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Experimentally demonstrating reference-frame-independent violations of Bell inequalities
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We experimentally demonstrate, using qubits encoded in photon polarization, that two parties who share a
single reference direction and use locally orthogonal measurements will always violate a Bell inequality, up
to experimental deficiencies. This contrasts with the standard view of Bell inequalities, in which the parties
need to completely align their measurements. Furthermore, we experimentally demonstrate that as the reference
direction degrades the probability of the observers randomly choosing measurements that violate a Bell inequality
decreases gradually and smoothly to 39.7% ± 0.1% in the limiting case that the observers do not share a reference
direction. This result promises simplified distribution of entanglement between separated parties, with applications
in fundamental investigations of quantum physics and tasks such as quantum communication.
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Introduction. Shared entanglement between two or more
parties is an important resource in the development of tech-
nologies and protocols exploiting the properties of quantum
systems. The correlations between entangled systems may be
harnessed to implement quantum information and communi-
cation protocols [1], such as quantum teleportation [2,3] and
quantum key distribution (QKD) [4,5], and is also important
for exploring the fundamental properties of quantum physics.
Of particular note is Ekert’s QKD protocol [4], in which
two parties can only be confident that no eavesdroppers have
intercepted a shared key if they can violate a Bell inequality [6].
However, in order to maximally violate a Bell inequality, the
two parties must share a complete reference frame in order
to perfectly align their measurements relative to each other.
If they do not share a complete reference frame, infinite
classical communication is required to establish one, which
is experimentally infeasible [7,8].

There exist a number of challenges in employing finite
(necessarily imperfect) reference frames, including their fi-
delity, the operational cost of establishing them, and their
degradation if composed of quantum systems [9]. Information
encoded in relative degrees of freedom can be used to avoid
the need for a reference frame [10], but such schemes add
significant complexity in terms of encoding, measurement, and
noise suppression, so they are undesirable in many practical
situations.

Here, we demonstrate experimentally that two parties
can always violate a Bell inequality if they share a sin-
gle reference direction (direction of propagation), up to
experimental imperfections. We also investigate how the
probability of the observers randomly choosing measure-
ments that violate a Bell inequality decreases as the shared
reference direction degrades. This degradation of a shared
reference frame between two parties is of particular interest
for device-independent QKD (whose security is guaranteed
by the violation of a Bell inequality [11]) and communication
with slowly rotating satellites, where the orientation between
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reference frames can change over time [12]. The satellite
alignment task has previously motivated the investigation of
novel optical encodings such as transverse spatial modes with
orbital angular momentum (e.g., [13]). However, we do not
know of projects planning to implement this encoding in
actual space demonstrations in the near term. By contrast,
several of the leading projects working towards satellite-
based quantum communication are employing polarization
entanglement in their programs [14–16]. Fundamental tests of
quantum mechanics—both the theory itself and its relationship
to relativity—are planned for satellite implementation, with
some such experiments requiring links to Earth though optical
distribution of quantum entanglement [14,17], especially in
the polarization degree of freedom.

In our experiment, we consider the propagation of entangled
photons as a natural means of remotely sharing entanglement,
although we note that our method applies to reference
frames for any encoding. In many such scenarios, it is
natural to consider situations where two parties, Alice and
Bob, share a single reference direction but not a complete
reference frame. An example is where they share a single
reference polarization basis (such as horizontal/vertical)—set
by some shared anisotropy such as gravity or the known axis
of a polarization maintaining fiber—as they communicate over
a channel between two stations. A second example is that they
may share knowledge of the direction of propagation of the
light through a non-birefringent medium, but no knowledge
of the relative orientation of their apparatus about that axis, as
in the case of line-of-sight communication between satellites
which may be moving or rotating. While the unknown polar-
ization rotation can be determined and can be approximately
compensated in a specific experimental run, this is difficult
to accomplish over long distances. If this compensating step
can be eliminated, then it makes, for example, implementing
Ekert’s QKD protocol substantially easier [12].

As we use a polarization encoding of qubits, calibrating
the relative alignments of measurements at a single site is
straightforward. We use half-wave plates (HWPs) to switch
between measurement bases at each site and so need only
consider the case where the two measurements at each site
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are mutually unbiased, that is, correspond to perpendicular
directions on the Poincaré sphere. Each party chooses their
two measurements to be in the plane of the Poincaré sphere
whose normal vector corresponds, up to a sign, to their
approximation to the shared reference direction. If the parties
share the direction perfectly, then their approximation is
exact and so their measurements are coplanar in the Poincaré
sphere. It has recently been shown that, theoretically, these
measurements will always violate a Bell inequality [18]. Here
we investigate this protocol experimentally and violate a Bell
inequality 99.3% ± 0.3% of the time. However, if they do not
share a common direction (i.e., their local approximation to
a shared direction is a vector distributed uniformly over the
surface of a sphere), then they will violate a Bell inequality
41.3% of the time in the absence of experimental deficiencies
[19]. In our experiment, 39.7% ± 0.1% of cases lead to a
violation.

