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General formalism for evaluating the impact of phase noise on Bloch vector rotations
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Quantum manipulation protocols for quantum sensors and quantum computation often require many single-
qubit rotations. However, the impact of phase noise in the field that performs the qubit rotations is often
neglected or treated only for special cases. We present a general framework for calculating the impact of
phase noise on the state of a qubit, as described by its equivalent Bloch vector. The analysis applies to any
Bloch vector orientation and any rotation axis azimuthal angle for both a single pulse and pulse sequences.
Experimental examples are presented for several special cases. We apply the analysis to commonly used composite
π pulse sequences for suppression of static amplitude or detuning errors and also to spin-echo sequences. We
expect the formalism presented will help guide the development and evaluation of future quantum manipulation
protocols.
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I. INTRODUCTION

Atomic quantum sensors and tests of fundamental physics
commonly rely on the ability to rotate a Bloch vector represent-
ing a spin- 1

2 system or qubit. Besides quantum state manipula-
tion, rotations can also be used to undo inhomogeneous errors
or to reduce other sources of noise, as is done with spin-echo
pulses or dynamical decoupling [1–7]. Precise rotations, re-
quired for manipulating collective spin-squeezed states [8–16],
might also enable dynamical spin squeezing to the two-axis
squeezing limit [17] using already realized one-axis twisting
in cold atom systems [10–12,14]. Given that actual rotations
are imperfect, it is an open question whether such rotation
protocols can be realized without adding large amounts of
additional noise [18], thus destroying the squeezing.

Most rotation protocols assume that the phase of the field
that rotates the qubit is perfectly stable and that imperfec-
tions arise only due to slowly varying amplitude errors or
detuning errors. Composite rotation sequences [19–23] and
generalizations to shaped pulses [24,25], including optimal
control theory [26–28], can be used to reduce these errors to
essentially arbitrary order.

In reality, the phase of the qubit-field coupling is never
perfectly stable, largely due to phase noise in the local
oscillator (LO) used to generate the field. The LO is typically a
radio or microwave oscillator in nuclear spin, superconducting
Josephson junction, quantum dot, neutral atom or ion Zeeman,
and hyperfine qubit systems [29]. In the case of highly
forbidden optical transitions [30], the LO is an ultrastable
laser. Further, qubit transition frequency fluctuations can be
straightforwardly mapped onto an equivalent phase noise
of the LO. Such a fluctuation might arise due to noise in
the dc bias current of a superconducting Josephson junction
qubit [31] or differential light shifts for atomic qubits in
an optical trap [30]. It is critical for future work beyond
proof-of-principle experiments to develop general tools for
analyzing the impact of phase noise on a rotation, in terms of
both overall fidelity for quantum gates and quadrature-specific
noise for manipulating states with anisotropic sensitivity to
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noise, such as spin-squeezed states [8–16], reduced spin-noise
states [32], and Dicke states [33].

The effect of phase noise on atomic response has been
studied in various contexts, for example, on atomic excitation
probability [34–37] under continuous drive. In the atomic
sensor community, the impact of phase noise is evaluated for
a single quadrature for specific Ramsey sequences [38–40]. In
contrast, we present a general framework that may be applied to
an arbitrary LO phase noise spectrum for continuous resonant
drive without making assumptions about the orientation of
the Bloch vector. The framework can be extended to arbitrary
resonant pulse sequences assuming white LO phase noise.
Furthermore, we fully specify all second-order noise moments
of the Bloch vector, including covariances and variances,
important for predicting the fidelity of single-qubit gates
and manipulations of spin-squeezed or Dicke states. The
methodology and tools presented in this paper can help guide
the development and evaluation of future quantum control and
measurement protocols.

The organization of this paper is as follows. In Sec. II,
we describe the qubit-field interaction as a rotation of a
Bloch vector. We show that the net effect of a coherently
phase-modulated rotation can be reduced to a small, rigid
rotation of the Bloch sphere. A description of the experimental
system used to demonstrate the theory is provided in Sec. III.
Experimental examples of the response of the Bloch vector
driven by phase-modulated rotations are then presented. In
Sec. IV, we extend the analysis in Sec. II, assuming linear
response to relate the single-sideband (SSB) LO phase noise
to Bloch vector noise projections through a covariance transfer
matrix for a single rotation. Experimental realizations for
a few special cases are also presented. The Bloch vector
noise projection variances and covariances are captured in the
covariance noise matrix. In Sec. V, we generalize the single-
rotation covariance noise matrix to that for multiple rotations
or pulse sequences, and apply the tools to commonly used
composite π -pulse sequences, CORPSE, SCROFULOUS, and
BB1 [19–23], and also to spin-echo pulse sequences. A simple
formula for the average infidelity of any pulse sequence,
appropriate in the context of quantum computing, is also
presented. Finally, we give a summary of the results presented
in this paper and an outlook of future work in Sec. VI.

032313-11050-2947/2012/86(3)/032313(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.032313


CHEN, BOHNET, WEINER, AND THOMPSON PHYSICAL REVIEW A 86, 032313 (2012)

II. DEFLECTION OF BLOCH VECTOR DUE TO
COHERENTLY PHASE-MODULATED ROTATION

A. System Hamiltonian

The system considered in this paper consists of a qubit
with transition frequency fa coupled to a resonant classical
electromagnetic field with strength characterized by the Rabi
frequency fR proportional to the field amplitude. The system’s
Hamiltonian in the laboratory frame is

Hlab = hfaσz + hfR cos[2πfat + φ(t)]σx, (1)

where h is the Planck constant, φ(t) is the LO phase as a
function of time t , and σx ,σy, σz are the Pauli matrices. The
first term corresponds to the Hamiltonian of the qubit in the
absence of the field, and the second term corresponds to
the qubit-field interaction that drives Rabi flopping between
the qubit states |↑〉 and |↓〉. By going into a rotating frame at
the qubit transition frequency and making the rotating-wave
approximation, the dynamics is described by the Hamiltonian

