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Entangling efficiency of linear-optical quantum gates
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We propose a measure of the nonclassicality of quantum gates which is particularly suitable for probabilistic
devices. This measure enables to compare deterministic devices which prepare entangled states with a low amount
of entanglement with probabilistic devices which generate highly entangled states but which fail sometimes. We
provide examples demonstrating the advantages of this measure over the so-far employed entangling power. The
experimentally determined entangling efficiency of a tunable linear-optical controlled-phase gate is presented to
highlight the practical aspects of this measure.
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I. INTRODUCTION

Quantum physics has opened new ways in information the-
ory. Quantum computing and quantum information processing
have attracted great attention in the last few decades both in
the theoretical and experimental domains [1]. Quantum gates,
the devices analogous to classical logical gates, are necessary
ingredients for building quantum circuits. A considerable
effort was devoted to implement them experimentally on
several physical platforms that represent good candidates for
these tasks [2–5]. One of them is linear optics. The advantages
of linear-optical quantum gates are that they are accessible
by a present-day technology, their realization is relatively
simple [6], there is a chance of their integration [7], and they
work directly with light so they are convenient for information-
processing tasks connected with quantum communication [8].
The disadvantage is that they are mostly probabilistic (i.e.,
they operate with the success probability lower than 1). This
problem can be overcome by more complex setups based on
prearranged entangled states [9,10]. However, even the basic
linear-optical quantum gates with success probability lower
than 1 can be quite useful for small-scale applications of
quantum information processing. This is especially true for the
circuits behind or between quantum links because in real-life
quantum channels huge losses must be tolerated anyway.

It is an interesting question how to quantify the performance
of quantum gates. It was proposed to use the so-called
entangling power [11–13]. This measure is defined either as an
average or maximal value of the measures of entanglement of
the output states over all separable input states. Of course,
quantum gates are not primarily intended as entanglement
sources (the sources of entangled states can be implemented
more easily [14]), but their capability to create entanglement
from separable input states is crucial for quantum information
processing. Thus entangling power is a good measure of the
nonclassicality of quantum gates.

However, this measure is disputable in the case of proba-
bilistic quantum gates. One can consider two distinct cases:
(i) a deterministic device which prepares entangled states
with a low amount of entanglement and (ii) a probabilistic
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device which generates highly entangled states but which
fails sometimes. What is better? We can imagine we have
a perfect entanglement-distillation apparatus which we apply
to the output of the first device (i). We use it to obtain
(asymptotically) such a number of distilled states which equals
to the number of states generated by the second device (ii).
The number of input states is assumed to be the same for
both devices. Now, having the same fraction of states per
a gate operation, we can find which of the two cases (i or
ii) leads to a higher amount of entanglement. Thus a good
measure of the performance of probabilistic quantum gates
could be the product of distillable entanglement [15,16] and
success probability maximized over all separable input states.
But there are two problems with this definition. The first one is
practical: It is difficult to calculate distillable entanglement for
a general state. The second one is conceptual: This definition
fails to quantify the ability to generate bound entangled states.
Therefore it is convenient to generalize the definition of this
quantity as the maximum (over all separable input states)
of the product of success probability and any well-behaved
entanglement measure chosen according to one’s particular
needs. We will call this function entangling efficiency. It
is reasonable to choose an entanglement measure which is
convex because then the maximum can be taken only over all
pure product input states.

In the following text we will define the particular form
of entangling efficiency using negativity as the measure of
entanglement and we will use it to characterize the optimal
linear-optical controlled phase gate recently implemented in
our laboratory.

II. ENTANGLING EFFICIENCY

In this paper we will measure the amount of entanglement
in a quantum state by its negativity. Negativity of state ρ is
defined as [17]

N (ρ) = ||ρTA ||1 − 1

2
, (1)

where || · ||1 denotes the trace norm and TA means the
partial transpose. This measure can be easily calculated. It is
convex, N (

∑
i piρi) �

∑
i piN (ρi), and it is an entanglement

monotone (does not change under local operation and classical
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communication). However, it is zero even if the state is
entangled under positive partial transpose.

