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In this paper, we present a general upper bound on the success probability for unambiguous discrimination
among arbitrary m mixed quantum states with given a priori probability. We further analyze how this upper
bound can be achievable by presenting a sufficient condition related to it, and we compare this upper bound with
three other upper bounds. Moreover, for the issue of the unambiguous identification of m unknown multicopy
qudit pure states, we also get a bound.
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I. INTRODUCTION

Quantum state discrimination is an important issue in
quantum information science. This problem may be roughly
described by the connection between quantum communication
and quantum state discrimination in this manner [1–4].
Suppose that a transmitter, Alice, wants to convey classical
information to a receiver, Bob, using a quantum channel, and
Alice represents the message conveyed as a mixed quantum
state that, with given a priori probabilities, belongs to a finite
set of quantum states, say {ρ1,ρ2, . . . ,ρm}; then Bob identifies
the state by a measurement.

As is well known, the nonorthogonal states cannot be
perfectly discriminated [1,5,6]. However, if the states are
linearly independent and a nonzero probability of inconclusive
answer is allowed, we can discriminate them. This approach is
the so-called unambiguous discrimination, first suggested by
Ivanovic [7], Dieks [8], and Peres [9] for the discrimination
of two equally probable nonorthogonal pure states. Analytical
solutions for the optimal failure probabilities have been given
for distinguishing between two and three pure states [10–12].
Chefles [13] showed that a set of pure states can be unambigu-
ously discriminated if and only if they are linearly independent.
The optimal unambiguous discrimination between linearly
independent symmetric and equiprobable pure states was
solved in [14]. A semidefinite programming approach to
unambiguous discrimination between pure states has been
investigated in detail by Eldar [15]. Some upper bounds on the
optimal success probability for unambiguous discrimination
between pure states have also been presented [16–19].

Recently, the problem of unambiguous discrimination
between mixed states has been considered. Rudolph et al.
[20] derived a lower bound and an upper bound on the
maximal probability of successful discrimination of two
mixed states. Raynal et al. [21] presented two reduction
theorems to reduce the optimal unambiguous discrimination
of two mixed states to that of two other mixed states which
have the same rank. The analytical results for the optimal
unambiguous discrimination between two mixed quantum
states have been derived in [22]. In the general case of
m-mixed-state discrimination, Fiurasek and Jezek [23] and
Eldar [24] gave some sufficient and necessary conditions for
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the optimal unambiguous discrimination, and some numerical
methods were discussed. Feng et al. [25] derived a general
lower bound on the inconclusive probability for distinguishing
a mixed-state set with a priori probability. Recently, Li [26]
also presented a general upper bound on the success probability
for unambiguously discriminating among arbitrary m mixed
quantum states with given a priori probability, which can be
directly used for the unambiguous communication setting. For
more work regarding unambiguous discrimination, we may
refer to [27].

Unambiguous identification of unknown states is a variant
of the ordinary unambiguous discrimination problem and
is also called unambiguous discrimination of the universal
programmable state, which can be described in the following
manner [28]: Assume that a probe system of a d-dimensional
Hilbert space is prepared in a pure state chosen from a set of m

linearly independent states but we do not know the states in the
set. Instead, we are given m reference systems, with each being
prepared in one of the m unknown pure states. The problem
is to determine the optimum measurement for unambiguously
identifying the states of the probe system with the state of one
of the reference systems. The identification of unknown pure
states has been shown to be equivalent to the discrimination of
known mixed states [28–30].

The problem of the unambiguous identification of two un-
known pure states was introduced by Bergou and Hillery [31],
who first solved for optimum unambiguous identification of
two unknown qubits. A number of schemes for implementing
the unambiguous identification of two unknown qubit states
have been proposed [32–34]. The problem of unambiguously
identifying two unknown pure states has been extended to the
case where the states are each encoded into a certain number
of copies in each reference system [29,30,35–38]. Optimum
unambiguous identification of two unknown pure qudit states
was solved in [35,39]. Optimum unambiguous identification of
d unknown pure qudit states was solved by Herzog and Bergou
[28]. However, optimum unambiguous identification of m

unknown multicopy qudit pure states (m < d) has remained
unsolved until now.

