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Modeling of quantum-information processing with Ehrenfest guided trajectories:
A case study with spin-boson-like couplings
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We apply a numerical method based on multiconfigurational Ehrenfest trajectories and demonstrate converged
results for the Choi fidelity of an entangling quantum gate between two two-level systems interacting through
a set of bosonic modes. We consider both spin-boson and rotating-wave Hamiltonians for various numbers of
mediating modes (from 1 to 100) and extend our treatment to include finite temperatures. Our results apply to
two-level impurities interacting with the same band of a photonic crystal or to two distant ions interacting with
the same set of motional degrees of freedom.
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I. INTRODUCTION

The ability to track the evolution of complex quantum
systems will be a crucial support to the design and development
of future quantum technologies. A paradigm of particular
interest for the latter is one where finite-dimensional quantum
systems, typically two-level systems (qubits), interact through
a “bus,” made up of a set of bosonic-field modes [1–33]. In
this paper, we will consider the case of two qubits interacting
with a common discrete set of modes in the nonperturbative
regime. Although the possibility for creating entanglement,
even at steady state, by the interaction with a common bosonic
bath has been highlighted repeatedly in the literature, the case
of nonperturbative interactions with a bunch of 10 or 20 modes
(as is the case in our paper) presents several major technical
difficulties, essentially due to the impossibility of an analytic
master equation approach–only possible in the continuum limit
under the Born-Markov approximation—and to the huge size
of the dynamically relevant part of the Hilbert space.

Various numerical approaches have been developed to
emulate these dynamics on classical computers, such as the
so-called multiconfigurational time-dependent Hartree method
[34–36] and its “Gaussian” variation [37], various schemes
based on path-integral techniques [38,39], and even the adap-
tation of time-adaptive density-matrix renormalization-group
techniques [40] borrowed from condensed-matter theory.
Here, we will tackle such difficulties by borrowing a method
co-pioneered and developed by one of the authors in the
arena of chemical physics [41,42]. The method is based on
the adoption of a set of tensor products of time-dependent
coherent states as a discrete “basis grid” on which to represent
the field degrees of freedom (referred to as “coupled coherent
states” in the literature [43]) and on letting the states of the
comoving grid evolve according to their Ehrenfest dynamics
[whose application to a grid of coherent states goes under
the name of the “Multi-Configurational Eherefest” (MCE)
method]. This approach has the advantage of being relatively
light in terms of computational resources, easy to program,
and yet allowing one to follow coherent quantum dynamics in
detail, as is shown.

In our paper, we will focus on a specific, but very relevant,
aspect of the quantum dynamics of the two qubits: We will
consider the realization of an entangling quantum gate between

them, namely, of a controlled-Z (CZ) gate. To estimate the
quality of such a realization, we will consider the quantum
fidelity between the pure state corresponding to the CZ gate by
the standard channel-state duality (Choi isomorphism [44–46])
and the quantum state corresponding to the channel acting on
the two qubits upon partial tracing over the field’s degrees of
freedom.

Our main aim is demonstrating the capability of Ehrenfest
guided trajectories in phase space to produce reliable and
converged results for complex figures of merit, able to reveal
detailed information about the quantum dynamics of the
constituents. The “Choi fidelity” of a two-qubit quantum gate
is a property of the dynamics itself and not of the initial state,
and its evaluation requires, at any time, the evolution of ten
initial states: It is, therefore, a rather cumbersome figure of
merit to compute, let alone to optimize over a rather large
range of values of the dynamical parameters, as we did. The
advantages of the Ehrenfest guided trajectories over—arguably
more precise but heavier—approaches based on full variational
principles are manifest in such circumstances.

As for direct impact, let us remark that our paper would
apply on systems, such as two-level impurities trapped in
a photonic crystal and interacting with the same band of
allowed modes [32,47,48], or to the internal levels of two ions
interacting with all the vibrational modes of an array of ions in
a linear trap [49]. It is important to point out that our treatment
can account for finite, although relatively small, temperatures
as well.

Our paper is organized as follows. In Sec. II, we will review
the basic theory behind methods of solution of the Schrödinger
equation based on a set of time-dependent Ehrenfest guided
basis states. We do not dwell so much on the technical details,
which are covered elsewhere, as on the basic concepts, and
try to present them in terms which are friendly to an audience
with no previous familiarity with the terminology of chemical
physics or molecular dynamics. In Sec. III, we will introduce
the physical Hamiltonian and will precisely define our chosen
figure of merit. Section IV will contain the main results of our
numerical study. The entanglement generation is discussed
in Sec. V. Finally, we will draw conclusions and discuss
advantages and shortcomings of our method of choice in
Sec. VI.
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II. EHRENFEST GUIDED TRAJECTORIES

The main difficulty in dealing with a system including
few two-level systems and a bunch of M bosonic modes is
clearly how to handle the infinite-dimensional bosonic Hilbert
space. The method we apply here, referred to in the literature
as multiconfigurational Ehrenfest and first introduced in
Ref. [41], tackles this difficulty on the shoulders of two major
assumptions:

(i) The state space of the field modes is represented as a
superposition of N time-dependent coherent states;

(ii) The time dependence of the coherent states is deter-
mined by a simplified variational principle (which, in other
words, dictates how the finite-dimensional subspace spanned
by the set of coherent states changes with time, trying to keep
it in the dynamically relevant region).

