL
RJ

FIG. 6. (Color online) (a) Constructing a rectangle with a travers-
ing path of aspect ratio 1:5, from such rectangles with aspect ratio 1:2,
2:1. (b) Overlapping rectangles of size L × 5L, 5L × L. The union
of their traversing paths yields the net P . (c) Pair of nonseparated
junctions.
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a universal resource for MBQC. Furthermore, the computation
requires at most a polylogarithmic overhead compared to
cluster states.

Remark: The polylog bound to the overhead comes from
bounding the average domain size by the maximum domain
size, for technical reasons. The true overhead is expected to be
constant.

That the conditions C1 and C2 are obeyed in the typical
case remains to be demonstrated. We show this numerically,
as reported in the next section.

Proof of Lemma 2: Main tool. We show that a graph state
|G〉 satisfying the assumptions of Lemma 2 can be reduced
to the cluster state on a two-dimensional square grid by local
Pauli measurement on a subset of its qubits. The 2D cluster
state is already known to be universal [8]. Specifically, we use
the following rules [39] for the manipulation of graph states
(color online),

=Z
, (37a)

=Y
, (37b)

X X = . (37c)

Rule (37a): The effect of a σz measurement at vertex a on
the interaction graph is to remove a and all edges ending in a.

Rule (37b): The effect of a σy measurement at vertex a on
the interaction graph is to invert all edges in the neighborhood
N (a) of a and to remove a and all edges adjacent to a.

Rule (37c): Consider three qubits on a line, where the
middle qubit has exactly two neighbors. When the left and the
middle qubit are measured in the σx basis, the interaction graph
changes as follows: The right vertex inherits the neighbors of
the left vertex. The left and the middle vertex plus all edges
adjacent to them are deleted.

Proof of Lemma 2: Outline. We consider a graph G with
properties C1′, C2′. We impose a pattern of regions A, B, C, ...
of rectangular shape and size l × 5l and 5l × l, for sufficiently
large l, on the plane into which G is embedded; see Fig. 6(b).
Due to the percolation property, G has a net-shaped subgraph
P , shown in Fig. 7(a). In the first step of the reduction all qubits
in V (G)\V (P) are measured individually in the σz basis. The
graph thereby created is close to the one displayed in Fig. 7(b).
However, it may have additional edges that cannot be removed
by vertex deletion (37a) alone. Such edges are removed by a
combination of the graph rules (37a) and (37b). Then, in two
further steps, the graph state of Fig. 7(b) is converted to the
2D cluster state shown in Fig. 7(d).

Step 1. Conversion of the graph G to the graph of Fig. 7(b)
by local operations. First, we show that the net P of paths
shown in Fig. 7(a) exists. Consider the overlapping rectangles
A and B in Fig. 6(b). By Property C2′, A has a path PA

running from top to bottom, and B a path PB crossing from
left to right. Since G is planar, PA and PB must intersect in at
least one vertex. The netP is defined to be the union of all such

α

β

γ

δ
A

B

PA
Pα

Pβ

α γ

β δ

(a) (b)

(c) (d)

α

β

γ

δ

α

β

γ

δ

FIG. 7. (Color online) Transforming |G(A)〉 into a 2D cluster
state. (a) Macroscopic view: Regions α, β, A, etc., imposed on the
graph G(A). (b) Graph with three-valent junctions. (c) Decorated 2D
grid. (d) 2D grid for the cluster state.

traversing paths (one per rectangle), with all ends removed that
do not affect connectedness. P is shown in Fig. 7(a).

Now, G is converted to G|V (P), by deleting all vertices
from G which are not in V (P). Physically, the corresponding
graph state |G|V (P)〉 is obtained by measuring the qubits at all
vertices v ∈ V (G)\V (P) in the eigenbasis of σz, cf. Eq. (37a).
After that, ideally, all junctions of paths in G|V (P) should be T
shaped, as in the graph of Fig. 7(b). However, in general, they
will not be. The quintessential (but not only) obstruction is

Note that no further edges can be removed by vertex deletion
(corresponding to σz measurements) without disconnecting the
junction. Nonetheless, this obstruction is easily dealt with. The
above ring junction is converted into a T junction by a single
measurement in the σy basis (color online),

=~Y

(38)

However, we have to show that all possible obstructions to T
junctions can be removed.

We begin with the wires, running from one junction JL ∈
V (G|V (P)) to another junction JR ∈ V (G|V (P)). They also have
obstructions, for example,

JL JR

The first goal is to remove all obstructions within each wire.
We require that for a given wire, each belonging vertex, except
JL and JR , has a unique neighbor to the right and a unique
neighbor to the left in the wire, to which it is connected by an
edge. JL (JR) only has a unique right but no left (a unique left
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but no right) neighbor in the wire. The vertices are allowed to
have edges with vertices in other wires. Those will be removed
later.

Note that the vertices in the wire are left-right ordered,
by order of appearance in the corresponding percolation path.
Now, the obstructions are removed from any given wire by
the following procedure. Starting with v = JL, take a vertex v

and identify its rightmost neighbor in the wire, w. Delete all
vertices between v and w. Now set v := w and repeat until
w = JR .

In this way, each vertex in the wire remains with a single
right neighbor in the wire. Therefore, the number of edges
within the wire equals the number of vertices minus 1.
Therefore, each vertex in the wire also has a unique left
neighbor.