Hrot = hfR

2
{cos[φ(t)]σx + sin[φ(t)]σy} . (2)

B. LO phase noise

The LO phase φ(t) is random as a function of time, and
its statistical properties can be captured by the autocorrelation
function 〈φ(t)φ(t + τ )〉t in the time domain, or, equivalently,
the power spectral density of phase fluctuations Sφ(fm) in the
frequency domain, where fm is the frequency offset from the
LO carrier frequency fLO. The power spectral density of phase
fluctuations Sφ(fm) is related to the autocorrelation function
through the Wiener-Khinchin theorem (see Appendix A).
The SSB phase noise L(fm) = Sφ(fm)/2 of a LO is usually
specified in manufacturer data sheets instead of Sφ(fm). To
facilitate application of our results in an experimental context,
the SSB phase noise L(fm) is used throughout this paper.

The phase noise spectrum of a LO is typically parametrized
as a sum of 1/f -type phase noise as follows:

L(fm) =
∞∑

k=−∞

Lk

f k
m

, (3)

where the coefficient Lk characterizes the strength of the noise
spectrum with dependence 1/f k

m. An important example is
white phase noise, where there is no frequency dependence.
In this case, the only nonzero coefficient is for k = 0, cor-
responding to L(fm) = L◦, and the autocorrelation function
is given by 〈φ(t)φ(t + τ )〉t = L◦δ(τ ), where δ(τ ) is the delta
function. Other frequently encountered phase noise spectra
include flicker noise L(fm) = 1/fm and phase diffusion noise
L(fm) = 1/f 2

m.

C. Bloch sphere picture

The evolution of the qubit’s state in the rotating frame is
conveniently visualized using the Bloch sphere picture. A
qubit’s state can be mapped onto a Bloch column vector J
with components Jk ≡ 〈σk〉, where k = {x,y,z}. The tip of the
Bloch vector resides on a Bloch sphere with radius equal to
1 [see Fig. 1(a)]. The LO phase φ(t) sets the instantaneous
rotation axis around which the Bloch vector rigidly rotates.

x

y

z (b)

x

y

z(a)

FIG. 1. (Color online) Bloch sphere picture. (a) Geometrical
representation of the Bloch vector and a coherently phase-modulated
rotation on the Bloch sphere. Initial Bloch vector Ji is specified
by polar angle θi and azimuthal angle φi . In the absence of phase
modulation, the rotation axis is at a constant angle φR from the
x-axis. With phase modulation, the rotation axis oscillates in the
x-y plane with amplitude β around its average position. (b) Effect
of a coherently phase-modulated rotation. An unmodulated rotation
R(φR,ψ) rotates Ji to J◦

f . With phase modulation of the rotation axis,
the final Bloch vector Jf is deflected slightly by the vector jf that can
be regarded as arising from a small rotation r .

For fixed LO phase φ(t) = φR , an initial Bloch vector Ji is
mapped to an ideal final Bloch vector J◦

f as

J◦
f = R(φR,ψ)Ji , (4)

where R(φR,ψ) performs a counterclockwise rotation through
an angle ψ � 0 about an axis in the x-y plane with azimuthal
angle φR measured relative to x̂. The rotation angle ψ = 2πfRt

is set by the Rabi frequency fR and the amount of time t the
field is applied.

D. Small rotation describing phase-modulated rotation

Our goal is to generate a general covariance transfer matrix
that maps LO phase noise onto noise projections of the final
Bloch vector. To do so, we consider here the response of
the Bloch vector to a coherent phase modulation of the LO
phase in the frequency domain and generalize to a phase noise
process in Sec. IV. A sinusoidal modulation of the LO phase
φ(t) = φR + β sin(2πfmt + αm) represents an oscillation of
the instantaneous rotation axis in the x-y plane with amplitude
β about its average azimuthal angle φR , as illustrated in
Fig. 1(a). The modulation frequency and phase are fm and
αm, respectively.
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A phase-modulated rotation causes a deflection of the final
vector Jf from its ideal final orientation without modulation
by

jf (φR,ψ,β,fm,αm) = Jf − J◦
f . (5)

To first order in the phase modulation amplitude β 	 1,
the deflection is perpendicular to J◦

f . The total effect of the
modulation can be described by an additional small rotation
r(φR,ψ,β,fm,αm) applied after the ideal rotation, such that

Jf = rJ◦
f , (6)

where labels on r have been suppressed. The relationships
between the vectors Ji , J ◦

f , Jf , jf , and the rotations R(φR,ψ),
r , are depicted in Fig. 1(b).

Because the dynamics with modulation can be described
in terms of infinitesimal rigid rotations, the whole Bloch
sphere is rigidly rotated by this additional phase modulation
contribution, and r does not depend on Ji . This is confirmed
by solving for r analytically. Simple rotations about ẑ through
angle φR relate the small rotation r evaluated at φR = 0 to the
small rotation evaluated at arbitrary φR through

r(φR) = Rz(φR)r(0)Rz(−φR) . (7)

Therefore, it is sufficient to determine r for the special case
φR = 0 and Ji = x̂. Hereafter, quantities with a tilde (∼)

overhead apply to this special case only. We find

r(0) = Ry(−j̃z)Rz(j̃y) =

⎛
⎜⎝

1 −j̃y −j̃z

j̃y 1 0

j̃z 0 1

⎞
⎟⎠ , (8)

where j̃f = (0,j̃y,j̃z) and only the first order in the small
quantities j̃y and j̃z is retained.