Theoretical background. In our experimental investigation,
we use the Clauser-Horne-Shimony-Holt (CHSH)-Bell in-
equality [20]. The CHSH inequality imposes an upper bound
on the correlation function between Alice and Bob’s measure-
ment outcomes when they measure all four combinations of
two pairs of observables on each system—one combination
per trial—over many trials on identically prepared bipartite
systems in any locally causal model. Specifically,

|〈SCHSH〉| = |〈XP + ZP + XQ − ZQ〉| � 2 (1)

in any locally causal theory, where X,Z ∈ {±1} are the result
of a pair of measurements made by Alice, and similarly for
P,Q ∈ {±1} for Bob. However, measurements on the maxi-
mally entangled two-qubit spin singlet state |�−〉 = (|0〉A ⊗
|1〉B − |1〉A ⊗ |0〉B)/

√
2 may violate this inequality. When

Alice chooses to measure from the maximally complementary
Pauli bases X̂ ≡ |0〉〈1| + |1〉〈0| and Ẑ ≡ |0〉〈0| − |1〉〈1|, and
Bob from the maximally complementary bases P̂ ≡ −(Ẑ +
X̂)/

√
2 and Q̂ ≡ (Ẑ − X̂)/

√
2, then the Bell-CHSH parameter

|〈ŜCHSH〉| = 2
√

2, providing a violation of the inequality by a
factor of

√
2. This is the maximal violation of the CHSH

inequality allowed by quantum mechanics [21].
Note, however, that if Alice and Bob used the above mea-

surements except Bob relabeled his measurement outcomes,
that is, measured in the bases P̂ ′ ≡ −P̂ and Q̂′ ≡ −Q̂ so
that the ±1 eigenstates are swapped, then the Bell-CHSH
parameter |〈ŜCHSH〉| = 0 is consistent with a locally causal
theory. Consequently, to identify a violation of Eq. (1), we need
to consider all such relabelings of measurement outcomes.
However, if Alice and Bob employ the same pair of maximally
complementary settings (e.g., X̂,Ẑ) then the CHSH inequality
is satisfied for any relabeling of measurement outcomes.
Consequently, Alice and Bob’s measurements need to be
aligned in particular ways in order for them to violate the
CHSH inequality.

In this paper we investigate the probability of violating
a CHSH inequality when the the parties do not share a
complete reference frame and so are unable to perform the
measurements required to obtain the maximal violation of the
CHSH inequality. To visualize the choices of measurements,
we use the mapping from observables Ô to unit vectors

	r(Ô) ∈ R3 given by

Ô = 	r(Ô) · 	σ , (2)

where 	σ = (X,Y,Z) is the vector of Pauli matrices. Alice and
Bob’s observables are chosen in their local coordinate systems,
that is, on two Poincaré spheres that are related by some
rotation. Alice and Bob share a reference frame if they know
the relation between their respective Poincaré spheres. We
assume that Alice chooses the measurements Ẑ and X̂ on her
Poincaré sphere, while Bob chooses the measurements P̂ and
Q̂ on his. In this work, the Pauli directions map to polarization
states as follows: horizontal (H) and vertical (V) polarizations
are the ±Z eigenstates; diagonal (D) and antidiagonal (A)
are the ±X eigenstates; and right- and left-hand circular
(R and L, respectively) are the ±Y eigenstates. We denote
polarizations representing the P̂ and Q̂ eigenstates as P ± and
Q±, respectively.

As the singlet state has no angular momentum in the
Schwinger representation (i.e., is the two-qubit j = 0 state), it
is invariant under joint rotations of Alice and Bob’s Poincaré
spheres. Therefore, we can hold Bob’s Poincaré sphere to be
fixed and assume that any evolution only induces a rotation of
Alice’s Poincaré sphere.