At this stage we remain with the obstructions at junctions.
First we show that we can treat the junctions individually by
choosing a sufficiently large length scale l for the size l × 5l-
(5l × l-) rectangles. Two neighboring junctions JL, JR have a
distance of at least l; cf. Fig. 6(b). They are separated if the
configuration of edges shown in Fig. 6(c) never occurs. It does
not occur if l > 2|e|max, where |e|max is the maximum distance
of an edge in E(G(A)). With C1′ it thus suffices to choose

l ∼ ln. (39)

Now we discuss an individual junction J . By construction
it joins three wires, say, WL, WC , and WR . The obstructions
are three sets of edges, ELR , ELC , and ECR . They connect
vertices in WL with vertices WR , WL and WC , and WC and
WR , respectively. By the choice Eq. (39) for l, the obstructions
at different junctions are well separated from each other, and,
thus, we can treat them individually.

First, we remove the obstructions ELC and ECR by the
following procedure. We approach the junction at J on the wire
WC . Denote by v the first vertex in WC which is the end point
of an edge e ∈ ELC ∪ ECR . By rule (37a), delete all vertices
in WC between v and J , excluding v and J . Then there arise
three cases. (1) v is connected to a single vertex in WL ∪ WR .
(2) v is connected to exactly two vertices w1,w2 ∈ WL ∪ WR ,
and w1, w2 are neighbors in WL ∪ WR . (3) v is connected to
exactly two vertices w1,w2 ∈ WL ∪ WR , and w1,w2 are not
neighbors in WL ∪ WR; or v is connected to more than two
vertices in WL ∪ WR . Graphically, the cases look as follows
(the obstructing edges ELR are not relevant in the present
substep and are not shown),

v

(1)

vv

(3)(2)

WL

WC

WR WRWR WLWL

WCWC

w 1w 2w

Case (1). The vertex w is taken as the new junction center
J , and the edge (v,w) is included into WC . Thereby, the
obstructing edge sets ELC and ECR are removed. Case (2):
The qubit on vertex v is measured in the σy basis; cf. Eq. (38).
Thereby, case (2) is reduced to case (1). Case (3): Denote the
leftmost (rightmost) neighbor of v in WL ∪ WR by wL (wR).
All vertices in WL ∪ WR between wL and wR are deleted, by

σz measurement on the corresponding qubits. Thereby, case
(3) is reduced to case (1).

In the above procedure, the center J of the junction may
have shifted within WL ∪ WR . Consequently, WL (to the left
of J ), WR (to the right of J ), and ELR are modified. Due to
the shift in the location of J , edges that were in ELR may
have become obstructing edges internal to WL or to WR . They
are removed by rerunning the previous procedure for removing
obstructing edges internal to the wires. There are no new edges
in ELR .

By the above procedure, we have created a junction of three
wires, WL, WC , and WR , which are free of all obstructions
except for the set ELR . These edges are now removed by
approaching the new junction center J from the wire WL and
repeating the previous procedure.

Step 2. Creating the decorated lattice graph of Fig. 7(c).
Consider a ring-shaped segment of the graph in Fig. 7(b), with
the four belonging T junctions α, β, γ , and δ. The qubits on
all vertices on the path between α and β are measured in the
σz basis. The corresponding vertices are thereby removed, cf.
Eq. (37a). Regarding the path between α and δ, we require that
α and β are not neighbors. This can always be arranged by
starting with a sufficiently large scale l for the l × 5l rectangles.
If the the number of vertices that lie on the path between α and
δ is even (but > 0), then the qubit on the vertex next to α is
measured in the σy basis. In this way, the number of vertices
between α and δ becomes odd, cf. Eq. (37b). Now α and the
vertex next to it are measured in the σx basis. By Eq. (37c),
α moves two vertices closer to δ. This procedure is repeated
until α and β are merged into a single vertex α′. Then, in an
analogous manner, α′ is merged with γ , and with β. Thereby,
the ring of four T junctions is converted into a single vertex of
degree 4.

Step 3. Creating the square lattice graph of Fig. 7(d). By
the same method as in Step 2, the line segments between
the vertices of degree 4 are contracted. This creates a two-
dimensional cluster state on a square lattice, which is known
to be a universal resource for measurement-based quantum
computation [8]. Since only local measurements were used in
the reduction, the original graph state |G〉 is universal as well.

Overhead. The bottleneck of the construction is to guaran-
tee that all junctions can be treated individually, which requires
L ∼ log , cf. Eq. (39). As displayed in Fig. 6(b), a qubit in
the created planar cluster state claims an area of size 8l × 8l on
the original honeycomb lattice L, and, thus, ′ ∼ / log ,
as claimed. �

Our proof thus generalizes the results in Ref. [41] to random
graphs. This extends the set of cluster-type universal states
to more general 2D random graph states and beyond regular
lattices [11].

VI. MONTE CARLO SIMULATIONS

We give the recipe for performing Monte Carlo simulations
and present some results.

(1) First, we randomly assign every site on the honeycomb
lattice to be x, y, or z type with equal probability.

(2) Second, we use the Metropolis method to sample
typical configurations. For each site we attempt to flip the type
to one of the other two with equal probability. Accept the flip
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with a probability paccept = min{1,2|V ′|−|E ′|−|V |+|E |}, where |V |
and |E | denote the number of domains and interdomain edges
(before the modulo-2 operation on interdomain edges; see
Fig. 2 of main text), respectively, before the flip, and, similarly,
|V ′| and |E ′| for the flipped configuration. The counting of
|V | and |E |, etc., is done via a generalized Hoshen-Kopelman
algorithm [42]. For the proof of the probability ratio; see
Sec. VI A.