In this paper, we present a general upper bound on the
success probability for unambiguous discrimination among
arbitrary m mixed quantum states with given a priori proba-
bility. Applying the bound of unambiguous discrimination, we
also get a bound for the issue of the unambiguous identification
of m unknown qudit pure states.
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The remainder of this paper is organized as follows. In
Sec. II, we review some basic lemmas and notations. In
Sec. III, we derive an upper bound on the success probability
for unambiguous discrimination between arbitrary m mixed
states, and we present a sufficient condition for which this
upper bound can be achievable. In Sec. IV, we present a
proposition and construct examples to clarify the relationship
between our bound and the bounds presented by other authors.
In Sec. V, we investigate the issue of quantum pure-state
unambiguous identification, and we also get a bound. Finally,
some concluding remarks are made in Sec. VI.

II. PRELIMINARY SETUP

In this section, we first recollect the notation related to
unambiguous discrimination. For the unambiguous discrimi-
nation of m quantum mixed states ρi (i = 1,2, . . . ,m), we need
to design a measurement consisting of m + 1 positive operator-
valued measures (POVM), say �i, 0 � i � m, satisfying the
following conditions:

�0 +
m∑

i=1

�i = I, (1)

Tr(�iρj ) = δij qi, (2)

where i,j = 1,2, . . . ,m; if i = j , then δij = 1, and otherwise,
δij = 0, 0 < qi � 1. I denotes the identity operator on H .
Condition (2) is also equal to

�iρj = 0 (3)

for i �= j, i,j = 1,2, . . . ,m.
By means of the measurement �i , if the system has been

prepared by ρi , then Tr(ρi�i) is the probability of deducing
the system being in state ρi and Tr(ρi�0) is the inconclusive
probability. Therefore, the average success probability Pr[u]
is as follows:

Pr[u] =
m∑

i=1

piTr(ρi�i). (4)

One of our main objective is to design an optimum measure-
ment that maximizes the average success probability.

In general, the notations used in this paper will be explained
as new symbols appear. Here, we first give some symbols
that will be used in the later sections. For any Hilbert
subspace Hi , we use

∑
i Hi to denote the Hilbert space that

{∑k |ψk〉 : |ψk〉 ∈ Hk}. For any two linear operators T1 and
T2 on the same Hilbert space H, we use T1 ⊥ T2 to denote
that the supports of T1 and T2 are orthogonal. The support of a
linear operator T is the subspace spanned by all eigenvectors
corresponding to all nonzero eigenvalues of T , and we denote
the support of T by Supp(T ). We denote the supplementary
space of Supp(T ) as Ker(T ). || · || denotes spectral normal,
|| · ||Tr denotes trace normal, e.g., ||A|| = max|u〉{||A|u〉|| :
〈u|u〉 = 1} = maxi{Si(A)}, ||A||Tr = Tr(

√
A†A) = ∑

i Si(A),
and Si(A) denotes a singular value of the operator A.

Next, we recollect some lemmas that are useful in the later
sections of this paper.

Lemma 1 [26]. Suppose that ρ1, ρ2, . . . ,ρm are quantum
states, with all their eigenvectors corresponding to nonzero
eigenvalues that span d-dimensional complex Hilbert space H ,

and r = ∑m
i=1 rank(ρi). If there are POVM {�0, �1, . . . ,�m}

such that Eqs. (1) and (3) are held, then

Tr(�0) � r − d

m − 1
, (5)

and the equality holds when Y = Yi and Xi⊥Xj (i �= j ), where
Yi = Supp(ρi)

⋂ ∑
j �=i Supp(ρj ), where Xi is defined as Xi ⊕

Yi = Supp(ρi) and Y = ∑m
i=1 Yi ;

Lemma 2 [38]. For a pure state |ψ〉 in d-dimensional Hilbert
space H , ∫

dμ(ψ)[ψ⊗n] = 1

c[n]
P [n]

sym, (6)

where c[n] = Cd−1
n+d−1 = (n+d−1)!

n!(d−1)! is the dimension of the fully

symmetric space H [n], ψ = |ψ〉〈ψ | and P [n]
sym is the projector

onto this space.
Now, we present our main results.

III. AN UPPER BOUND ON UNAMBIGUOUS
DISCRIMINATION BETWEEN MIXED STATES

To unambiguously discriminate any m quantum mixed
states in d-dimensional Hilbert space, we have results as
follows.

Theorem 1. Suppose that ρ1, ρ2, . . . ,ρm are quantum
states, with all their eigenvectors corresponding to nonzero
eigenvalues that span d-dimensional complex Hilbert space
H , and r = ∑m

i=1 rank(ρi). Let the a priori probabilities of the
mixed states ρ1, ρ2, . . . , ρm be p1, p2, . . . , pm, respectively;
then we have the following results.