The finite-dimensional systems involved are, on the other
hand, treated by representing their entire Hilbert space,
spanned by d orthonormal basis states | l〉, for l ∈ {1, . . . ,d}.
In agreement with (i), the ansatz wave function of the whole
system reads

|ψ〉 =
d∑

l=1

N∑
j=1

cl,j (t)[|l〉 ⊗ |αj (t)〉], (1)

where αj ∈ CM ∀ j and each |αj 〉 is a tensor product of
coherent states: |αj 〉 = ⊗M

m=1 |α(m)
j 〉 such that, if am is the

annihilation operator of mode m, one has am|αj 〉 = α
(m)
j |αj 〉.

Since we will be dealing with two qubits, it will be d = 4 for
us.

The evolution of the dynamical parameters is more conve-
niently described by adopting a Lagrangian formulation. For
a Hamiltonian operator Ĥ , let us define L as

L = 〈ψ |Ĥ − i∂t |ψ〉. (2)

The time-derivative operator is defined as the differentiation
of the time-dependent coefficients cl,j and by the rela-
tionships ∂t |l〉 = 0 (the finite-dimensional system’s basis is
time independent) and ∂t |αj 〉 = ∑M

m=1[α̇(m)
j (a†

m − α
(m)∗
j /2) −

α̇
(m)∗
j α

(m)
j /2]|αj 〉 (derived from the time dependence of a co-

herent state with varying phase-space position). The quantity
L is, hence, a function of the coefficients cl,j , the complex
parameters αj , and their time derivatives ċl,j and α̇j . In fact,
it can be shown that L serves as a Lagrangian for the quantum
system in the sense that the Euler-Lagrange equations,

∂L
∂cl,j

= d

dt

∂L
∂ċl,j

(3)

are equivalent to the Schrödinger equation.1 See Appendix B
for more details.

Besides determining the state evolution, the variational
formalism also provides one with a recipe to update the
basis such that the expression L in Eq. (2), which clearly

1To be precise, in our instance, since the infinite-dimensional Hilbert
space is only approximately represented by a basis of 4N vectors, such
equations are equivalent to the projection of the Schrödinger equation
on the subspace spanned by our basis.

always equals 0 in the exact dynamics, is minimized during
the time evolution. Such a minimization, which, in essence,
keeps the basis in the “most relevant” region of the Hilbert
space within the constraints of the adopted approximation,
would be obtained by considering the full Euler-Lagrange
equations for the M × N complex parameters αj and their
time derivatives. This would be a large nonlinear system of
coupled equations, requiring a substantial numerical effort to
be solved. Instead, we introduce, here, assumption (ii) and
replace the full variational equations for αj with a simplified
version thereof. In particular, we will neglect all terms
coupling the different αj ’s on the grounds that the overlaps
〈αj |αk〉 are typically very small if the number of modes M is
large enough. For each j , let us then define the vector |ψ̃j 〉 as

|ψ̃j 〉 =
d∑

l=1

cl,j |l〉 ⊗ |αj 〉, (4)

and the corresponding “approximated” Lagrangian L̃j as

L̃j = 〈ψ̃j |H − i∂t |ψ̃j 〉. (5)

The equation of motion for the parameter α
(m)
j (the mth

component of the vector αj ) is

∂L̃j

∂α
(m)
j

= d

dt

∂L̃j

∂α̇
(m)
j

, (6)

where we also neglect the time dependence of the coefficients
cl,j such that each Lagrangian L̃j only depends on the four
complex parameters cl,j and on the M complex parameters
represented by the entries of αj (and on their time derivatives
α̇j , see Appendix A for further details). Equation (6) defines
the MCE method we are using.

Notice that the assumption (ii) is not, per se, an approxi-
mation, but rather just a way of choosing the time dependence
of the adopted basis. However, it should be stressed that,
in general, the exact Euler-Lagrange equation for the full
variation in the parameters α

(m)
j is likely to provide one with a

more accurate result in that it yields a smaller Lagrangian |L|
(which is zero in the exact dynamics).

However, Eq. (6) is much easier to treat numerically, hence,
the advantage of our method, which can be easily programed
and applied with modest computational resources and often
provides results in very good agreement with complete varia-
tional methods, such as Multi-Configuration Time-Dependent
Hartree (MCTDH) or Gaussian-based MCTDH (G-MCTDH)
[34–37].

Multiconfigurational Ehrenfest guided trajectories have
been thoroughly tested for spin-boson dynamics under dif-
ferent spectral densities, establishing the reliability of their
converged results in several diverse situations [41,50]. Here,
we will instead apply them to study a composite system
including discrete sets of bosonic-field modes where coherent
quantum-information processing can be carried out.