(3) After many flipping events, we measure the properties
regarding the graph structure for the domains and study their
percolation properties on deleting edges. For the percolation,
we cut open the lattice and investigate the percolation threshold
for the typical random graphs from the Metropolis sampling.

A. Evaluation of probability ratio

In this section, we shall explain the transition probability
ratio: paccept = min{1,2|V ′|−|E ′|−|V |+|E |}, which arises from the
probability for POVM outcomes {av} being p({av} ∼ 2|V |−|E |,
where |V | and |E | denote the number of domains and
interdomain edges (before the modulo-2 operation). The proof
is very similar to that in 1D. For convenience, we shall use the
spin-3/2 representation of the AKLT state. The local mapping
from three virtual qubits to one spin-3/2 is

P̂v = |1〉〈000| + |2〉〈111| + |3〉〈W | + |4〉〈W |, (40)

where we have simplified the notation for the spin-3/2 basis
states: |1〉 ≡ |3/2,3/2〉, |2〉 ≡ |3/2, − 3/2〉, |3〉 ≡ |3/2,1/2〉,
and |4〉 ≡ |3/2, − 1/2〉. Moreover, |000〉, |111〉, |W 〉, and |W 〉
constitute the basis states for the symmetric subspace of three
spin-1/2 particles. The AKLT state can then be expressed as

|ψ〉AKLT =
⊗

v

P̂v

∏
e=(u,v)∈E

|φ〉e, (41)

where |φ〉e is the singlet state (|01〉 − |10〉)ui ,vj
for the edge

e = (u,v) and i,j specify the virtual qubit in the respective
vertex.

The POVM that reduces the spin-3/2 AKLT to a spin-1/2
graph state consists of elements Eμ = F †

μFμ such that 1 =
Ex + Ey + Ez, with

Fz = F †
z ≡

√
2

3
(|1〉〈1| + |2〉〈2|) = 1√

6

(
S2

z − 1

4

)
, (42)

Fx = F †
x ≡

√
2

3
(|a〉〈a| + |b〉〈b|) = 1√

6

(
S2

x − 1

4

)
, (43)

Fy = F †
y ≡

√
2

3
(|α〉〈α| + |β〉〈β|) = 1√

6

(
S2

y − 1

4

)
, (44)

where we have also expressed F ’s in terms of the correspond-
ing spin operators. The other four states other than |1〉 and |2〉
are

|a〉 ≡ |Sx = 3/2〉 = 1√
8

(|1〉 + |2〉 +
√

3|3〉 +
√

3|4〉), (45)

|b〉 ≡ |Sx =−3/2〉 = 1√
8

(|1〉 − |2〉 −
√

3|3〉 +
√

3|4〉), (46)

|α〉 ≡ |Sy = 3/2〉 = 1√
8

(|1〉 − i|2〉 + i
√

3|3〉 −
√

3|4〉),
(47)

|β〉 ≡ |Sy =−3/2〉 = 1√
8

(|1〉 + i|2〉 − i
√

3|3〉 −
√

3|4〉).
(48)

They correspond to the four virtual three-spin-1/2 states | +
++〉,| −−−〉,| i i i〉, and |−i,−i,−i〉.

While the outcome of POVM constructed above at each
site is random (x, y, or z), outcomes at different sites may be
correlated. For a particular set of outcomes {av} at sites {v}, the
resultant state is transformed to the following un-normalized
state:

|ψ ′〉 =
⊗

v

Fv,av
|ψ〉AKLT, (49)

with the probability being

p{av} = 〈ψ ′|ψ ′〉/〈ψ |ψ〉AKLT. (50)

As F ’s are proportional to projectors, in evaluating the relative
probability for two sets of outcome {av} and {bv}, one has

p{av}/p{bv} = 〈ψ |
⊗

v

Fv,av
|ψ〉AKLT

/〈ψ |
⊗

v

Fv,bv
|ψ〉AKLT,

(51)
where we have used F 2

v,a ∼ Fv,a . In order to evaluate the
probability ratio for two different sets of configuration, we,
first, note that

FxP̂ ∼ |a〉〈+++|+|b〉〈−−−|, (52)

FyP̂ ∼ |α〉〈i i i|+|β〉〈−i−i−i|, (53)

FzP̂ ∼ |1〉〈000| + |2〉〈111|. (54)

The spin-3/2 state is transformed by
⊗

v Fv,av
to an effective

spin-1/2 one, with the two levels being labeled by (a,b), (α,β),
or (1,2), depending on which F is applied. The probability
p{av} is essentially obtained by summing the square norm
of the coefficients for all possible spin-1/2 constituent basis
states (e.g., |a b + 0 i . . . 〉 is a basis state). First, we need to
know how many different constituent states, and the number
is related to how many effective spin-1/2 particles we have.
For the sites that have same type of outcome (x, y, or z), they
basically form a superposition of two Neél-like states, thereby
corresponding to an effective spin-1/2 particle. This can be
seen from the valence-bond picture that, e.g., for r,s ∈ {0,1}
we have 〈rs|01 − 10〉 = ±δr,1−s . On the other hand, for
r ∈ {0,1} and s ∈ {+,−}, 〈rs|01 − 10〉 = ±1/

√
2, which is

1/
√

2 smaller than if r and s are the indices in the same basis.
This means that all four combinations {0+,0−,1+,1−} occur
with equal amplitude up to a phase. (Similar consideration
applies to other combinations of bases.) Therefore, the number
of effective spin-1/2 particles is given by the number of
domains, which we label by |V |. Notice that we have assumed
that any domain does not contain a cycle with odd number
of original sites, as no Neél state can be supported on such
a cycle (or loop). Configurations with domains that contain a
cycle with odd number need to be removed. Fortunately, as
the honeycomb lattice is bipartite, any cycle must therefore
contain even number of sites and we do not to deal with the
above complication.