To describe the situation where the two observers share
a single reference direction, we consider (without loss of
generality) the example where they share exact knowledge of
direction of propagation in a non-birefringent medium. Thus,
they share knowledge of the plane of linear polarizations—and
therefore its normal, the ±Y Bloch direction—although they
have no knowledge of their relative orientation in the XZ

plane. In terms of the state transformation, we represent this
by a rotation RY (θ ) of an angle θ around the Y axis of the
Bloch sphere [22].

However, it may be the case that Alice and Bob do not
exactly share the transmission direction or that the R and L
polarization states are otherwise not perfectly invariant under
transmission. In this case, the overall evolution of Alice’s
Bloch sphere can be written as Ry(χ )Rz(φ)Ry(θ ). This can be
visualized as follows: First, rotate Alice’s H and V measure-
ments around the Y axis by an angle θ , as in Fig. 1. Then rotate
the Y axis to the vector n′ = (− sin φ cos χ, cos φ, sin φ sin χ ),
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FIG. 1. Alice and Bob’s Poincaré spheres when they perfectly
share the Y direction. Alice’s measurement bases are rotated from the
canonical H and V polarization measurements (relative to Bob’s
Poincaré sphere) by an angle θ to new measurement directions
denoted by primed (′) text.
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FIG. 2. Alice and Bob’s Poincaré spheres in the case where no
reference direction is perfectly shared. Alice’s new measurement
plane is defined by rotations about three separate axes. Sampling
across all three rotations allows for the nonlocal correlations shared
between Alice and Bob to be investigated as the single shared
reference direction degrades by angle φ.

as shown in Fig. 2. However, it can be shown that the
correlations between Alice and Bob’s measurements depend
only on the difference θ − χ ; therefore, we set χ = 0.

Experimental implementation. The experimental setup is
as follows (see Fig. 3). We generate polarization-entangled
photon pairs by spontaneous parametric down-conversion
(SPDC) in a type II periodically poled potassium titanyl
phosphate (PPKTP) [23,24]. The crystal is phase matched
at ∼12 ◦C to produce degenerate photon pairs at 820 nm
from a 410-nm continuous-wave <1 mW diode laser pump.
Measurements made using automated polarization analysis
optics and single photon counting modules in each output
arm of the source allows the two-qubit density matrix to be
reconstructed via quantum state tomography [25]. The same
measurement apparatus is used for the CHSH-style measure-

FIG. 3. (Color online) Experimental layout of the PPKTP SPDC
Sagnac source and measurement apparatus. The PPKTP crystal is
pumped bidirectionally in superposition, resulting in the maximally
entangled |�−〉 state being generated at the output ports of a
polarizing beam splitter. Quarter- and half-wave plates are used in
conjunction with Glan-Taylor prisms to measure the polarization state
of down-converted photons. Interference and colored glass filters are
used to block background light.

ments in this experiment. Typical operation of this source
produces ∼1500 s−1 states having fidelity 0.994 ± 0.001 with
the closest maximally entangled state [26]. The maximum
value of the CHSH parameter we obtain is 2.81 ± 0.01,
only slightly below the maximum value of 2

√
2 allowed by

quantum mechanics [21] and consistent with the CHSH value
of |〈SCHSH〉| ≈ 2.81 we expect to achieve, given the measured
state fidelity.

A key feature of this experiment is that we systematically
sample from the full range of possible relative measurement
directions [i.e., pairs (θ,φ)] rather than performing a random
sample. This is done by fixing φ = [0 : 10 : 90] [27] and then
calculating the CHSH parameter for each value of θ = [0 :
10 : 180]. Note that this method of sampling does not give a
uniform sampling over the surface of the sphere, which would
assign probability p(φ) ∝ cos φ to picking a point with polar
angle φ. To estimate the probability of violating the CHSH
inequality using pairs of points (θ,φ) with θ = [0 : 10 : 180]
and φ = [0 : 10 : 10t], we evaluate

p(t) =
t∑

s=0

μ(s)f (10s) (3)

for an appropriate probability measure μ(s), where f (φ) is the
fraction of the values of θ such that (θ,φ) lead to a violation
of the CHSH inequality. When t = 0, that is, Alice and Bob
share the Y direction perfectly, we set μ(0) = 1. For t > 0, we
set