Entangling power is defined as the supremum of the
negativity of output states over all separable input states

Ep = sup
ρ∈S

{N (E[ρ])}, (2)

where E[ρ] denotes the output state of the device correspond-
ing to input state ρ (E is a completely positive map) and S is
the set of all separable input states. The convexity of negativity
is important because for a nonconvex entanglement measure
there might be a mixed state whose measure of entanglement
is greater than the negativity of any of the pure states of which
it is composed. This fact would complicate the search for
the input state corresponding to the maximum because mixed
states have significantly more degrees of freedom than pure
states.

We define entangling efficiency in the following way:

Eeff = sup
ρ∈S

{ps(ρ)N (E[ρ])}, (3)

where ps(ρ) is the success probability of the gate for a given
input state ρ. The probabilistic operation of linear optical
quantum devices means that only some of their output states
correspond to the correct results. However, we know which
ones and we can select them either by an auxiliary mea-
surement or by postselection. In all the examples considered
below, the successful operation of a gate corresponds to the
cases where both photons leave the gate separately by their
respective output ports. In the experiment, these cases are
selected by coincidence detection. All the other cases (e.g.,
two photons appearing in the same output port) are considered
as gate failures.

III. EXAMPLE 1: ENTANGLING EFFICIENCY
OF A BEAM SPLITTER

We illustrate the concept of entangling efficiency on an
intuitive case of a beam splitter followed by a postselection.
Let us begin with a balanced beam splitter with transmittance
T and reflectance R both equal to 1

2 . Two photonic qubits
are initially in a separable state and each of them enters one
input port of the beam splitter. Subsequently we perform a
postselection taking into account only the cases where there is
exactly one photon in each output mode.

Let us express a separable input state |ψ1〉 ⊗ |ψ2〉 using the
following parametrization (without the loss of generality one
part of the input state can be fixed):

|ψ1〉 = |0〉, |ψ2〉 = cos θ|0〉 + eiϑ sin θ|1〉, (4)

where {|0〉,|1〉} represents an arbitrary orthogonal basis.
Simple algebra reveals that the success probability of the
above-described beam-splitter transformation reads

ps(θ ) = sin2 θ

2
. (5)

Using definition (1) one can calculate the negativity of output
states

N = 1
2 , (6)
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FIG. 1. Balanced beam splitter. Success probability ps (full line),
negativity N (dotted line) and their product (dashed line) as functions
of angle θ parametrizing the input separable state.

which is independent of the input state. Therefore the entan-
gling power of the beam splitter reads

Ep = 1
2 . (7)

As for the entangling efficiency, one has to find the maximum
of the product of success probability and negativity

Nps = sin2 θ

4
. (8)

This product is maximized for θ = π/2 so the entangling
efficiency is

Eeff = 1
4 . (9)

Figure 1 shows the dependence of success probability ps ,
negativity N , and their mutual product as functions of angle θ .
Finding the maximum of negativity N reveals the entangling
power Ep of the beam splitter, whereas finding the maximum
of the product Nps reveals the entangling efficiency Eeff . Note
that in this case both of them are maximized for the same input
state parameter θ .

One can extend the model of the balanced beam splitter
also to the case of a general lossless beam splitter. We have
calculated the success probability ps , entangling power Ep,
and entangling efficiency Eeff also for this case. Figure 2
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FIG. 2. Unbalanced beam splitter. Success probability ps (full
line), entangling power Ep (dotted line), and entangling efficiency
Eeff (dashed line) of a beam splitter as functions of its transmittance T .
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presents these three properties of the beam splitter as functions
of its transmittance.

IV. EXAMPLE 2: OPTIMAL LINEAR-OPTICAL
C-PHASE GATE

We further demonstrate our concept of entangling power
on the second example: The optimal linear-optical controlled-
phase (c-phase) gate. A controlled-phase gate implements the
following operation on two qubits:

|0,0〉 �→ |0,0〉, |0,1〉 �→ |0,1〉,
(10)

|1,0〉 �→ |1,0〉, |1,1〉 �→ eiϕ|1,1〉.
In general, it is an entangling quantum gate. Together with
single-qubit operations it forms a universal set for quantum
computing. For example, the controlled-NOT gate can be
obtained by applying a Hadamard transform to the target qubit
before and after the controlled-phase gate with phase shift π .