What about the amplitude for each spin configuration?
Furthermore, what is the probability of obtaining a particular
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FIG. 8. (Color online) Average vertex (or domain) number,
average edge number, and average Betti number in the typical random
graphs original lattice site vs. L. The total number of sites is N = L2.
This shows the number of domains, the number of interdomain Ising
interaction, and the number of independent loops in the resultant
graph all scale with the system size of the original honeycomb lattice.

set of outcome {av}? We have seen that for each interdomain
edge there is a contribution to a factor of 1/

√
2 in the amplitude

(as the end sites of the edge correspond to different types).
Thus, the amplitude for each spin configuration gives an
overall value (omitting the phase factor) of 2−|E |/2 and, hence,
a probability weight 2−|E |, where |E | counts the number of
interdomain edges. As there are 2|V | such configurations,
we have the norm square of the resultant spin-1/2 state
being proportional to p ∼ 2|V |−|E |. For convenience, we have
assume the lattice is periodic, but the argument holds for open
boundary condition in which the spin-3/2’s at the boundary
are either (1) suitably linked by to one another, preserving the
trivalence or (2) terminated by spin-1/2’s. In the appendices,
we have provided an alternative derivation of the probability
expression.
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FIG. 9. (Color online) Average domain size (i.e., number of
original sites in a domain), average width of domain size distribution,
and average degree of a vertex in the typical random graphs vs. L,
where L2 is the total number of sites in the honeycomb lattice. For
better discernibility of the two lower sets of data, we suppress the error
bars for one of them. This set of data was first shown in Ref. [34],
and we have reproduced it here for the sake of completeness.

B. Discussions of simulation results

We have analyzed lattices of size up to 200 × 200 sites.
As shown in Fig. 8, the size dependence of average vertex
number, average edge number, and average Betti number
B [43] of the random graphs formed by domains relative to
the original lattice size behaves as follows: |V̄ | = 0.495(2)L2,
|Ē| = 0.872(4)L2, and B̄ = 0.377(2)L2, where L is related
to the total number of sites in the original honeycomb lattice
N = L × L. This shows that the typical random graph of the
graph state retains macroscopic number of vertices, edges,
and cycles, giving strong evidence that the state is a universal
resource. Figure 9 shows the average degree of a vertex vs.
inverse system length 1/L for the random graphs, as well as
the average numbers of the original sites contained in a typical
domain. The average vertex degree extrapolates to d̄ ≈ 3.52(1)
for the infinite system. This compares to 4 for the square lattice
and 3 for the honeycomb lattice.
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FIG. 10. (Color online) Percolation study of the graph formed
by the domains: probability of a spanning cluster pcluster vs. the
probability to delete a vertex (a) or an edge (b) pdelete. The threshold
for destroying the spanning cluster is around pdelete ≈ 0.33 in deleting
vertices and pdelete ≈ 0.43 in deleting edges. This shows that the
graph without deleting any vertex or edge is deep in the percolated
(i.e., connected) phase. We note that the result of site percolation is
reproduced from Ref. [34], and the additional bond percolation result
presented here is consistent with the picture that the typical random
graphs lie somewhat between the honeycomb and the square lattice.
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In order to show the stability of the random graph, we
investigate how robust it is on, e.g., deleting vertices (or
edges) probabilistically, i.e., performing the site (or bond)
percolation simulations. As shown in Fig. 10(a), it requires the
probability of deleting vertices to be as high pdelete = 0.33(1)
[i.e., percolation threshold pc = 0.67(1)] in order to destroy
the spanning property of the graph. This lies between the site
percolation thresholds ≈0.592 of the square lattice and ≈0.697
of the honeycomb lattice. For bond percolation as shown in
Fig. 10(b), it takes a probability of pdelete = 0.43(1) [i.e.,
percolation threshold pc = 0.57(1)] to destroy the spanning
property of the graph. Again, this threshold lies between
that of the square lattice (1/2) and that of the honeycomb
lattice (≈0.652). This shows that there exists many paths
(proportional to the system’s linear size) on the random graphs
that can be used to simulate one-qubit unitary gates on as many
logical qubits and entangling operations among them. We
remark that percolation argument was previously employed by
Kieling, Rudolph, and Eisert in establishing the universality
of using nondeterministic gates to construct a universal cluster
state [44].

Let us also examine the two conditions listed in Sec. V A.
Condition C1. For all POVM outcomes sampled from, the

size of the largest domain was never macroscopic and it can
at best be logarithmic in the original system size; see Fig. 11.
The average number of sites v ∈ V (L) contained in a typical
domain, when extrapolated to the infinite system, is 2.02(1);
see Fig. 9. Our numerical simulations thus show that condition
C1 holds.

Condition C2. For all of the POVM outcomes sampled, a
horizontal and a vertical traversing path through the resulting
graphs G(A) always existed (without deleting any vertex or
edge). Our numerical simulations show that our random graph
are deep in the supercritical phase and, thus, condition C2
holds.

In addition, a necessary condition for the computational
universality of the graph states |G(A)〉 is that typical graphs
G(A) are not close to trees, because MBQC on treelike graphs
can be efficiently classically simulated [45]. For typical graphs
G(A), we find that the Betti number (which is zero for trees)
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FIG. 11. (Color online) The largest domain size in the typical
graphs vs. L, with N = L2 being the total number of sites. The fitted
curve to the largest domain size is 3.337 ln(N ) − 5.566. The result is
reproduced from Ref. [34].

is proportional to the size of the initial honeycomb graph, with
B̄ = 0.377(2)N .