E. Solution for deflection vector

We now solve for the j̃y and j̃z that determine the
small rotation matrix r defined by Eqs. (7) and (8). Writing
the Heisenberg equations of motion for the Bloch vector
components yields, to first order in the small modulation
amplitude,

dj̃⊥
dψ

+ ı j̃⊥ = −β sin(νψ + αm) , (9)

where j̃⊥ ≡ j̃z + ı j̃y and ν = fm/fR . The rotating-wave
approximation fm 	 fa has been made. Note that this is the
equation of motion for the coupled position and momentum
of an undamped simple harmonic oscillator with natural
resonance frequency fR driven with an externally applied force
at frequency fm. The harmonic oscillator’s displacement and
velocity map onto j̃y and −j̃z, respectively. Solving for j̃y and
j̃z using the initial condition j̃⊥(ψ = 0) = 0, we obtain

j̃y = β

1 − ν2
[−ν cos αm sin ψ − sin αm cos ψ + sin(νψ + αm)], (10)

j̃z = β

1 − ν2
[ν cos αm cos ψ − sin αm sin ψ − ν cos(νψ + αm)]. (11)

The above solutions can be understood as a superposition of
the “transient” and steady-state responses of a driven harmonic
oscillator. The terms proportional to sin ψ and cos ψ in
Eqs. (10) and (11) correspond to the response of the harmonic
oscillator at its natural frequency fR . This response is called
the transient response in damped harmonic oscillator systems.
Because there is no damping in this oscillator, the transient
response does not decay away. The terms proportional to
sin(νψ + αm) and cos(νψ + αm) correspond to the steady-
state response of the oscillator at the drive frequency fm. At
ν = 1, corresponding to the case of driving on resonance, the
solutions take on the following limits:

lim
ν→1

j̃y = − 1
2 [ψ cos(ψ + αm) − cos αm sin ψ], (12)

lim
ν→1

j̃z = − 1
2 [ψ sin(ψ + αm) + sin αm sin ψ]. (13)

The amplitude of the response grows roughly linearly with
ψ for large ψ 
 1 as the drive is phase coherently adding
momentum to the oscillator.

III. EXPERIMENTAL DEMONSTRATION

In order to connect the theory described in Sec. II to an
actual physical system, we experimentally demonstrate the
linear response of the Bloch vector to a coherently phase-
modulated rotation for a few special cases.

A. Physical implementation

The experimental system used for these studies was used to
generate conditionally spin-squeezed states and is described
in Ref. [13]. We use an ensemble of N = 7 × 105 87Rb
atoms laser cooled and trapped in an optical lattice at
823 nm (Fig. 2). The clock states |F = 2,mF = 0〉 ≡ |↑〉 and
|F = 1,mF = 0〉 ≡ |↓〉 constitute a pseudo-spin- 1

2 system or
qubit with transition frequency fa = 6.834 GHz. All atoms
are initially optically pumped into |↓〉. Following that, a
microwave π/2 pulse rotates the Bloch vector up to the equator,
initializing the system for the experiments. To a very good
approximation, the effects of microwave amplitude and phase
inhomogeneity across the atomic ensemble may be neglected
in our experiments. The intrinsic phase noise of the microwave
LO, Agilent E8257D, is sufficiently low that we could use a
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FIG. 2. (Color online) Experiment schematic. (a) The clock states
|↑〉 and |↓〉 of 87Rb form a pseudo-spin- 1

2 system. Coupling of the
atoms to a cavity mode resonant with the |↑〉 to |e〉 transition creates
a collective vacuum Rabi splitting �↑, which is probed to deduce the
population N↑. (b) An ensemble of 7 × 105 atoms are trapped within
the TEM00 mode of an optical cavity using a 1D intracavity optical
lattice at 823 nm. Rotations of the Bloch vector are accomplished
using resonant microwaves at fa = 6.834 GHz. The photodiode
records cavity transmission as the probe laser frequency is swept
across the splitting. (c) The population N↑ = (�↑/2g)2 is determined
from the splitting �↑ obtained by fitting the cavity transmission
vs probe detuning to Lorentzians. (d) Experimental sequence. After
preparing the initial Bloch vector Ji on the equator through optical
pumping and a microwave π/2 pulse, a test rotation RT is applied, and
the result Jz = (N↑ − N↓)/(N↑ + N↓) is measured using the probe.

small modulation amplitude β in order to remain in the linear
response regime and yet not be affected by the phase noise of
the LO source. See Ref. [18] for experimental examples of LO
phase noise masking quantum projection noise.

An experiment typically consists of a test rotation RT

using phase-modulated resonant microwaves coupling the
two-level system with Rabi frequency fR = 40.4 kHz. Af-
ter the rotation is completed, the Bloch vector projection
Jz = (N↑ − N↓)/(N↑ + N↓) is obtained using a cavity-aided
nondemolition measurement of the state populations N↑,↓ =∑N

i=1(1 ± 〈σ i
z 〉)/2, where σ i

z is the Pauli spin operator cor-
responding to spin i. The deflection jz is obtained from
the measured Jz and the J ◦

z for the same rotation without
phase modulation using jz = Jz − J ◦

z . For future reference, j̃z

corresponds to the special case of rotation axis about x̂, i.e.,
φR = 0, and initial Bloch vector Ji = x̂.