III. MODEL AND FIGURE OF MERIT

We set out to study coherent quantum-information process-
ing for a system comprising two two-level systems (qubits)
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connected by M bosonic modes through a spin-boson-like
coupling.

In principle, this represents the archetype of a quantum
system where complex dynamics and information-processing
tasks can be carried out, and whose dynamics is impervious to
nonapproximated methods. In practice, our case study may be
thought of as representing two two-level atoms (or impurities)
interacting with the same photonic band of a photonic crystal
[47] or a simulation of the same setting in a linear array of
trapped ions (where the qubits are embodied by internal levels
of the ions interacting with the same set of vibrational normal
modes [49]).

For future convenience, let us relabel the four states of the
computational basis of the two two-level systems as follows:

|1〉 = |↓↓〉, (7)

|2〉 = |↓↑〉, (8)

|3〉 = |↑↓〉, (9)

|4〉 = |↑↑〉. (10)

The operators σ̂ (1)
x , σ̂ (2)

x , σ̂ (1)
z , and σ̂ (2)

z , will stand for the
customary Pauli operators in the Hilbert spaces of qubits 1
and 2. For instance, in the adopted basis, σ̂ (1)

x is defined by
σ̂ (1)

x |1〉 = |3〉, σ̂ (1)
x |3〉 = |1〉, σ̂ (1)

x |2〉 = |4〉, and σ̂ (1)
x |4〉 = |2〉.

In our paper, we will consider both an actual spin-boson-like
Hamiltonian,

Ĥ =
2∑

j=1

(
ε

2
σ̂ (j )

z + �j

2
σ̂ (j )

x

)
+

M∑
m=1

ωma†
mam

+
2∑

j=1

M∑
m=1

[
g(j )

m σ (j )
x (am + a†

m)
]
, (11)

and its rotating-wave counterpart:

Ĥrw =
2∑

j=1

(
ε

2
σ̂ (j )

z + �j

2
σ̂ (j )

x

)
+

M∑
m=1

ωma†
mam

+
2∑

j=1

M∑
m=1

[
g(j )

m (σ (j )
+ am + σ

(j )
− a†

m)
]
, (12)

where σ
(j )
+ = σ

(j )†
− = σ

(j )
x + iσ

(j )
y . As is well known, the

Hamiltonian Ĥrw is a good approximation of Ĥ with �j = 0
for j = 1,2 in the almost resonant high-frequency case, that
is, in our notation, for |2ε − ωm| 
 |2ε + ωm|, ∀m. In the
following, we will consider systems with different numbers
of bosonic modes M , various values of frequencies {ωm}
and spin-boson couplings {g(j )

m }, and different values of the
tunneling parameters �j . Also, we will set h̄ = 1 throughout
the paper.

In reproducing the dynamics of the two qubits by treating
the field through multiconfigurational Ehrenfest trajectories,
we will aim at obtaining converged results for a figure of merit
of interest in the study of quantum-information processing,
namely, the fidelity with which an entangling CZ gate can
be realized for the two qubits through the mediating bosonic
modes. In terms of the basis states of Eqs. (7)–(10), a CZ gate is

represented as a unitary Ucz leaving all the basis states invariant
except for |4〉, which becomes −|4〉, that is

Ucz|j 〉 = f (j )|j 〉 for 1 � j � 4, (13)

where f (j ) = 1 for j ∈ {1,2,3} and f (j ) = −1 for j = 4.
The relevance of a CZ gate to quantum-information processing
stems from its being a maximally entangling gate which, com-
bined with single-qubit unitaries, forms a universal quantum
set for gate-based quantum computation [51].

At zero temperature, the quantum operation 	t we want to
compare with the CZ unitary gate is defined as follows in terms
of a notional initial density matrix of the qubits 
:

	t (
) = TrB[e−iĤ t (
 ⊗ |0〉〈0|)eiĤ t ], (14)

where TrB stands for partial tracing over the Hilbert space of
the bosonic modes and |0〉 is the vacuum state of the modes. We
will also extend our treatment to include a finite temperature
1/β of the bosonic modes (in natural units where kB = 1), in
which case, the quantum operation 	t,β will be given by

	t,β(
) = TrB

[
e−iĤ t

(

 ⊗

∫
C2M

Pβ(α)|α〉〈α|d2Mα

)
eiĤ t

]
,

(15)

with

Pβ(α) =
M∏

m=1

(
eβωm − 1

π
e−(eβωm −1)|αm|2

)
. (16)

The function Pβ(α) is just the Glauber-Sudarshan P represen-
tation of a thermal state of the bosonic modes (given by the
product of individual P representations for each of the modes).
In our notation, α ∈ C2M , whereas, each component of α is
denoted by αm. Clearly, one has that limβ→∞ 	t,β = 	t .