Robustness. We now quantify how deep typical graphs
G(A) are in the connected phase of the percolation transition.
A first measure is the average vertex degree. A heuristic
argument based on a branching process suggests that a graph
has a macroscopic connected component whenever the average
vertex degree is d̄ > 2. This criterion is exact for random
graphs of uniform degree [40]. It also holds surprisingly well
for lattice graphs [46], which are the least random. In our
case, the typical graphs G(A) have an average degree of
3.52, suggesting that the system is deep in the connected
phase, which is confirmed by the percolation simulations.
The existence of finite percolation thresholds (for both site
and bond percolation) discussed earlier further supports the
robustness of the connectedness.

VII. CONCLUDING REMARKS

We investigated the measurement-based quantum compu-
tation on the AKLT states. First we provided an alternative
proof that the 1D spin-1 AKLT state can be used to simulate
arbitrary one-qubit unitary gates. We extended the same
formalism and demonstrated that the spin-3/2 AKLT state on
a two-dimensional honeycomb lattice is a universal resource
for measurement-based quantum computation by showing
that a 2D cluster state can be distilled by local operations.
Along the way, we connected the quantum computational
universality of 2D random graph states to their percolation
property and showed those 2D graph states whose graphs are
in the supercritical phase are indeed universal resources for
MBQC.

The key ingredient that has enabled our proof of compu-
tational universality for the (spin-3/2) 2D AKLT state on the
honeycomb lattice is the generalized measurement in Eq. (30).
How about the case of (spin-2) 2D AKLT state on the square
lattice or any other lattices beyond trivalence is universal
for MQBC. The AKLT spin-2 particle can be regarded as
four virtual qubits in the symmetric subspace. Hence, a naive
extension of the POVM prompts us to consider the following
operators:

F̃z = (|0⊗4〉〈0⊗4| + |1⊗4〉〈1⊗4|), (55a)

F̃x = (|+⊗4〉〈+⊗4| + |−⊗4〉〈−⊗4|), (55b)

F̃y = (|i⊗4〉〈i⊗4| + | −i⊗4〉〈−i⊗4|). (55c)

Unfortunately,
∑

α F̃ †F̃ is not proportional to the projection
onto the symmetric subspace. However, we can consider
additionally the four states |γk〉 (k = 1, . . . ,4) such that their
Bloch vectors point in the four diagonal directions of a
cube, i.e., (1,1,1)/

√
3, (−1,1,1)/

√
3, (−1,−1,1)/

√
3, and

(1,−1,1)/
√

3, respectively. Together with their corresponding
conjugate states |γ̄k〉 having opposite vectors, we have four
other sets of projections:

G̃k ≡ ∣∣γ ⊗4
k

〉〈
γ ⊗4

k

∣∣ + ∣∣γ̄ ⊗4
k

〉〈
γ̄ ⊗4

k

∣∣. (56)

032328-14



TWO-DIMENSIONAL AFFLECK-KENNEDY-LIEB-TASAKI . . . PHYSICAL REVIEW A 86, 032328 (2012)

It can be checked that

8

24

∑
α=x,y,z

F̃ †
αF̃α + 9

24

4∑
k=1

G̃
†
kG̃k = PS, (57)

where PS is the projection operator onto the symmetric
subspace of four qubits [23]. However, such a generalized
measurement would yield four additional pairs of states
{γk,γ̄k} which are not mutually unbiased to one another nor
to the eigenstates of the three Pauli operators. Due to this
complication, whether the 2D AKLT state on the square lattice
is universal for MQBC remains open.
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APPENDIX A: CALCULATION OF PROBABILITY OF A
PARTICULAR POVM OUTCOME USING

AROVAS-AUERBACH-HALDANE TECHNIQUES

In this appendix we provide an alternative formulation to
the calculation of POVM outcome probability. This formalism
has the potential of being applicable to a more general case.
We give only the important ingredients here.

Arovas, Auerbach, and Haldane (AAH) [47] show how
to represent arbitrary AKLT states as Boltzmann weights
for nearest-neighbor statistical mechanical models in the
same spatial dimension as the quantum problem and how to
represent calculations of equal time ground-state expectation
values classically. We are interested in two cases: the S = 1
one-dimensional case and the S = 3/2 honeycomb lattice case.

In both cases the operators of interest are proportional to
projection operators onto maximal |Sz|:

Fν ≡ (Sν)2/
√

2, (S = 1) (A1)

≡ [(Sν)2 − 1/4]/
√

6, (S = 3/2), (A2)

where ν = x, y, or z and, for convenience, we have rescaled
the prefactor in the definition of F ’s. For general spin S
the operators Sa are represented first in terms of Schwinger
bosons, a, a†, b, b†, then in terms of coordinates and derivatives
u, v, ∂u, ∂v acting on homogeneous polynomials of O(2S). The
operator (Sz)2 is

(Sz)2 = (1/4)(a†a − b†b)2 = (1/4)(∂uu − ∂vv)2

= (1/4)(∂2
uu2 + ∂vv

2 − 2∂u∂vuv − ∂uu − ∂vv).