The nondemolition measurement is implemented by mea-
suring the size of the collective vacuum Rabi splitting �↑ [41]
generated by the coupling of a degenerate optical cavity mode
to the |↑〉 → |e〉 transition, where the optical excited state
|e〉 ≡ |F ′ = 1,mF = 0〉. The size of the splitting �↑ depends
only on the total atomic population in |↑〉 as �↑ = √

N↑2g,
where 2g is the single-atom vacuum Rabi frequency, a
coupling constant determined by accurately known atomic
properties and cavity geometry. The size of the splitting is
measured by sweeping a probe laser across the resonances and

j

j z

j

/2

-0.5

0.5

0.5-0.5

j z

j

j

/2

-0.2

0.2

0.2-0.2

(a) (b)

~ ~

~ ~

~
~

FIG. 3. Phase-modulated rotations. Examples of the experimen-
tally measured evolution of the Bloch vector along the measurement
axis ẑ vs rotation angle ψ , or, equivalently, time, for (a) reso-
nant modulation fm = fR = 40.4 kHz, with β = 0.0125 rad, and
(b) nonresonant modulation fm = 1.125fR , with β = 0.025 rad. The
modulation phase αm is 0 for both (a) and (b). Dashed lines join the
data points (solid circles) to help guide the eye. The system responds
with frequency components at fm and fR , leading to the observed
amplitude modulation of the response in (b). Insets show the ideal
theoretical spiral trajectories of the Bloch vector about x̂.

fitting the transmitted power to Lorentzians. The population
N↑ is determined from the measured splitting using N↑ =
(�↑/2g)2. Repeating the same procedure after a microwave π

pulse swaps the atomic populations determines the population
N↓. From the measured populations N↑ and N↓, we obtain the
quantity Jz.

B. Response to coherently phase-modulated rotation

The harmonic-oscillator-like response to a phase-
modulated rotation is experimentally demonstrated in Fig. 3.
The Bloch vector is prepared along x̂, then rotated nominally
about x̂ using microwaves whose phase is modulated at a fixed
frequency fm. After a variable rotation angle ψ , the projection
j̃z is measured. For phase modulation near resonance fm ≈
fR , the envelope of the modulation grows roughly linearly
with ψ , whereas away from resonance fm �= fR , frequency
components at fR and fm beat against one another to create
amplitude modulation. The insets of Fig. 3 show the ideal
theoretical spiral trajectories about x̂ for both cases.

IV. NOISE IN THE BLOCH VECTOR DUE TO PHASE
NOISE IN A SINGLE ROTATION

A. Covariance transfer matrix

Having obtained and experimentally demonstrated the
response of the Bloch vector to a coherently phase-modulated
rotation in Sec. II, the goal of this section is to define a
covariance transfer matrix that will allow the computation of
the variance of the final Bloch vector projection along any
arbitrary axis n̂ due to a randomly phase-modulated rotation
caused by phase noise in the LO. We begin with modeling
phase noise at a single discrete frequency f0 by allowing the
modulation phase αm and modulation amplitude β to take on
random values between realizations of the rotation. Statistical
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results are obtained via ensemble averaging over all possible
realizations of the phase-modulated rotation. The modulation
phase and amplitude are fixed in a single realization but are
random from one realization to the next. By drawing the
modulation phase αm from a uniform distribution between 0
and 2π and the modulation amplitude β from a Gaussian dis-
tribution with zero mean and variance 〈β2〉, we model the SSB
phase noise L(fm) = 〈β2〉δ(fm − f0)/4 (see Appendix B for
details).

We define the covariance transfer matrix as the outer
product T (φR,J◦

f ,ψ,fm) ≡ 4〈jf jᵀf 〉/〈β2〉, where 〈·〉 denotes
a statistical average over αm and β. The normalization of
T (labels suppressed) is chosen so that integrating n̂ᵀ · T · n̂
over the SSB phase noise L(fm) of the LO yields the noise
variance 〈(jf · n̂)2〉 of the final Bloch vector projected along a
measurement axis n̂. Using the solutions for j̃y,j̃z in Eqs. (10)
and (11), we find the covariance transfer matrix T̃ (ψ,fm) for
the special case φR = 0 and Ji = x̂:

T̃ (ψ,fm) =

⎛
⎜⎝

0 0 0

0 T̃yy T̃yz

0 T̃zy T̃zz

⎞
⎟⎠ , (14)

T̃yy(ψ,fm) = 2

(1 − ν2)2
{[cos ψ − cos(νψ)]2 + [ν sin ψ − sin(νψ)]2}, (15)

T̃zz(ψ,fm) = 2

(1 − ν2)2
{ν2[cos ψ − cos(νψ)]2 + [sin ψ − ν sin(νψ)]2}, (16)

T̃yz(ψ,fm) = T̃zy(ψ,fm) = 2

1 − ν2
[cos ψ − cos(νψ)] sin ψ. (17)

The covariance transfer matrix T for arbitrary rotation axis
azimuthal angle φR and ideal final Bloch vector position
J◦

f = (J ◦
x ,J ◦

y ,J ◦
z ) is derived using the small rotation r specified

in Eqs. (7) and (8). The full analytic expression for T is
cumbersome but can be conveniently obtained through the
transformation

T = D
(
φR,J◦

f

)
T̃ (ψ,fm)D

(
φR,J◦

f

)ᵀ
, (18)

where

D
(
φR,J◦

f

) =

⎛
⎜⎝

0 −J ◦
y −J ◦

z cos φR

0 J ◦
x −J ◦

z sin φR

0 0 J ◦
x cos φR + J ◦

y sin φR

⎞
⎟⎠ . (19)

As an example of this general result, we experimentally
measure the projection j̃z after rotating Ji = x̂ about x̂ through
different angles ψ = π , 2π , and 4π while phase modulating
the microwave source. Integer multiples of π were chosen to
minimize sensitivity to intrinsic phase noise of the microwave
source near dc. The transfer function T̃zz is obtained from
averaging over four discrete values of the modulation phase
αm = {0, π

2 π, 3π
2 }, while keeping the amplitude β constant, as

T̃zz(ψ,fm) = 1
β2

∑3
n=0 j̃ 2

z (0,ψ,β,fm,nπ
2 ). The measured and

theoretical transfer functions T̃zz are shown in Fig. 4.