In our numerical paper, we reproduce the operations 	t by
adopting the method detailed in the previous section, which is
defined for pure states, and reconstruct the operations 	t,β by
sampling different initial pure coherent states |α〉 for the field
according to the distribution given by P (α). We will describe
the field in terms of coupled coherent states during the time
evolution and then will trace it out to achieve the quantum
operation acting on the two qubits.

To define the gate fidelity F , we will make use of the classic
channel-state duality (Choi isomorphism) mapping linear
quantum operations over a Hilbert spaceH into quantum states
on the Hilbert space H ⊗ H [45]. Turning to the two-qubit
Hilbert space H spanned by the basis states (7)–(10), let us
define the maximally entangled fiducial state |ψ〉 (belonging
to H2) as

|ψ〉 = 1
2 (|1〉 ⊗ |1〉 + |2〉 ⊗ |2〉 + |3〉 ⊗ |3〉 + |4〉 ⊗ |4〉). (17)

For a generic CP map 
, the corresponding quantum state 



may be defined as



 = (
 ⊗ 1)(|ψ〉〈ψ |), (18)

where 1 is the identity map acting on H.
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Since the CZ gate is unitary, the quantum state 
cz is bound
to be pure: 
cz = |ϕcz〉〈ϕcz| with

|ϕcz〉 = 1

2
(|1〉 ⊗ |1〉 + |2〉 ⊗ |2〉 + |3〉 ⊗ |3〉 − |4〉 ⊗ |4〉)

= 1

2

4∑
j=1

f (j )(|j 〉 ⊗ |j 〉). (19)

The state 
	t,β
corresponding to 	t,β is, instead, given by


	t,β
= 1

4

4∑
j,k=1

	t,β(|j 〉〈k|) ⊗ |j 〉〈k|. (20)

We can then naturally define the CZ operation fidelity F (which
we will informally refer to as the Choi fidelity) as the overlap,

F = 〈ϕcz|
	t,β
|ϕcz〉 =

4∑
j,k=1

f (j )f (k)

16
〈j |	t,β(|j 〉〈k|)|k〉.

(21)

The quantity F captures, in one real number, a relevant
facet of the quantum dynamics governing the two qubits.
Its relationship to quantum coherence is manifest in that,
if the off-diagonal elements between the basis vectors of
Eqs. (7)–(10) are set to zero, then one has F � 1/4. Any
value of F larger than 1/4 is, thus, in a sense, a signature of
quantum coherence. More importantly, F is also a measure
of how well a coherent quantum task can be performed and
is strictly related to the entanglement generated between the
two qubits (in that entanglement, a perfect CZ gate would get
entanglement equal to 1 ebit for a properly chosen initial state).
Moreover, F , although partial to the chosen reference gate (CZ

in this case), is completely independent of the initial state and
represents a property of the dynamics alone.

Of course, we could have chosen more generic quantifiers,
such as, for instance, the largest eigenvalue of the operator

	t,β

, which would equal 1 in the ideal case where the qubits
undergo a unitary evolution and would quantify, in a sense,
the overall coherence of the qubits’ evolution. However, we
deem such choices to be less informative with regard to the
applicative potential of a complex dynamics.

Given a potentially useful quantum dynamics, the knowl-
edge of F is instead very desirable to possess. Demonstrating
the use of a numerical technique capable of providing one with
reliable estimates of F in relevant situations is, in a nutshell,
the aim of the current analysis.

IV. CHOI FIDELITY OF THE CZ GATE

Here, we will slightly deviate from the previously adopted
notation by setting g

(j )
l = gj for all j and l. It is important

to remark that assuming equal couplings between each qubit
and all the modes is in no way essential to our numerical
approach. Such an assumption can be—and will be, in the
following—relaxed if need be.

Let us then, to begin with, set the coupling between the
first qubit and the field modes g1 to 1 and essentially choose
it as the unit of time. Let us also, until further notice, set ε =
� = 0, β → ∞ (zero temperature) and consider the rotating-
wave Hamiltonian Ĥrw. Note that the Hamiltonian Ĥrw with
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g1t

Exact
MCE

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

F

g1t

Exact
MCE

(b)

FIG. 1. (Color online) Choi fidelity F versus rescaled time
for Ĥrw with ε = � = 0, g1 = 1, and g2 = 1.9, obtained at zero
temperature by the dot-dashed curve: MCE method and dotted curve:
exact analytic integration for (a) M = 1 and ω1 = 0.1 and (b) M = 3
and ωm = 0.1m for 1 � m � 3. The lines F = 0.25 are reported for
reference. All the quantities plotted are dimensionless.

ε = � = 0 can be derived from the full Hamiltonian Ĥ with
� = 0 by switching to the interaction picture and applying the
rotating-wave approximation: Thus, ε can be set to zero, and
each field frequency ωm is shifted as per ωm → ωm − 2ε.