(A3)

We now use the prescription of Arovas, Auerbach, and
Haldane:

〈ψ ′|∂k
u∂l

vu
k+j vl−j |ψ〉

=
[

k+l+1∏
m=2

(2S + m)

]
〈ψ ′|u∗kv∗luk+j vl−j |ψ〉 (A4)

for any states |ψ ′〉 and |ψ〉 in the spin S Hilbert space.
To prove Eq. (A4), note that a complete set of states for

the spin S Hilbert space is given by uS+mvS−m which are
eigenstates of Sz with eigenvalue m = −S, − S + 1, . . . S. To

prove Eq. (A4) for j = 0, we wish to prove∫
d2�u∗S+mv∗S−m∂k

u∂l
vu

k+S+mvl+S−m

=
[

k+l+1∏
r=2

(2S + r)

]∫
d2�|u|2(S+m+k)|v|2(S−m+l). (A5)

To prove this, we use the identity

Ip,q ≡
∫

d2�|u|2p|v|2q

= 2π (1/2)p+q

∫ 1

−1
dx(1 + x)p(1 − x)q

= 4πp!q!/(p + q + 1)! (A6)

Thus, the left-hand side (LHS) of Eq. (A5) may be written as
follows:

LHS = (S + m + k)!

(S + m)!

(S − m + l)!

(S − m)!
IS+m,S−m

= 4π
(S + m + k)!(S − m + l)!

(2S + 1)!

=
[

k+l+1∏
r=2

(2S + r)

]
IS+m+k,S−m+l , (A7)

which is the right-hand side. Furthermore, all off-diagonal
matrix elements vanish for both the left- and right-hand sides
of the identity in Eq. (A4) for j = 0. That follows since
ψ∗

mψm′ ∝ ei(m′−m)φ , where φ is the azimuthal angle for the
integration over the sphere. Neither inserting the operator
on the left-hand side of Eq. (A4) nor multiplying by the
function on the right-hand side changes this azimuthal angle
dependence, implying vanishing integrals. While it may appear
that this proof only holds for j = 0 in Eq. (A4) it actually
covers the case of general j . In general, Eq. (A5) gives the
〈ψm| . . . |ψm−j 〉 matrix elements of the identity in Eq. (A4),
which are the only nonzero matrix elements. Furthermore, the
identity immediately generalizes to an arbitrary product on
different lattice sites,

〈ψ ′|
∏

i

∂ki

ui
∂li
vi
u

ki+ji

i v
li−ji

i |ψ〉

=
[∏

i

ki+li+1∏
m=2

(2S + m)

]
〈ψ ′|

∏
i

|u∗ki

i v
∗li
i u

ki+ji

i v
li−ji

i |ψ〉,

(A8)

since we may simply extend the above argument to the basis
states

∏
i u

S+mi

i v
S−mi

i for which the matrix elements simply
factorize. Since we have proved this identity for a complete
set of states it follows for any states |ψ〉, |ψ ′〉 in the spin-S
Hilbert space, including the AKLT states.

Equation (A4) gives

(Sz)2 = (1/4)(2S + 2)(2S + 3)[|u|4 + |v|4 − 2|u|2|v|2]

− (1/4)(2S + 2)(|u|2 + |v|2)

= (1/4)(2S + 2)(2S + 3)[|u|2 − |v|2]2

− (1/2)(S + 1)(|u|2 + |v|2). (A9)

Using u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2, where θ and φ

are the polar and azimuthal angle on the unit sphere, this
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becomes

(Sz)2 = (1/4)(2S + 2)(2S + 3)(�z)2 − (1/2)(S + 1), (A10)

where �z = cos θ is the projection of the unit vector onto the
z axis. A simple explicit calculation similar to this one shows
that, for ν = x, y, or z,

(Sν)2 = (1/4)(2S + 2)(2S + 3)(�ν)2 − (1/2)(S + 1) (A11)

as expected by SO(3) symmetry. This is a somewhat surprising
formula in that the classical quantities are not positive
semidefinite. Note that this formula is valid independent of
the wave function. The projection operators thus become

Fν = [5(�ν)2 − 1]/
√

2, (S = 1) (A12)

=
√

3/8 [5(�ν)2 − 1], (S = 3/2). (A13)

Remarkably, the projection operators are the same for S = 1
and 3/2 up to an unimportant normalization factor.

The AKLT state can be written, in Schwinger boson
notation, as

|ψ〉AKLT =
∏
〈i,j〉

(a†
i b

†
j − a

†
j b

†
i )|vacuum〉 (A14)

corresponding to

ψ(ui,vi) =
∏
〈i,j〉

(uivj − viuj ), (A15)

where the product is over all pairs of neighboring sites (i,j ).
The square of the wave function is

|ψ(ui,vi)|2 ∝
∏
〈i,j〉

[1 − �̂i · �̂j ]. (A16)

Actually, we need to be more precise about boundary condi-
tions here. These details will be discussed below. Using the
form of the AKLT state we wish to calculate

pa1a2...aN
≡NS

1

Z

n∏
i=1

∫
d�̂i

[
5
(
�

ai

i

)2 − 1
] ∏

〈j,k〉
[1 − �̂j · �̂j ],

(A17)

where Z is the same integral without the [5(�ai

i )2 − 1] factors
and NS = (1/2)n for S = 1 and (1/3)n for S = 3/2. Note
that the inserted operators are Fν/

√
2 for the S = 1 case and√

2/3Fν for the S = 3/2 case, normalized so the sum over ν

gives the identity operator, ensuring the proper normalization
of the probability distribution. In both cases we can evaluate
this by multiplying out

∏
〈j,k〉[1 − �̂j · �̂k].

Carrying out this we arrive at the same conclusion of the
probability expressions for 1D chain and 2D honeycomb cases
as before, as we show below.