Recently, we built the optimal linear-optical controlled
phase gate in our laboratory [18]. Its conceptual scheme is
depicted in Fig. 3. Phase shift ϕ applied by this gate on the
controlled qubit can be set to any given value just by tuning the
parameters of the setup. The gate is optimal in the sense that for
any phase shift it operates at the maximum possible success
probability that is achievable within the framework of any
postselected linear-optical implementation without auxiliary
photons. The optimal success probability of the gate takes the
following form [19]

ps(ϕ) =
(

1 + 2

∣∣∣∣ sin
ϕ

2

∣∣∣∣ + 23/2 sin
π − ϕ

4

∣∣∣∣ sin
ϕ

2

∣∣∣∣
1/2)−2

.

(11)

The dependence of the success probability on the phase shift is
shown on Fig. 4. Surprisingly it is not monotone in the phase.

To evaluate the entangling power and efficiency of this
gate, let us express separable input state |ψ1〉 ⊗ |ψ2〉 using the
following parametrization

|ψ1,2〉 = cos θ1,2|0〉 + eiϑ1,2 sin θ1,2|1〉, (12)

FIG. 3. Scheme of the gate [18]. Vertically (V ) and horizontally
(H ) polarized components of the same beam are drawn separately
for clarity. In polarization beam splitters PBS1 and PBS2 the vertical
components are reflected. Half-wave plates HWPb and HWPc act
as “beam splitters” for V and H polarization modes. F1 and F2 are
filters (attenuators), F1 acts on both polarization modes, F2 on the
H component only. Phase shifts φ+ and φ− are introduced by proper
path differences in the respective modes. HWPa and HWPd just
swap vertical and horizontal polarizations. In the final setup they are
omitted for simplicity and the second qubit is encoded inversely with
respect to the first qubit.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00

0.02

0.04

0.06

0.08

0.10

0 /4 /2 3 /4

Gate phase shift

ps (left axis)
Ep (left axis)
Eeff (right axis)

FIG. 4. C-phase gate. Success probability ps (full line), entan-
gling power Ep (dotted line), and entangling efficiency Eeff (dashed
line) as functions of phase shift ϕ applied by the gate. Theoretical
prediction is depicted by lines whereas the experimentally obtained
data are depicted using markers.

where {|0〉,|1〉} represents a fixed computational basis and
the indices denote the first and second qubits. Further, let
us assume this state is successfully transformed by the gate
according to Eq. (10). Then we can calculate the negativity of
the output two-qubit state using Eq. (1)

N (ϕ,θ1,θ2) = sin 2θ1

2

sin 2θ2

2

√
2(1 − cos ϕ), (13)

where ϕ denotes the phase applied by the gate. One can
notice that this function does not depend on phases ϑ1,2

but only on θ1,2 ∈ [0, π
2 ]. For any given value of gate phase

shift ϕ, it is maximized for θ1,2 = π
4 (equal superposition

of computational basis states). The maximum negativity and
therefore the entangling power for a given phase ϕ thus reads

Ep(ϕ) =
√

2

4

√
1 − cos ϕ. (14)

Similarly, the entangling efficiency can be obtained by
maximizing the product N (ϕ,θ1,θ2) ps(ϕ) over the input-state
parameters θ1,2. Because the success probability does not
depend on the input state, we obtain the entangling efficiency
as a function of the gate phase shift ϕ in the form

Eeff =
√

2 ps

4

√
1 − cos ϕ. (15)

Clearly, the success probability of our c-phase gate is state
independent [see Eq. (11)], so the entangling efficiency of the
gate is just a product of the success probability and entangling
power.

In Fig. 5 there are plots of success probability ps , negativity
N , and their product in dependence on parameter θ1 for ϕ = π

and θ2 = π
4 (this parameter is kept fixed and equal to its optimal

value). Figure 4 shows the success probability ps , entangling
power Ep, and entangling efficiency Eeff as functions of ϕ.

Because of the high importance of the c-phase gate
for quantum computation, we have tested its entangling
power and efficiency also experimentally. To calculate the
entangling power and efficiency from the experimental data
we scanned the four-parametric space of all separable input
states numerically (over 40 000 uniformly distributed states
were tested). The corresponding output states were calculated
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FIG. 5. C-phase gate. Success probability ps (full line), negativity
N (dotted line), and their mutual product (dashed line) as functions
of the parameter θ1 for a fixed value of ϕ = π and θ2 = π

4 .

using the Choi matrices χ (ϕ), reconstructed by means of the
quantum process tomography [18,20], using the following
formula [21]: ρout = Trin[χ (ϕ)(ρT

in ⊗ 1)]. Entangling power
and other quantities are shown in Fig. 4 where the values
obtained from experimental data can be compared with the
theoretical predictions.