B. Covariance noise matrix

In the linear response or small signal limit, the noise in
the Bloch vector in some bandwidth is simply the integral of
the noise variances due to phase noise at frequency fm over
the relevant frequency bandwidth. Integrating the covariance
transfer matrix T̃ over the SSB phase noise L(fm) of the
LO yields the covariance noise matrix, defined for the largest

possible bandwidth,

Ṽ (ψ) =
∫ ∞

0
T̃ (ψ,fm)L(fm) dfm . (20)
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FIG. 4. (Color online) Transfer functions. Examples of exper-
imentally measured transfer function T̃zz(ψ,fm) for ψ = π (black
solid circles), 2π (red open circles), and 4π (blue solid squares)
overlaid on parameter-free theoretical curves. The amplitude of
the phase modulation was β = 0.125,0.05,0.0625 rad for the ψ =
π,2π,4π transfer functions, respectively. The modulation amplitude
β 	 1 is chosen to keep the response small enough to remain in
the linear regime and yet large enough to resolve the nulls at integer
multiples of fR . The transfer function does not depend on β as long
as β 	 1 because both the response j̃z and the modulation amplitude
are proportional to β.
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The covariance noise matrix transforms to arbitrary φR and
J◦

f in the same manner as the covariance transfer matrix in
Eq. (18) via

V = D
(
φR,J◦

f

)
Ṽ (ψ)D

(
φR,J◦

f

)ᵀ
. (21)

Using the covariance noise matrix, the variance in the
projection along n̂ may be obtained as

〈(jf · n̂)2〉 = n̂ᵀ · V · n̂. (22)

As a useful example of quantifying the noise mapping from
the LO onto the Bloch vector, consider a white noise spectrum
L(fm) = L◦. Integrating the white phase noise spectrum over
the covariance transfer matrix T̃ (ψ,fm) yields

Ṽ (ψ) = L◦B̃ , (23)

where the noise equivalent bandwidth matrix is

B̃ = πfR sgn(ψ)

⎛
⎜⎝

0 0 0

0 ψ − 1
2 sin 2ψ − sin2 ψ

0 − sin2 ψ ψ + 1
2 sin 2ψ

⎞
⎟⎠ .

(24)

A corollary to Eq. (24) is that as |ψ | increases, the covariance
transfer matrix T̃ becomes more and more sharply peaked
around the Rabi frequency fR . Therefore, for large |ψ | 
 1,
most of the Bloch vector noise contribution comes from phase
noise near the Rabi frequency. As |ψ | → ∞, the covariance
transfer matrix T̃ approaches a δ function at fR

T̃ (ψ,fm) ∼ πfR|ψ |L◦ δ(fm − fR)

⎛
⎜⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (25)

The noise mapping for any rotation axis in the x-y plane
can be obtained by transforming to arbitrary φR , but keeping
J◦

f = x̂. We find the nonzero elements are Vzz = Ṽzz cos2 φR ,
Vyy = Ṽyy , and Vyz = Ṽyz cos φR . Note that the variance Vzz

can be driven to zero by applying the rotation perpendicular to
the Bloch vector, as shown in Fig. 5(b). Alternately, keeping
φR = 0, but letting J◦

f = x̂ cos θ + ẑ sin θ , i.e., the ideal final
vectors lie in the x-z plane, one finds Vzz,yy = Ṽzz,yy cos2 θ

and Vxx = Ṽzz sin2 θ . This noise mapping is graphically
shown in Fig. 5(a).

V. NOISE IN BLOCH VECTOR DUE TO WHITE PHASE
NOISE FROM MULTIPLE ROTATIONS

A. Noise propagation

The single-rotation covariance noise matrix V allows us to
analyze two crucial building blocks for coherent manipulation
of quantum systems: composite pulses, used to suppress
static amplitude and detuning errors, and time-separated pulse
sequences, designed to reduce qubit decoherence, such as spin-
echo and dynamical-decoupling-type sequences. Constituent
rotations in composite pulses are applied in a back-to-back
manner, leaving as little time as possible between the rotations.
In contrast, time separation between rotations in a time-
separated pulse sequence may be comparable to or much
longer than the time it takes execute a rotation.
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FIG. 5. (Color online) Noise mapping. (a) Phase modulation of
the LO causes modulation of the rotation axis (green arrow) about its
mean orientation, here along x̂ or φR = 0. The final Bloch sphere of
points is deflected by an amount described by a small rigid rotation
r(0) = Ry(−j̃z)Rz(j̃y). The deflection of a Bloch vector depends on
the ideal final vector J◦

f . If a set of possible deflections for an ideal
final Bloch vector J◦

f along x̂ is described by a circle j̃ 2
y + j̃ 2

z = const
(shown outside the sphere for clarity), the same set of deflections for
other J◦

f are described by ellipses and lines centered at J◦
f . (b) The

noise mapping shown in (a) for φR = 0 and for J◦
f on the equator

can be equivalently demonstrated by keeping the final vector oriented
along J◦

f = x̂ and varying the rotation axis φR . The observed noise
variance Vzz (solid circles) of the vector projection along ẑ varies as
the predicted cos2 φR (solid line). The experiment was performed by
applying phase modulation at a discrete frequency fm = 1.125fR to
a rotation about x̂ cos φR + ŷ sin φR that nominally rotates the Bloch
vector Ji = x̂ cos 2φR + ŷ sin 2φR through an angle ψ = π to J◦

f =
x̂. Averaging j 2

z over the four modulation phases αm = {0, π

2 ,π, 3π

2 }
simulates phase noise at a single discrete frequency fm.

Assuming a white phase noise spectrum L(fm) = L◦,
noises from different rotations become statistically indepen-
dent regardless of time separation between rotations. We
also assume that dephasing of the Bloch vector during the
time interval between rotations is small, a condition that is
satisfied by time-separated pulse sequences designed to reduce
decoherence. This ensures the opening angle between the
Bloch vector and the rotation axis is well defined. Under
these assumptions, the formalism for treating noise from
a composite pulse and noise from a time-separated pulse
sequence is the same.