(1) The success probability Pr[u] for unambiguously dis-
criminating ρi satisfies Pr[u] � L, where

L = dm − r

m − 1
max

i
{||piρi ||} (7)

and || · || denotes spectral normal.
(2) Equality is reached in the bound Pr[u] � L0 if the mixed

states ρ1, ρ2, . . . ,ρm satisfy the following conditions:
(I) ||p1ρ1|| = ||p2ρ2|| = · · · = ||pmρm||; (II) Xi⊥Xj (i �=

j ) and Y = Yi , where Yi = Supp(ρi)
⋂ ∑

j �=i Supp(ρj ), with
Xi defined as Xi ⊕ Yi = Supp(ρi) and Y = ∑m

i=1 Yi ; and
(III) S1(piρiPXi

) = S2(piρiPXi
) = · · · = ||piρi ||, where PXi

denotes the projector into the subspace Xi and Si(A) denotes
the ith singular value of operator A.

Proof. (1) For unambiguously discriminating ρi , suppose
that �i (0 � i � m) are any positive semidefinite operators
satisfying Eqs. (1) and (3). Let Pr[u] denote the success
probability; then we have

Pr[u] =
m∑

i=1

Tr(piρi�i). (8)

Moreover, we have

Tr(AB) � ||A|| ||B||Tr, (9)

where A,B denote positive semidefinite operators, || · ||
denotes spectral normal, and || · ||Tr denotes trace normal. If B

is an operator in the subspace spanned by all eigenvectors cor-
responding to the maximum eigenvalue of A (in other words,
if S1(APB) = S2(APB) = · · · = ||A||, where PB denotes the
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projector into the subspaces spanned by all eigenvectors
corresponding to the nonzero eigenvalue of B), then Eq. (9)
holds.

Therefore, we have that

Pr[u] �
m∑

i=1

||piρi || ||�i ||Tr (10)

� max
i

{||piρi ||}
m∑

i=1

||�i ||Tr. (11)

Because �i are positive semidefinite operators, satisfying
Eq. (1), we have that

Pr[u] � max
i

{||piρi ||}
m∑

i=1

Tr(�i) (12)

= max
i

{||piρi ||}Tr(I − �0). (13)

Because ρ1, ρ2, . . . ,ρm are quantum states, with all their
eigenvectors corresponding to nonzero eigenvalues that
span d-dimensional complex Hilbert space H , and r =∑m

i=1 rank(ρi), according to Lemma 1, we have

Tr(�0) � r − d

m − 1
. (14)

So we can get that

Pr[u] � max
i

{||piρi ||}
(

d − r − d

m − 1

)
(15)

= dm − r

m − 1
max

i
{||piρi ||}. (16)

(2) From the above proof and Lemma 1, if Xi⊥Xj (i �= j )
and Y = Yi , we can take �0 = PY and �i = PXi

; then the
equality in the bound (15) holds, where PY and PXi

denote the
projectors into subspace Y and Xi , respectively. If ||p1ρ1|| =
||p2ρ2|| = · · · = ||pmρm||, the equality in (11) holds. If
S1(ρiPXi

) = S2(ρiPXi
) = · · · = ||ρi || and Xi⊥Xj (i �= j ), we

take �i = PXi
, and then the equality in (10) holds.

So if the mixed states ρ1, ρ2, . . . ,ρm satisfy conditions (I)–
(III), equality is reached in the bound Pr[u] � L. We complete
the proof. �

A natural question is what the relationship between the new
upper bound L and the other existing bounds is.

IV. COMPARISONS BETWEEN DIFFERENT BOUNDS

Suppose that the a priori probabilities of the mixed
states ρ1, ρ2, . . . , ρm are p1, p2, . . . , pm, respectively. All
eigenvectors corresponding to nonzero eigenvalues of these
states span d-dimensional complex Hilbert space H , and
r = ∑m

i=1 rank(ρi). To unambiguously discriminate among
them, there are some bounds on the success probability.

For the case of m = 2, Rudolph et al. [20] proved that
a lower bound on the optimal inconclusive probability QU

for unambiguously discriminating ρ1,ρ2, with given prior
probabilities p1,p2, respectively, is expressed as

QU � 2
√

p1p2F (ρ1,ρ2), (17)

where F (ρ1,ρ2) = Tr
√√

ρ1ρ2
√

ρ1. Let us denote its
corresponding success probability upper bound as
LR = 1 − 2

√
p1p2F (ρ1,ρ2).