By exploiting the conservation of the number of excitations,
the dynamics governed by the Hamiltonian Ĥrw for � = 0
can easily be solved analytically. The agreement between such
analytical solutions and the MCE results has been tested for up
to ten modes and is excellent. Figures 1(a) and 1(b) show such
an agreement in terms of CZ Choi fidelity F for g2 = 1.9 and
one mode with ω1 = 0.1 and three modes with ω1 = 0.1, ω2 =
0.2, and ω3 = 0.3, respectively. An initial peak with fidelity
larger than 0.9 is immediately apparent: This peak is the main
object of our investigation for larger numbers of modes too.
For three modes, the peak appears at a time, which is approxi-
mately reduced by a

√
3 factor with respect to the single-mode

case. This cooperative effect is confirmed for all numbers of
modes up to 20 and is simply due to the fact that the qubits are
coupled to the field through the mode 1√

M

∑M
m=1 am with an

effective coupling, which scales like
√

M (clearly, this is the
consequence of assuming equal couplings with all modes).

Figures 2–6 depict a detailed analysis of the Choi fidelity
for M = 10 bosonic modes with frequencies ωm = 0.1m for
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0.4

0.6

0.8

1

F

g1t

g
2
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g
2
=2.1

g
2
=1.8

FIG. 2. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 0, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, zero temperature, and different values of g2.
The line F = 0.25 is reported for reference. All the quantities plotted
are dimensionless.
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FIG. 3. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 0, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, β = 10, and different values of g2. The line
F = 0.25 is reported for reference. All the quantities plotted are
dimensionless.

1 � m � 10, three different temperatures (β → ∞, β = 10,
and β = 5), and different values of the coupling g2, scanned
over the range of 1.8–2.7. The zero-temperature case (Fig. 2)
shows how the dispersion of quantum coherence among the
field’s degrees of freedom affects the gate’s fidelity (whose
maximum is smaller than in the one- and three-mode cases),
although in the considered region of dynamical parameters, the
effect is not as pronounced as one could imagine. The plots
clearly show the detrimental effect of thermal fluctuations on
coherent quantum effects, even at such relatively low temper-
atures. In practice, this analysis suggests severe constraints
on the temperature for the observation of coherent quantum
effects mediated by discrete vibrational modes (typically,
much more susceptible to thermal excitations than optical
modes due to their lower frequencies), considering that the
highest temperature accounted for is around 0.2g1 in natural
units: Even in the rather optimistic hypothesis of couplings
on the order of 1 GHz, the temperature needed to observe
coherent oscillations is on the order of a millikelvin, and this
estimate decreases linearly with the coupling.
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FIG. 4. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 0, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, β = 10, and different values of g2/g1 (red
stands for higher values, and blue stands for lower values). All the
quantities plotted are dimensionless.
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FIG. 5. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 0, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, β = 5, and different values of g2/g1. The
line F = 0.25 is reported for reference. All the quantities plotted are
dimensionless.

Most importantly, we were able to determine the optimal
value of the coupling g2 with respect to a vast range of values
(much wider than what was reported in the plots) in terms of
the maximal converged Choi fidelity F and to establish that
g2 � 2.1 yields the closest results to an ideal CZ gate. Clearly,
in practice, such couplings will not always be tunable at will,
or possibly only within a given window of values. Anyway, it
is very remarkable to be able to identify optimal values of the
dynamical parameters given a specific sophisticated dynamical
figure of merit. Notice that, due to the complexity of the figure
of merit adopted, this kind of optimization would be next
to impossible to perform analytically, even for most solvable
systems. This case, hence, demonstrates particularly well the
potential of our tools.

Let us now turn to a case, which cannot be treated
analytically by switching on the local tunneling rate �. In
particular, let us consider ε = � = 1 and ωm = 0.1m for
1 � m � 10. As usual, we set g1 = 1 and consider different
values of g2 and different temperatures (zero temperature
and β = 10): The values of F for such a configuration are
displayed in Figs. 7–10. The initial peak in F is still apparent,

0 1 2 3 4 5
1.8
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FIG. 6. (Color online) MCE results for the Choi fidelity F

versus rescaled time for Ĥrw with ε = � = 0, g1 = 1, M = 10, and
ωm = 0.1m for 1 � m � 10, β = 5, and different values of g2/g1

(red stands for higher values, and blue stands for lower values). All
the quantities plotted are dimensionless.
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FIG. 7. (Color online) MCE results for the Choi fidelity F versus
rescaled time at zero temperature for Ĥrw with ε = � = 1, g1 =
1, M = 10, and ωm = 0.1m for 1 � m � 10 and different values of
g2. The line F = 0.25 is reported for reference. All the quantities
plotted are dimensionless.

but the breaking of the phase invariance by the term � clearly
degrades the quality of the gate with a maximum Choi fidelity,
which is now around 0.7, even at zero temperature. This poorer
performance is understandable in that the tunneling terms add
an intrinsic rotation to the local bases of the two qubits, whose
mismatch with the oscillations mediated by the bosonic modes
is responsible for the decay in the quality of the CZ gate.