APPENDIX B: S = 1, ONE DIMENSION

We, first, consider the 1D S = 1 case as a warm-up.

1. Open boundary conditions

Consider a chain of n spin-1’s on sites i = 1,2, . . . n with
two additional S = 1/2’s at sites 0 and n+1 to remove the

“dangling bonds.” The AKLT ground state then is

|ψ〉0 =
n∏

i=0

(a†
i b

†
i+1 − a

†
i+1b

†
i )|0〉. (B1)

Thus,

|ψ0|2 =
n∏

i=0

[1 − �̂i · �̂i+1]. (B2)

We only make projective measurements on the sites containing
spin-1’s, at 1,2, . . . n. In this case we may replace each factor
1 − �̂i · �̂j by 1 because all other terms in the expansion
contain a single power of one or more �̂i vector and, thus,
give zero after integrating over �̂i . Using

〈(�a)2〉 = (1/3)〈(�̂)2〉 = 1/3, 〈(5�a)2 − 1〉 = 2/3, (B3)

we obtain a constant,

P a1a2...an = (1/3)n, (B4)

independent of the ai’s.

2. Periodic boundary conditions

Now we consider n sites, all with spin-1’s and couple site n

to site 1. This is a useful warm-up for the 2D case because there
is now one closed loop, i.e., one other term in the expansion
can give a nonzero integral: (−1)n

∏n
i=1 �i · �i+1. Now we

need the integral,∫
d�̂[5(�a)2 − 1]�b�c. (B5)

Clearly, this vanishes unless b = c. Note that

〈(�z)4〉 = 〈cos4 θ〉 = (1/2)
∫ 1

−1
dxx4 = 1/5 (B6)

and

〈(�x)2(�y)2〉 =
∫ 2π

0

dφ

2π
cos2 φ sin2 φ

∫ 1

−1

dx

2
(1 − x2)2

= 1/15. (B7)

Thus, we obtain the remarkable identity

〈[5(�a)2 − 1]�b�c〉 = 2

3
δbcδab. (B8)

The integral vanishes unless a = b = c in which case it has
the same value as 〈(5�a)2 − 1〉. The product (−1)n

∏n
i=1 �̂i ·

�̂i+1 contains sums over n indices. However, for the integrals
to be nonzero all ai indices must equal each other. In this case,
the multiple integral has exactly the same value as when the
product is not present, giving

P a1a2...an = (1/3)n
[1 + (−1)nδa1a2δa2a3 . . . δana1 ]

1 + (−1)n(1/3)n−1
. (B9)

Here we have used the fact that the partition function also
obtains a contribution from (−1)n

∏n
i=1 �i · �i+1 giving the

second term in the denominator and the reason that it is
three times larger than 1/3n is because of three possibilities
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a = x,y,z or, more precisely,

(1/4π )n
∫ n∏

i=1

d2�i
��i · ��i+1 = (1/3)n−1, (B10)

where ��n+1 ≡ ��1. Thus, P a1a2...an is nearly constant again
except for the one case where a1 = a2 = . . . an it is twice as
big if n is even or zero if n is odd. This result agrees precisely
with that obtained by other methods in Sec. II E.

APPENDIX C: S = 3/2, TWO DIMENSIONS

1. Open boundary conditions

Consider an arbitrary finite segment of a honeycomb lattice,
consisting of n spins; it could have zigzag and armchair edges
or disordered ones, for example. Spins on the boundary will
generally be coupled to either two or three other spins: 2 for
a zigzag edge and 3 for an armchair edge, for example. In all
cases where a boundary spin is only coupled to two other spins,
couple it to a boundary S = 1/2 spin. Let the total number of
spins, including the S = 1/2 spins on the boundary be M .
Then the square of the AKLT ground state is

|ψ0|2 =
∏
〈i,j〉

[1 − �̂i · �̂j ]. (C1)

The product is over all nearest neighbors, as usual including
both S = 3/2 and S = 1/2 spins. We only do the POVM on
the S = 3/2 spins. Since each of the boundary S = 1/2 spins
couples to only one other (S = 3/2) spin, we may replace
[1 − �̂i · �̂j ] by 1 for each factor involving an S = 1/2 spin
in calculating P a1a2...an . Following the above reasoning, when
we take the 1 term in the expansion of

∏
〈i,j〉[1 − �̂i · �̂j ], we

get

P a1a2...an = 1

Z
(4π )M (1/3)N (2/3)N + · · · . (C2)

There will be many additional terms in this case, unlike the
D = 1 case. Each additional term must correspond to a set of
closed loops on the lattice, with zero or two lines entering each
of the S = 3/2 sites. These loops never involve the S = 1/2
boundary sites. These loops can never cross each other but we
can have loops inside loops. Such a contribution only exists
when all the ai’s for sites on a given loop have the same value.
Each such term makes an equal contribution to P a1a2...an . Thus,
we simply need to calculate the number of sets of closed loops
with equal ai’s for a given configuration a1,a2, . . . an.