We now present the noise propagation that gives the
multiple-rotation covariance noise matrix W . The symbol W

for the multiple-rotation covariance noise matrix is chosen
to differentiate it from the single-rotation covariance noise
matrix V . A pulse sequence consists of N rotations with the
kth rotation given by

Rk = R(φk,ψk) . (26)

In the absence of noise, the ideal Bloch vector after the kth
rotation is

J◦
k = Rk · · ·R1Ji . (27)

The added noise from just the kth rotation is

Vk = D
(
φk,J◦

k

)
Ṽ (ψk)D

(
φk,J◦

k

)ᵀ
. (28)

By accounting for how the noise from the previous rotation
Wk−1 is transformed by subsequent rotations, the total noise
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after the kth rotation may be computed iteratively using

Wk = RkWk−1R
ᵀ
k + Vk , (29)

with the initial condition W1 = V1. Finally, the noise variance
along any arbitrary projection axis n̂ after the kth rotation is
given by

〈(jk · n̂)2〉 = n̂ᵀ · Wk · n̂ , (30)

where jk is the noise deflection after the kth rotation.

B. Average infidelity

While matrix elements of the covariance noise matrix W

depend on pulse sequence specifics and the initial Bloch vector,
we present here a simple formula that evaluates the average
quality of a pulse sequence using only the general properties of
the pulse sequence. Within the quantum control and computing
community, the state infidelity [42]

1 − F = Tr(W )/4 (31)

is an important measure of the rotation quality. While the state
infidelity depends on pulse sequence details, the state infidelity
averaged over the Bloch sphere of possible initial states

〈1 − F 〉 = 
πfRL◦/3 (32)

depends only on the total rotation angle 
 = ∑N
k=1 ψk and

not on the rotation axes φk . Thus, a pulse sequence with
smaller 
 is preferred over one with larger 
 if one is
mainly concerned with the average fidelity. In spin-echo and
dynamical-decoupling schemes, suppression of environment-
induced decoherence typically improves with the number of
pulses. However, this comes at the expense of increasing
the average phase-noise-induced decoherence. It is therefore
necessary to strike a balance between reducing environment-
induced decoherence and reducing phase-noise-induced
decoherence.

C. Composite π -pulse comparisons

Composite pulses, designed to suppress static amplitude
and detuning errors, have been thoroughly analyzed in the
literature with regards to the degree of error cancellation
[19–23]. The influence of phase noise on the Bloch vector
through composite pulses, however, has received little atten-
tion in the literature.

Applying the noise propagation formalism presented in
Sec. V A to the following commonly used composite π -pulse
sequences which effectively implement a π pulse about
x̂: compensation for off-resonance with a pulse sequence
(CORPSE), short composite rotation for undoing length over
and undershoot (SCROFULOUS), and broad-band number
1 (BB1), we summarize in Fig. 6 the final variance Wzz

and the state infidelity 1 − F versus the initial Bloch vector
Ji specified by its polar angle θi and azimuthal angle φi .
Expressions for the composite pulse rotation sequences,
covariance noise matrices, and state infidelities are provided
in Appendix C.

The single quadrature variance Wzz is of interest in
metrology applications, particularly for manipulating spin-
squeezed states, as added noise in the squeezed quadrature
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FIG. 6. Composite π pulses. Variance Wzz and infidelity 1 − F

of (a), (d) CORPSE π pulse, (b), (e) SCROFULOUS π pulse, and
(c), (f) BB1 π pulse vs initial Bloch vector orientation (θi,φi). θi is
measured from the x-y plane, and φi is measured from x̂. Contour
levels are normalized to fRL◦. For scale, W̃zz(θi = 0,φi = 0) for a
simple π pulse about x̂ is π 2fRL◦. Points of the best (solid circles),
the worst (open circles), and the same (hatched circles) order of static
amplitude error cancellation and points of the best (solid squares), the
worst (open squares), and the same (hatched squares) order of static
detuning error cancellation (offset vertically for clarity) are shown
for Bloch vectors with θi = 0. All plots have the same axes as (a). A
quadrant of the Bloch sphere is shown here. The rest of the contour
plot can be generated using reflection symmetry about the x-y and
x-z planes. The rest of the static error cancellation points can be
generated via φi → φi + π .

can potentially destroy the squeezing. The state infidelity
1 − F , which includes variances from the two transverse spin
components perpendicular to the ideal final Bloch vector, is
particularly pertinent in quantum control for quantifying the
overall quality of the rotations.

It is generally not possible to minimize phase noise sensi-
tivity and optimize static error cancellation simultaneously. To
understand the trade-offs between phase noise sensitivity and
static error cancellation, we compare and contrast the two for
initial Bloch vectors in the x-y plane, i.e., θi = 0, leaving φi

as the only degree of freedom. We use Wzz and 1 − F as the
basis for evaluating sensitivity to phase noise.

A static fractional amplitude error ε results in an er-
ror εψ in the rotation angle, and a static detuning error
δ = (fLO − fa)/fR , where fLO is the LO frequency, causes
the rotation axis to be tilted up from the x-y plane by
an angle arctan(δ). The degree to which the static errors
ε,δ are suppressed can be characterized by the static error
squared Wzz,st = j 2

z,st(ε,δ,φi), and the infidelity due to static
error 1 − Fst = Tr[Wst(ε,δ,φi)]/4. These definitions, in direct
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analogy to corresponding quantities for phase noise, allow
meaningful comparison of the phase noise sensitivity and static
error cancellation on the same footing in the next section.

1. CORPSE π pulse

The CORPSE π pulse, used to suppress static detuning
error, has the best static error cancellation at φi = 0,π , where
both Wzz,st,1 − Fst = O(δ6). However, it is also most sensitive
to phase noise at φi = 0,π [see Figs. 6(a) and 6(d)]. At φi =
π/2, the impact of phase noise is minimized at the expense
of static error cancellation as both Wzz,st,1 − Fst = O(δ4) +
O(ε2).