We now turn to the full spin-boson-like Hamiltonian
Ĥ (including the counter-rotating terms in the qubit-field
coupling) and consider the cases ε = � = 1 and ωm = 0.1m

for 1 � m � 10. The inclusion of the counter-rotating terms
makes the simulation much more challenging to run and
to converge. Roughly speaking, the main difficulty one
encounters comes down to the fact that the time derivatives
of the phase-space positions of the basis grid, determined by
the Ehrenfest dynamics as per Eq. (6), are much larger if the
counter-rotating terms are included. The time-dependent grid,
thus, evolves much more rapidly in phase space and is likely
to leave the dynamically relevant region and to accumulate
substantial errors earlier. We were, however, able to obtain
well-converged results by reducing the coupling g1 to 0.5,
which is still very far from the perturbative regime (see
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FIG. 8. (Color online) MCE results for the Choi fidelity F versus
rescaled time at zero temperature for Ĥrw with ε = � = 1, g1 =
1, M = 10, and ωm = 0.1m for 1 � m � 10 and different values of
g2/g1 (red stands for higher values, and blue stands for lower values).
All the quantities plotted are dimensionless.
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FIG. 9. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 1, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, β = 10, and different values of g2. The line
F = 0.25 is reported for reference. All the quantities plotted are
dimensionless.

Appendix C for a more detailed discussion concerning the
convergence of our numerics). Likewise, we scanned values
of g2 up to 0.5. Quite significantly—as confirmed by Figs. 11
and 12, respectively, for zero temperature and β = 10—we
could not find any value of g2 such that the Choi fidelity of
the CZ gate reached 0.25. In fact, strong enough couplings are
necessary to entangle the two qubits on short enough time
scales but, with such strong couplings, the counter-rotating
terms heat the qubits up too quickly for coherent effects to
take place, at least, in this region of parameters. This heating
overshadows the effect of thermal fluctuations in the field,
which are barely noticeable for β = 10 (and are, instead,
manifest in the rotating-wave regime at the same temperature).

In order to simulate the effect of a band of a one-dimensional
photonic band-gap medium where modes are usually doubly
degenerate in frequency (since they can propagate in either
spatial direction), we have also considered a case with M = 20
modes, two for each equally spaced frequency. All the other
parameters have been kept as above with ε = � = 1 and g1 =
1 in the rotating-wave case (Fig. 13), and g1 = 0.5 in the full
Hamiltonian (Fig. 14). Comparing Fig. 13 with Fig. 7 shows
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FIG. 10. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥrw with ε = � = 1, g1 = 1, M = 10, and ωm =
0.1m for 1 � m � 10, β = 10, and different values of g2/g1 (red
stands for higher values, and blue stands for lower values). All the
quantities plotted are dimensionless.
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FIG. 11. (Color online) MCE results for the Choi fidelity F

versus rescaled time at zero temperature for Ĥ with ε = � = 1, g1 =
0.5, M = 10, and ωm = 0.1m for 1 � m � 10 and different values
of g2. The line F = 0.25 is reported for reference. All the quantities
plotted are dimensionless.

that the initial peak in Choi fidelity is still present: Moreover,
not only does it occur earlier by a factor

√
2 (as expected

because of the cooperation between the modes due to the
balanced coupling), but also it is higher. Contrary to common
intuition, this example shows that a larger number of mediating
modes, in favorable dynamical configurations, such as this, can
actually be advantageous for the implementation of distributed
coherent dynamics. Note that, for M = 20 modes, we needed
about N = 400 coupled coherent states to achieve converged
results. This is as large a basis set as we used in this paper.

A. Zero-temperature Ohmic spin-boson bath

The notion of entangling separated systems and of distribut-
ing quantum coherence by interaction with common heat baths
or other incoherent means is well established in the quantum-
information and condensed-matter communities and has been
explored under a number of—either more specific and applied
or more general and abstract—viewpoints [52–66]. However,
the problem of studying the nonperturbative interaction of
two qubits with a common bath is still, in general, a difficult
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FIG. 12. (Color online) MCE results for the Choi fidelity F versus
rescaled time for Ĥ with ε = � = 1, g1 = 0.5, M = 10, and ωm =
0.1m for 1 � m � 10, β = 10, and different values of g2. The line
F = 0.25 is reported for reference. All the quantities plotted are
dimensionless.
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FIG. 13. (Color online) MCE results for the Choi fidelity F versus
rescaled time at zero temperature for Ĥrw with ε = � = 1, g1 =
1, M = 20, and ωm = 0.1m for 1 � m � 10, ωm = 0.1(m − 10) for
11 � m � 20 and different values of g2. The line F = 0.25 is reported
for reference. All the quantities plotted are dimensionless.

one. Thus, to provide the reader with further evidence of
the versatility and power of our approach, we also report
the application of the MCE method to the controlled-Z Choi
fidelity for the case of the spin-boson Hamiltonian Ĥ with ε =
� = 1 and both qubits interacting with a common bath at zero
temperature and with Ohmic spectral density J (ω) given by