To do this it is convenient to divide up all sites on the lattice
into domains such that ai has the same value for all sites in
a domain and all sites in a domain are the nearest-neighbor
of at least one other site in the domain. (Here sites refers
to the sites with S = 3/2 spins only.) The number of sites
in a domain can range from 1 to n, in principle, although
we expect that typical domains are microscopic. We draw a
line between all nearest neighbors in each domain. We may
identify a unique number of faces with each domain, Fi and a
total number of faces, F = ∑

i Fi with a given configuration.
A face, inside a domain, is an elementary hexagon which is
completely surrounded by six edges belonging to that domain.
Thus, it is impossible to move from the interior of a face to
its exterior (either inside the domain or not) without crossing

FIG. 12. (Color online) Illustration of loops. (a) A domain
consisting of eight vertices, eight edges, and one face. The numbers
indicate one possible order in which the domain could be grown.
When the first vertex is added, V = 1, E = F = 0. As vertices 2
to 7 are added both V and E increase by 1. When the eight vertex
is added, V and F increase by 1 and E increases by 2. (b) In this
domain, which contains F = 3 faces, two of them are selected, as
indicated by shading. The corresponding set of loops is a single
loop surrounding the two adjacent faces as indicated by heavy lines.
This domain contains V = 16 vertices and E = 18 edges, obeying
F = E − V + 1. (c) This is the same domain as in the previous figure
(b) but a different subset of faces is selected. Now the set of loops
consists of two loops as indicated by heavy lines.

an edge belonging to its domain. The total number of sets of
closed loops, NL, is then simply

NL = 2F . (C3)

This follows because there is a unique set of loops which
surrounds any subset of the faces. See Fig. 12.

The i th domain will also have a number of edges, Ei , and a
number of vertices, Vi . It can be seen that

Fi = Ei − Vi + 1. (C4)

This can be seen by induction, growing the domain site by
site, always adding new sites which are nearest neighbors of
at least one previous site. After drawing the first site, Vi = 1
and Ei = Fi = 0, so Eq. (C4) is obeyed. When we add the
next site, we increase both Ei and Vi by 1, without changing
Fi . This goes on for a while but we may eventually add a site
which is the nearest neighbor of two previous sites. At that
step, Vi increases by 1, Ei increases by 2, and Fi increases by
1 since we are then closing a loop, making a new face. Thus
Eq. (C4) remains true at each step as we grow the domain,
completing the proof.

Suppose we define a new, random lattice, by collapsing
each domain down to one vertex, with an arbitrary number
of edges, inherited from the original lattice, connecting the
various domains. Let V ′ by the number of vertices of this
random lattice and E′ be the number of edges. (We ignore the
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S = 1/2 boundary spins here.) Then

V ′ = n −
∑

i

(Vi − 1) (C5)

since Vi sites are reduced to 1 at the i th domain. Similarly, if
nE is the total number of edges connecting S = 3/2 spins in
the original honeycomb lattice, then

E′ = nE −
∑

Ei. (C6)

Thus,

P a1a2...an ∝ 2V ′−E′
(C7)

the same result obtained in Sec. VI A by another method.

2. Periodic boundary conditions

Now consider a honeycomb lattice of S = 3/2’s (no S =
1/2’s now) with periodic boundary conditions. This can be
done in such a way that every spin has three nearest neighbors
and we take the AKLT ground state. Similarly to the D = 1
case, there can now be additional sets of loops because we can
form loops that wrap around the torus but do not correspond
to faces; see Fig. 13. If a domain wraps around the torus one
way, but not the other, then the total number of sets of loops,
corresponding to the domain is

NLi = 2Fi+1. (C8)

To see this, choose an arbitrary “topological loop” within the
domain going around the torus which does not encircle any
faces. There are now two sets of loops corresponding to an
arbitrary subset of faces, not using this topological loop and
the arbitrary subsets of faces together with the topological
loop. The construction of the set of loops corresponding to
the topological loop plus subset of faces is constructed by
analogy with the above construction. In cases where none of
the faces share edges with the topological loop the set of loops
corresponds to the topological loop plus the loops around the
subset of faces. In cases where one or more faces shares an
edge with the topological loop, the topological loop is modified
to enclose each such face; see Fig. 13(b).

Finally, it is possible to have two topological loops in a
domain, going around the torus the two inequivalent ways;
see Fig. 13(c). (In this case, all other domains must be
topologically trivial.) We can grow the domain initially by
drawing these two topological loops without any faces. At this
stage there are three closed loops, going around the torus one
way or the other or using all edges in the domain to go around
both ways. Thus, the number of sets of loops is 4 at this stage.
After growing the entire domain we how have

NLi = 2Fi+2 (C9)

since each set of loops corresponds to a subset of faces,
possibly combined with one of these three topological loops.
In general, we may associate a winding number with each
domain Wi = 0, 1, or 2 with

NLi = 2Fi+Wi . (C10)

It can be seen that the number of vertices and edges in each
domain obeys, in general,

Fi + Wi = Ei − Vi + 1. (C11)

FIG. 13. (Color online) Illustration of loops in the case of the
periodic boundary condition. A honeycomb lattice with periodic
boundary conditions, drawn as a “brick wall” lattice for convenience.
(a) A topological loop is shown. The arrows indicate an edge in the
domain between vertices at the left- and right-hand sides of the lattice.
(b) The set of loops (one loop in this case) is shown for a domain
containing one topological loop and one face sharing on edge with the
topological loop, corresponding to the case in which the face and the
topological loop are chosen. (c) A domain containing two topological
loops, with W = 2. It can be seen that there are three possible loops,
corresponding to four sets of loops, and zero faces.

This follows by induction, as we grow the domain. At the step
when we complete the first topological loop we increase Ei by
2 but Vi by 1 and Fi by 0. Adding further faces respects

�Fi = �Ei − �Vi (C12)

as before. On the other hand, if we further grow a second
topological loop so the torus is encircled both directions, at
the step where it goes around the torus in the second direction
we again increase Ei by 2 but Vi by 1 and Fi by 0. Thus,
Eq. (C7) remains true also with periodic boundary conditions.
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