2. SCROFULOUS π pulse

In contrast to the CORPSE π pulse, sensitivity to phase
noise does not vary with φi for the SCROFULOUS π pulse,
designed to suppress static amplitude error. As shown in
Figs. 6(b) and 6(e), one can simply choose φi to optimize the
cancellation of static errors depending on the quantity Wzz,st or
infidelity 1 − Fst to be optimized and on the dominant source
of static errors (amplitude or detuning) without altering the
impact from phase noise.

3. BB1 π pulse

Finally, the BB1 π pulse, which compensates for amplitude
error with little to no cost to the sensitivity to detuning error, has
similar sensitivity to phase noise where the order of amplitude
error cancellation is best (φi ≈ 0.79π ) or worst (φi ≈ 0.29π ),
as shown in Figs. 6(c) and 6(f). Therefore one may choose
to operate at φi ≈ 0.79π , where Wzz,st = O(δ2) + O(ε10) and
1 − Fst = O(δ2) + O(ε8). In fact, the impact from phase noise
is slightly lower at φi ≈ 0.79π compared to that at φi ≈ 0.29π .
On the other hand, there is a tradeoff between suppressing
detuning error and sensitivity to phase noise. Detuning error
cancellation is best at φi = π/2 as neither Wzz,st or 1 − Fst

scales with δ to any order if ε = 0. However, the impact of
phase noise is also worst at φi = π/2. In general, careful
evaluation of the relative scalings and contributions of phase
noise, static amplitude, and detuning errors is required to
optimize the overall fidelity or specific noise quadratures.

D. Spin-echo pulse sequences

Spin-echo and dynamical-decoupling sequences constitute
another class of manipulation protocols in quantum control and
computing, important for suppressing qubit decoherence or,
for instance, to undo probe-induced dephasing [8–10,13]. We
analyze here spin-echo sequences of the form [τ − R(φ1,π ) −
2τ − R(φ2,π ) − 2τ · · · − R(φN,π ) − τ ] using the formalism
developed in Sec. V A to find the covariance noise matrix W

for the sequence.
We consider the following two choices of rotation axes:

(a) rotation axis always along x̂ or (b) alternating between x̂
and −x̂ with the first π pulse applied along x̂. Note that the
widely used Carr-Purcell [1], Carr-Purcell-Meiboom-Gill [2],
and Uhrig dynamical decoupling [4] sequences are special
cases of (a) corresponding to specific orientations of the Bloch
vector with respect to the rotation axis x̂.

Writing the initial Bloch vector as Ji = (J i
x,J

i
y,J

i
z ), the

covariance noise matrix for both choices (a) and (b) reads

WN = Nπ2fRL◦

⎛
⎜⎝

1 − J i 2
x sNJ i

xJ
i
y sNJ i

xJ
i
z

sNJ i
xJ

i
y J i 2

x 0

sNJ i
xJ

i
z 0 J i 2

x

⎞
⎟⎠ , (33)

where sN = (−1)(N+1). While the noise properties for the two
choices are the same, their sensitivities to static errors are
different. Choice (b) offers cancellation of static amplitude
error as the Bloch vector nominally retraces its path, while
choice (a) accumulates static amplitude error as the Bloch
vector keeps rotating about the same axis in the same sense. On
the other hand, choice (a) does not accumulate static detuning
error, while choice (b) does. In future work, we will explore the
possibility of engineering noise properties of spin-echo pulse
sequences.

VI. CONCLUSIONS

In summary, we have developed a general framework for an-
alyzing the mapping of LO phase noise onto noise projections
of a Bloch vector and extend the mapping to pulse sequences
for the case of white LO phase noise. Detuning or transition
frequency noise can be handled via the mapping β → �/fm,
where � is the frequency modulation amplitude. Results for
special but important and illustrative cases are presented,
which experimentalists can readily utilize for estimation or
design. Future work will extend the analysis to nonresonant
excitation, more complex spin-echo or dynamical-decoupling
pulse sequences, and include the effects of 1/f and higher-
order phase noise, where time separation between pulses may
no longer be ignored and noise correlations between pulses
play an important role.
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APPENDIX A: PHASE NOISE DEFINITIONS

The power spectral density of phase fluctuations Sφ(fm) of
an oscillator is the mean-square phase fluctuations [�φ(fm)]2

at frequency offset fm from the carrier in a 1-Hz measurement
bandwidth:

Sφ(fm) ≡ �φ(fm)2/Hz . (A1)

The phase noise Sφ(fm) has units of rad2/Hz and includes con-
tributions from both upper and lower noise sidebands at ±fm.

One can measure Sφ(fm) by mixing the oscillator under
test with a reference oscillator at the same frequency and with
much lower phase noise. The phase of the reference oscillator
is chosen so that the mixer output v(t) is proportional to the
relative phase difference φ(t) between the oscillator under test
and the reference oscillator. The power spectral density Sφ(fm)
is computed from the autocorrelation function of φ(t) via the
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Wiener-Khinchin theorem as

Sφ(fm) = 2
∫ ∞

−∞
〈φ(t)φ(t + τ )〉t e−i2πfmτ dτ, (A2)

where fm lies in the range (0,∞).
The definition of the SSB phase noise L(fm) is

L(fm) ≡ 1
2Sφ(fm). (A3)

The units forL(fm) are rad2/Hz. It is also commonly expressed
in the form 10 log10 L(fm), which has units of dB below the
carrier in a 1-Hz bandwidth (dBc/Hz). The mean-square phase
fluctuation observed in a Fourier frequency range from fl to
fh is given by

(�φ)2 = 2
∫ fh

fl

L(fm) dfm. (A4)

For an oscillator whose amplitude noise is much lower than
its phase noise, the SSB phase noise L(fm) is equivalent to the
ratio of the power of a noise sideband PSSB(fm) at frequency
offset fm in a 1-Hz measurement bandwidth to the power in
the carrier Pcar as measured on a radio or microwave or optical
frequency spectrum analyzer:

L(fm) = PSSB(fm)

Pcar
. (A5)

APPENDIX B: RELATION BETWEEN MEAN-SQUARE
MODULATION AMPLITUDE AND SINGLE-SIDEBAND

PHASE NOISE

We establish here the connection between the mean-
square phase modulation amplitude 〈β2〉, used to normalize
the covariance noise matrix T in Sec. IV A, and the SSB
phase noise L(fm). We model the phase modulation φ(t) =
β sin(2πf0t + αm), at fixed modulation frequency f0, as being

drawn from a random distribution of αm and β. The modulation
phase αm is uniformly distributed from 0 to 2π , and the
modulation amplitude β is Gaussian distributed with zero
mean and variance 〈β2〉. The time-averaged square phase
modulation should be further averaged over the distribution
for αm and β to yield the statistical phase fluctuations as

〈〈φ(t)2〉t 〉αm,β = 〈φ(t)2〉αm,β = 〈β2〉
2

, (B1)

where we made use of the fact that averaging over time t has
the same effect as averaging over phase αm. Using Eqs. (A1),
(A3), and (B1), we obtain the relation between the SSB phase
noise L(fm) and mean-square modulation amplitude 〈β2〉 as

L(fm) = 〈β2〉
4

δ(fm − f0) . (B2)

APPENDIX C: COMPOSITE AND SINGLE π PULSES:
COVARIANCE NOISE MATRIX AND INFIDELITY

The covariance noise matrix W and infidelity 1 − F for
the CORPSE π pulse, SCROFULOUS π pulse, BB1 π pulse,
and a single π pulse, which all effectively implement a π

pulse about x̂, are given below. The results assume a white
LO phase noise spectrum L(fm) = L◦. We specify the initial
Bloch vector Ji by its polar angle θi , measured from the x-y
plane, and its azimuthal angle φi , measured from x̂ so that
Ji = (cos θi cos φi, cos θi sin φi, sin θi).

1. CORPSE π pulse

For the CORPSE π -pulse sequence R(0, π
3 )R(π, 5π

3 )
R(0, 7π

3 ) (time ordering from right to left), used to suppress
static detuning error, we have

Wxx = 1
3πfRL◦[(13π − 3

√
3) cos2 θi sin2 φi + (13π + 3

√
3) sin2 θi], (C1)

Wyy = 1
3πfRL◦(13π − 3

√
3) cos2 θi cos2 φi, (C2)

Wzz = 1
3πfRL◦(13π + 3

√
3) cos2 θi cos2 φi, (C3)

Wxy = Wyx = 1
6πfRL◦(13π − 3

√
3) cos2 θi sin 2φi, (C4)

Wyz = Wyz = 0, (C5)

Wxz = Wzx = 1
6πfRL◦(13π + 3

√
3) sin 2θi cos φi, (C6)

1 − F = 1
12πfRL◦[13π − 3

√
3 cos 2θi + (13π + 3

√
3) cos2 θi cos2 φi]. (C7)

2. SCROFULOUS π pulse

For the SCROFULOUS π -pulse sequence R(π
3 ,π )R( 5π

3 ,π )R(π
3 ,π ) (time ordering from right to left), used to suppress static

amplitude error, we have

Wxx = 3
2π2fRL◦(2 cos2 θi sin2 φi + sin2 θi), (C8)

Wyy = 3
2π2fRL◦(2 cos2 θi cos2 φi + sin2 θi), (C9)

Wzz = 3
2π2fRL◦ cos2 θi, (C10)

Wxy = Wyx = 3
2π2fRL◦ cos2 θi sin 2φi, (C11)

Wyz = Wzy = − 3
4π2fRL◦ sin 2θi sin φi, (C12)

Wxz = Wzx = 3
4π2fRL◦ sin 2θi cos φi, (C13)

1 − F = 3
16π2fRL◦(5 + cos 2θi). (C14)
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3. BB1 π pulse

The BB1 π -pulse sequence R(0,π )R(φR,π )R(3φR,2π )
R(φR,π ) (time ordering from right to left), where φR =
arccos(− 1

4 ) ≈ 104.5◦, is used to compensate for amplitude
error with little to no cost in the sensitivity to detuning error.
The covariance noise matrix W and infidelity 1 − F for the
BB1 π pulse are

Wxx = 5
4π2fRL◦(4 cos2 θi sin2 φi + sin2 θi), (C15)

Wyy = 5
4π2fRL◦(4 cos2 θi cos2 φi + 3 sin2 θi), (C16)

Wzz = 5
4π2fRL◦ cos2 θi(2 − cos 2φi), (C17)

Wxy = Wyx = 5
2π2fRL◦ cos2 θi sin 2φi, (C18)

Wyz = Wzy = − 15
8 π2fRL◦ sin 2θi sin φi, (C19)

Wxz = Wzx = 5
8π2fRL◦ sin 2θi cos φi, (C20)

1 − F = 5
16π2fRL◦(4 + 2 cos2 θi − cos2 θi cos 2φi). (C21)

4. Single π pulse

Finally, we provide expressions for the covariance noise
matrix and infidelity for a single π pulse R(0,π ) as a useful
benchmark to compare against composite π pulses. The noise
covariance matrix W and infidelity 1 − F for a single π pulse
are

Wxx = π2fRL◦(1 − cos2 θi cos2 φi), (C22)

Wyy = π2fRL◦ cos2 θi cos2 φi, (C23)

Wzz = π2fRL◦ cos2 θi cos2 φi, (C24)

Wxy = Wyx = 1
2π2fRL◦ cos2 θi sin 2φi, (C25)

Wyz = Wyz = 0, (C26)

Wxz = Wzx = 1
2π2fRL◦ sin 2θi cos φi, (C27)

1 − F = 1
4π2fRL◦(1 + cos2 θi cos2 φi). (C28)
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