J (ω) = 2

π
αωe−ω/ωc , (22)

where α is the Kondo parameter, which we fix at 0.09 and ωc

is a cutoff frequency.
We use a standard approach to discretize the bath, which

has already been proven to be very reliable for single-spin
Ohmic spin-boson systems [41]. In particular, the frequencies
and coupling strengths are chosen as follows:

ωm = −ωc ln

[
1 − m(1 − e−ωmax/ωc )

M

]
, (23)

g1
m = g2

m =
√

ωmαωc(1 − e−ωmax/ωc )

2M
, (24)
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FIG. 14. (Color online) MCE results for the Choi fidelity F

versus rescaled time at zero temperature for Ĥ with ε = � = 1, g1 =
0.5, M = 20, and ωm = 0.1m for 1 � m � 10, ωm = 0.1(m − 10)
for 11 � m � 20 and different values of g2. The line F = 0.25 is
reported for reference. All the quantities plotted are dimensionless.
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FIG. 15. (Color online) MCE results for the Choi fidelity F versus
rescaled time at zero temperature for Ĥ with ε = � = 1 and a
common Ohmic bath with α = 0.09, ωc = 2.5, and different numbers
of total bath modes. The line F = 0.25 is reported for reference. All
the quantities plotted are dimensionless.

where ωmax is a free parameter of the numerics, which we
converge our results against (in that we choose it large enough
to obtain converged results). In particular, we choose ωmax =
12.5 for ωc = 2.5 and ωmax = 6 for ωc = 1. Also, the coupling
strengths g

j
m are defined as in Eqs. (11) and (12).

Figure 15 shows the convergence of our results for ωc = 2.5
and the full Hamiltonian Ĥ in terms of the total number of
modes in the bath (M = 50 and M = 100). It is apparent that,
in this instance, a gate fidelity higher than the threshold value
0.25—implying the presence of coherent off-diagonal terms
in the computational basis of the two qubits—can actually be
achieved even for the full spin-boson Hamiltonian. So, quite
interestingly, if the counter-rotating terms are included, one
obtains larger gate fidelities when mimicking a bath than for
a smaller set of discrete bus frequencies. Of-resonant modes
are more influential in the full Hamiltonian, and their impact
seems to be captured faithfully by our method.

In Fig. 16, instead, we report results for the rotating-wave
Hamiltonian Ĥrw and different cutoff frequencies and numbers
of bath modes. A comparison between Figs. 15 and 16 clearly
shows that the counter-rotating terms do play a crucial role

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ωc=2.5,M=100

ωc=1,M=100

ωc=2.5,M=50

ωc=1,M=50

Δt

F

FIG. 16. (Color online) MCE results for the Choi fidelity F versus
rescaled time at zero temperature for Ĥrw with ε = � = 1 and a
common Ohmic bath with α = 0.09, different cutoff frequencies, and
different numbers of total bath modes. The line F = 0.25 is reported
for reference. All the quantities plotted are dimensionless.

in this dynamics and actually effectively contribute to mediate
the coherent interaction between the qubits. Also, the influence
of the larger bath’s cutoff frequencies at longer times is clearly
represented in the plot.

Finally, notice that, as discussed in more detail in the
following section, these findings about the quality of an
entangling CZ gate through a bosonic bath also imply the
capability for the bath to establish entanglement between the
two distant qubits, which further exemplifies the potential
of our method as a tool to reproduce and to study complex
dynamical situations.

V. ENTANGLEMENT GENERATION

Typically, a large Choi fidelity for the (entangling) CZ gate
corresponds to the generation of substantial entanglement
between the two qubits. To support this statement, here, we
report a brief study on the entanglement generated between
two qubits. As an entanglement quantifier, we adopt the
concurrence, an entanglement monotone that can be easily
calculated for a system of two qubits [67]. Figures 17(a)–
17(c) show the concurrence versus rescaled time for the
rotating-wave Hamiltonian Ĥrw with different initial states,
temperatures, dynamical parameters, and numbers of modes.
The degradation in quantum entanglement due to temperature
is apparent [Figs. 17(a) and 17(b)] along with the speedup
in the entanglement generation induced by a doubling of the
modes [Fig. 17(c)].

It is also worth noticing that we did not find any region
of parameters where entanglement between the two qubits
was generated for the full Hamiltonian Ĥ and M = 10, thus,
mirroring our failure in obtaining CZ fidelities larger than 0.25.

VI. CONCLUSIONS

We have presented an extensive numerical study, based on
multiconfigurational Ehrenfest trajectories, on the dynamics
of two qubits interacting with a common set of bosonic field
modes, obtaining converged results for the Choi fidelity of
an entangling CZ gate between the qubits for a rather wide
range of Hamiltonian parameters and field temperatures, which
cannot be covered by perturbation theory or other approximate
approaches. We, thus, demonstrated the capability of tracking,
analyzing in detail, and even optimizing with respect to certain
ranges of some parameters, specific aspects of the coherent
quantum dynamics of the qubits.