A generalization to the case of m states has been given by
Feng et al. [25]:

QU �
√

m

m − 1

∑
i �=j

pipjF (ρi,ρj )2. (18)

We denote its corresponding success probability upper bound

as LF = 1 −
√

m
m−1

∑
i �=j pipjF (ρi,ρj )2. Recently, Li [26]

also presented a general upper bound L0 on the success
probability:

L0 = Pr

(
{pi},dm − r

m − 1
max

i
{||ρi ||}

)
, (19)

where Pr({pi},x) denotes the probability of the x most likely
states in the set {ρi : i = 1, . . . ,m} and || · || denotes spectral
normal.

As is well known, when m = 2, LR = LF . So we can only
consider the relationship between LF , L0, and L. We have the
following result.

Proposition 1. By comparing the three bounds LF , L0, and
L, we have the following.

(1) If p1 = p2 = · · · = pm, then L0 = L.
(2) If pi are not all equal and ||ρi || = λ (i = 1,2, . . . ,m),

then L0 < L.
(3) If pi are not all equal and ||piρi || = λ (i = 1,2, . . . ,m),

then L0 > L.
(4) If there is no restrict condition, the three upper bounds,

LF , L0, and L, have no strict bigger or smaller relationship.
Proof. (1) If p1 = p2 = · · · = pm, we can easily get L0 =

L = dm−r
m(m−1) maxi{||ρi ||}.

(2) If ||ρi || = λ (i = 1,2, . . . ,m), then L0 =
Pr({pi}, dm−r

m−1 λ), and L = dm−r
m−1 λ maxi{pi}. If pi are not

all equal, then L0 < L.
(3) If pi are not all equal and ||piρi || = λ (i = 1,2, . . . ,m),

then L0 = Pr({pi}, dm−r
m−1

λ
min{pi } ) > dm−r

m−1
λ

min{pi } min{pi} =
dm−r
m−1 λ = L.

(4) Actually, we have proved that the upper bounds LF and
L0 have no strict bigger or smaller relationship in [26].

So, to demonstrate that LF , L0, and L do not have a
strict bigger or smaller relationship, it is sufficient to construct
examples as follows.

Example 1. Let p1 = 2
3 , p2 = 1

3 , and ρ1 = 1
3 |0〉〈0| +

1
3 |1〉〈1| + 1

3 |2〉〈2|, ρ2 = 1
6 |0〉〈0| + 1

6 |1〉〈1| + 2
3 |3〉〈3|. Then,

we can calculate explicitly the values of the three upper
bounds as follows: LF = 5

9 , L0 = 7
9 , and L = 4

9 . So, we have
L < LF < L0.

Example 2. Let p1 = 1
2 , p2 = p3 = 1

4 , and ρ1 = 1
2 |0〉〈0| +

1
2 |1〉〈1|, ρ2 = 1

2 |0〉〈0| + 1
2 |2〉〈2|, and ρ3 = 1

2 |0〉〈0| + 1
2 |3〉〈3|.

Then, we get LF = 1 −
√

15
8 , L0 = 5

8 , and L = 3
4 . So, we have

LF < L0 < L. �
Remark 1. In Example 1, the mixed states satisfy the condi-

tions in Theorem 1; when we take �0 = |0〉〈0| + |1〉〈1|, �1 =
|2〉〈2|, �2 = |3〉〈3|, the success probability is 4/9. In other
words, the average success probability can achieve the upper
bound L.

In some quantum communication cases, we only know
the rank and the spectral normal, and we cannot calculate
the fidelity between the mixed states to be discriminated. The
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bounds L0 and L may be very useful. Now, we consider the
issue of unambiguous identification of unknown pure states.

V. AN UPPER BOUND ON UNAMBIGUOUS
DISCRIMINATION BETWEEN UNKNOWN MULTICOPY

QUDIT PURE STATES

In this section, we assume that the total quantum system
consists of a probe system, labeled by the index 0, and m refer-
ence systems, labeled by the indices 1, . . . ,m. The m reference
systems are prepared in a set of m linearly independent states
|ψ1〉, . . . ,|ψm〉, which are in a d-dimensional Hilbert space
(m � d), respectively, but we do not know the states in the set.
The probe system is prepared in the states |ψi〉 with probability
pi (i = 1, . . . ,m).

Let us now assume that the state of the probe qudit coincides
with the state of the kth reference qudit, so that the state of the
total system can be described as

|�k〉 = |ψk〉|ψ1〉|ψ2〉 . . . |ψk〉 . . . |ψm〉.
For the issue of unambiguous identification of unknown pure
states, we have the following result.