μ(s) =
{

0 if s = 0,

C[cos(10s − 10) − cos(10s)] otherwise,
(4)

where C is a normalization factor.
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FIG. 4. Experimentally measured raw outcomes of the CHSH
parameter sampled in 10◦ steps of θ , when Alice and Bob’s Y axes are
completely aligned. The solid black line illustrates the theoretically
calculated value for the prepared state. The dashed line represents
the maximum value of the CHSH parameter allowed by quantum
mechanics. Error bars are one standard deviation, derived from
Poissonian counting statistics. The CHSH parameter is calculated
directly from raw experimental data, and no noise correction or
accidental coincidence count subtraction is employed.
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FIG. 5. (Color online) High-resolution raw data about the ex-
pected range of angles where the CHSH parameter will be at a
minimum. Expected theoretical values for a perfect singlet state are
shown by the solid black line (upper); the dashed red line (lower)
denotes theoretical values for a state with fidelity of 0.994 with the
singlet state. Of the 100 data points in this region, 9 are consistent
with a CHSH parameter �2, and thus with a locally causal model. The
expected minimum is shifted away, in angle, from the theoretically
expected minimum due to wave-plate and state imperfections.

When Alice and Bob share a direction perfectly, the
theoretical prediction is that they will always violate a Bell
inequality, except when their measurements are perfectly
aligned (a set of zero measure in the space of relative settings),
in which case the CHSH inequality is saturated. For states
that are not quite maximally entangled, the CHSH inequality
is satisfied for small regions around the completely aligned
condition [18]. In our experiment, Alice and Bob perfectly
share a direction when φ = 0 and their measurements would
be perfectly aligned when θ = 45◦ or 135◦ (in the absence of
experimental imperfections).

As shown in Fig. 4, violations were observed when φ = 0
for all relative angles θ ∈ [0◦ : 10 : 180◦], with minimum
values occurring near θ = 45◦ and θ = 135◦. To examine
these regions further, we collected the high angular resolution
data shown in Fig. 5 (with steps of 0.1◦ in θ in a small
region centered around θ = 45◦). We find that every data
point violates the CHSH inequality by more than one standard
deviation (as determined by photon counting statistics) except
for some data points in a small region around the minima
(i.e., θ ∈ [42.6◦ : 0.1◦ : 44.2◦]). The theoretical minimum
expectation value of the CHSH parameter for the given state
is ≈1.988, in agreement with the minimum measured CHSH
parameter of 1.991 ± 0.007. The experimental minimum is
shifted from the theoretical expected minima to ≈43◦ due to
slight imperfections in state preparation (which lead to unitary
single-qubit rotations away from the ideal state) and small
imperfections in wave plate retardance and settings.

From our experimental data, we infer that in regions
away from θ ≈ 45◦ and θ ≈ 135◦ the CHSH inequality is
always violated when φ = 0◦. Assuming that the measurement
statistics around θ ≈ 135◦ are the same as those around
θ ≈ 45◦ (justified by the theoretical symmetry which is also
reflected in our measurement data), we infer that the CHSH
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FIG. 6. (Color online) Experimentally measured probability of
violating the CHSH inequality as alignment of Alice and Bob’s Y

axis degrades by angle φ and the parameter χ is fixed at 0, while θ

is sampled evenly. Purple diamonds (upper) represent that the mean
values violate the CHSH inequality. Red crosses (lower) indicate the
probability that the mean is more than a standard deviation away from
the bound.

inequality is violated with probability 99.3% ± 0.3%. This
agrees with the theoretically predicted value of 99.2% ± 0.1%
for states with the same degree of entanglement as the one we
produce.

As φ increases from 0, the extent to which Alice and
Bob share a reference frame decreases. Our experimental
results show that this leads to a corresponding decrease in
the probability of violating a Bell inequality, as shown in
Fig. 6. When φ = 90◦, Alice and Bob do not share a reference
frame at all, so the scenario is equivalent to Alice and Bob
independently choosing two maximally complementary bases
each. Using Eq. (3), we obtain an experimental lower bound of
39.7% ± 0.1%. This is in close agreement with the theoretical
value of 40.3% ± 0.2% for states with the same degree of
entanglement as the one we produce [28].

Conclusions. We have experimentally demonstrated that
a complete shared reference frame is not required for two
remote parties to violate a Bell inequality. If the parties
share just one measurement direction perfectly, they can
almost always violate a Bell inequality perfectly with a
maximally entangled state by each choosing two maximally
complimentary measurements in the plane orthogonal to the
shared direction in the Poincaré sphere. Furthermore, even
moderate errors in the alignment of the shared direction do not
significantly reduce the probability of achieving a violation.
Our work has direct application to quantum information
protocols, such as QKD, that use single site measurements
of entangled quantum states.

Recently, related theoretical and experimental work has
shown that making more complex measurements—increasing
the number of measurements that each party chooses—can
allow the observers to always violate a Bell inequality without
any alignment of the reference frames [29,30].
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