V. EXAMPLE 3: GENERALIZED C-PHASE GATE

From the two previous examples the reader may get the
impression that the entangling efficiency does not provide any
substantial benefit with respect to entangling power. The
reason lies in the specific nature of these examples. In the case
of the beam splitter, negativity is independent on the input
state, so it can be factored out of the maximum search in the
formula for entangling efficiency [see Eq. (3)]. In the case of
the c-phase gate the probability of success does not depend
on the input state, so it can be taken out of the maximization.
Therefore in both these situations the entangling power gives
qualitatively the same results as the entangling efficiency gives.

Here we expose the third example, the generalized
c-phase gate, which proves that the entangling efficiency is,
in general, a better instrument than the entangling power. The
linear-optical scheme from Fig. 3 performs the c-phase gate
transformation (10) only if a compensating filter, F1, with a
proper transmissivity (γ = p

1/4
s ) is used in the upper path. If

this filter is removed the device will perform the following
generalized (nonunitary) transformation:

|0,0〉 �→ |0,0〉, |0,1〉 �→ 4
√

ps(ϕ)|0,1〉,
(16)

|1,0〉 �→ 4
√

ps(ϕ)|1,0〉, |1,1〉 �→
√

ps(ϕ)eiϕ|1,1〉.
We will call it a generalized c-phase gate. Such a gate can
be used, for instance, in quantum nondemolition measurement
[22]. Quantity ps(ϕ) is defined by Eq. (11), but it does not
represent the success probability of the generalized gate. The
overall success probability Ps is now a function of the input
state

Ps(ϕ,θ1,θ2) = cos2 θ1 cos2 θ2

+
√

ps(ϕ)(cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2)

+ps(ϕ) sin2 θ1 sin2 θ2. (17)
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FIG. 6. Generalized c-phase gate. Success probability Ps (full
line), negativity N (dotted line), and their mutual product (dashed
line) are plotted against the parameter of input state θ1 for ϕ = π and
θ2 = π/4. All the functions are symmetric in the sense that the same
results would be obtained when exchanging θ1 and θ2.

Assuming again pure product states parametrized by Eq. (12)
in the input, a simple calculation reveals the formula for the
negativity of corresponding output states

N (ϕ,θ1,θ2) = sin 2θ1 sin 2θ2

2
√

2

√
ps(ϕ)

√
1 − cos ϕ

Ps(ϕ,θ1,θ2)
. (18)

It can be seen (look at Fig. 6) that the negativity alone is
now maximized for generally different angles θ1 and θ2 than
in the case of the “standard” c-phase gate (Sec. IV). The
product of the negativity and success probability, however,
finds its maximum still in π/4. Figure 6 presents the success
probability, negativity and their product as functions of θ1 for
ϕ = π and θ2 = π/4. Note that the relation is symmetric for
θ2. In this figure, one can clearly perceive that now negativity
is maximized for different parameters than the product of
negativity and success probability.

Figure 7 is similar to Fig. 4 showing how entangling power
and entangling efficiency varies with the phase shift ϕ. Because
in the case of this gate the success probability is state dependent
we plot here success probability P (maxN)

s corresponding to the
states which maximize the negativity. Besides, we have added
function P (maxN)

s Ep. This function should help to view two
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FIG. 7. Generalized c-phase gate. Entangling power Ep (dotted
line), corresponding success probability P (maxN)

s (full line), their
product (dotted-dashed grey line), and entangling efficiency Eeff

(dashed line) are plotted against gate phase shift ϕ.
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measures of the nonclassicality of the gate, entangling power
and entangling efficiency, under comparable conditions. One
can perceive that entangling efficiency is greater then the
product P (maxN)

s Ep because it takes the success probability
into the maximization.

VI. CONCLUSION

There is no doubt that a concept of a measure of the
nonclassicality of quantum gates, which takes into account the
success probability, is more natural for probabilistic devices
than the concept of entangling power. The question was if such
a measure, namely the entangling efficiency defined above in
this paper, can really offer different and more appropriate

information in the case of linear optical devices than the
entangling power. Our last example shows that it can. In
general, entangling efficiency is not a trivial function of
entangling power. It indicates that entangling efficiency is a
useful measure of the entangling capability of probabilistic
quantum gates and that entangling power may sometimes yield
deficient information about this capability.
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