Theorem 2. To identify the linearly independent un-
known states |ψi〉 with probability pi (i = 1, . . . ,m) in a
d-dimensional Hilbert space (m � d), the success probability
PrId

s satisfies the following inequality:

PrId
s � Pr

(
{pi}, m(d − 1)

(m − 1)(d + 1)

)
. (20)

In more general case, let ni (i = 0, . . . ,m) denote the number
copies of the ith system and let μk = c[n0+nk ] ∏m

i=1,i �=k c[ni ],

c[n] = (n+d−1)!
n!(d−1)! , and θ = md

∑m
i=0 ni −∑m

k=1 μk

m−1 ; then we have

PrId
s � min {Pr({pk}, θ max

k
{μk}),θ max

k
{pkμk}}.

Proof. The total quantum system we are considering
consists of one probe qudit, labeled by the index 0, and m

reference qudits, labeled by the indices 1, . . . ,m. Let the states
|i〉k denote orthonormal basis vectors for the kth qudit. The
identity operator in the d-dimensional Hilbert space of the kth
qudit is given by

Ik =
d−1∑
i=0

|i〉k〈i|k (k = 0,1, . . . ,m). (21)

Since the m states |ψk〉 (k = 1, . . . ,m) are unknown states
in a d-dimensional Hilbert space H , they can be changed from
preparation to preparation. We introduce the density operator
�k = |�k〉〈�k| and take its average over the m unknown
reference states.

σk =
∫

�k dμ(ψ1)dμ(ψ2) · · · dμ(ψm). (22)

According to Lemma 2, we have

σk = 2

(d + 1)dm
P [2]

sym

m⊗
i=1,i �=k

Ii, (k = 1, . . . ,m), (23)

with probability pk , where P [2]
sym is defined as

P [2]
sym =

d−1∑
i=0

|i〉0|i〉k〈i|0〉i|k

+
d−1∑
j=1

j−1∑
i=0

|i〉0|j 〉k + |j 〉0|i〉k√
2

〈i|0〈j |k + 〈j |0〈i|k√
2

.

(24)

We can easily calculate that the rank of P [2]
sym is d(d+1)

2 and

||σk|| = 2
(d+1)dm . The rank of σk is (d+1)dm

2 . From Proposition
1, we have L0 < L. So we can get

PrId
s � Pr

(
{pi},d

′m − r

m − 1
max

i
{||ρi ||}

)
(25)

= Pr

(
{pi},

dm+1m − m (d+1)dm

2

m − 1

2

(d + 1)dm

)

= Pr

(
{pi}, m(d − 1)

(m − 1)(d + 1)

)
. (26)

In a more general case, the multiple copies of probe and
reference systems are used in the input states. Let n0 denote the
number of copies of probe states and ni (i = 1, . . . ,m) denote
the number of copies of the ith reference states. Assuming that
the state of the probe qudit coincides with the state of the kth
reference qudit, the state of the total system can be described
as

|
k〉 = |ψk〉⊗n0 |ψ1〉⊗n1 |ψ2〉⊗n2 · · · |ψk〉⊗nk · · · |ψm〉⊗nm .

We introduce the density operator 
k = |
k〉〈
k| and take its
average over the m unknown reference states,

ρk =
∫


k dμ(ψ1)dμ(ψ2) · · · dμ(ψm). (27)

From Lemma 2, we can obtain

ρk = 1

μk

P [n0+nk ]
sym ⊗ P [n1]

sym ⊗ · · · ⊗ P [nm]
sym , (28)

where μk = c[n0+nk ] ∏m
i=1,i �=k c[ni ], and c[n] = (n+d−1)!

n!(d−1)! . Let

θ = md
∑m

i=0 ni − ∑m
k=1 μk

m − 1
. (29)

According to Proposition 1, we have

PrId
s � min {Pr({pk}, θ max

k
{μk}),θ max

k
{pkμk}}.

We complete the proof. �

VI. CONCLUDING REMARKS

In this paper, we first presented an upper bound L on the
success probability of unambiguously discriminating between
mixed states. Furthermore, we analyzed how this upper bound
can be achieved by presenting a sufficient condition and
presented a proposition to clarify the relationships between
different bounds on the success probability of unambiguous
discrimination. Then, we investigated the issue of unam-
biguous identification of unknown pure states. We derived
an upper bound on the success probability of unambiguous
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identification of m unknown multicopy qudit pure states with
a given a priori probability.

A further problem is whether there is a new upper bound for
unambiguous discrimination of mixed states to improve these
existing bounds. Optimum unambiguous identification of m

unknown multicopy qudit pure states also is an interesting
problem.
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