More specifically, let us summarize our main findings:
(1) We have demonstrated the ability of our method to

faithfully reproduce analytical results for up to ten modes
coupled through a rotating-wave Hamiltonian.

(2) We have determined optimal coupling strengths to
maximize the Choi fidelity of the CZ gate between the two
distant qubits.

(3) We have obtained converged results (see Appendix C
for detailed information on the convergence of our numerics)
for the Choi fidelity of the gate coupled by a rotating-wave
Hamiltonian with the addition of local tunneling terms.

(4) We have obtained converged results, although for
shorter times and weaker coupling strengths, for the Choi
fidelity of the gate coupled by a spin-boson Hamiltonian.
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FIG. 17. (Color online) MCE results for the concurrence versus rescaled time at different temperatures for Ĥrw with g1 = 1 and g2 = 2.1. In
(a), ε = � = 0, M = 10 (with ωm = 0.1m for 1 � m � 10), and the initial state is |4〉 = |↑↑〉; in (b), ε = � = 0, M = 10 (with ωm = 0.1m

for 1 � m � 10), and the initial state is |2〉 = |↑↓〉; in (c), ε = � = 1, the initial state is |2〉 = |↑↑〉, and M = 10 (with ωm = 0.1m for
1 � m � 10) for the dashed-dotted line and M = 20 [with ωm = 0.1m for 1 � m � 10 and ωm = 0.1(m − 10) for 11 � m � 20] for the
dashed line, respectively. All the quantities plotted are dimensionless.

(5) We have included the effect of finite temperatures (up
to 0.2 coupling strengths) and have quantitatively determined
how the temperature degrades the Choi fidelity.

(6) We have obtained converged results for the entangle-
ment, in terms of concurrence, between the two qubits in all
the dynamical situations considered above.

(7) We have obtained converged results for the Choi fidelity
of the CZ gate when the interaction is mediated by a discretized
Ohmic bath, showing that, in such a case, the inclusion of the
counter-rotating terms actually improves the gate’s quality.

We were, hence, able to properly take into account the
effect of the finite bath’s temperatures on the reduced dynamics
of the qubits and to highlight some counterintuitive features
related to the scaling of coherent signatures with the number
of field modes (which we varied over the range of 1–100),
showing that, at times, more mediating modes can actually be
advantageous for the distribution of quantum coherence.

The main limitations of our approach lie in the difficulty
of handling counter-rotating qubit-field coupling terms in
the strong-coupling regime (i.e., when the coupling strengths
are comparable to the inherent dynamical frequencies of the
qubits). Even in such instances, we could, however, reach
convergence by somewhat limiting the range of the coupling
strengths.

Within such limitations, the MCE approach has, hence,
been established as a powerful tool for the detailed study
of complex quantum dynamics even with relatively limited
resources (desktop computers), typically for systems where
discrete sets of up to 100 field modes are involved.
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APPENDIX A: EHRENFEST DYNAMICS
OF THE COHERENT STATES

Here, we elaborate on Eq. (6) and explicitly derive the
equation of motion for each complex parameter α

(m)
j . The

approximated Lagrangian Lj reads

Lj =
d∑

l,n=1

c∗
l,j cn,j 〈αj ,l|Ĥ |αj ,n〉 − i

d∑
l=1

c∗
l,j ċl,j

− i

d∑
l=1

|cl,j |2
(

α̇j · α∗
j

2
− α̇∗

j · αj

2

)
, (A1)

where |l,αj 〉 = |l〉 ⊗ |αj 〉. Note that 〈αj ,l|Ĥ |αj ,n〉 is just a
function of the vector αj and the integers l and n, promptly
evaluated by normal ordering Ĥ .

The Euler-Lagrange equation for α
(m)
j then is as follows:

∂Lj

∂α
(m)
j

=
4∑

l,n=1

c∗
l,j cn,j

∂

∂α
(m)
j

〈αj ,l|Ĥ |αj ,n〉+ i

d∑
l=1

|cl,j |2
α̇

(m)∗
j

2

= −i
d

dt

(
d∑

l=1

|cl,j |2
α

(m)∗
j

2

)
= d

dt

∂Lj

∂α̇
(m)
j

, (A2)

which, by neglecting the time dependence of cl,j [setting
d
dt

(
∑d

l=1 |cl,j |2) = 0], can be rearranged to obtain

α̇
(m)∗
j = i

∑4
l,n=1 c∗

l,j cn,j
∂

∂α
(m)
j

〈αj ,l|Ĥ |αj ,n〉∑d
l=1 |cl,j |2

. (A3)

This equation governs the evolution of the vectors αj in our
numerics.

APPENDIX B: DYNAMICS OF THE STATE VECTOR

For the sake of completeness, let us also report the system
of dynamical equations (Schrödinger equation on the subspace
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FIG. 18. (Color online) (a) Norm and (b) E/� (where E is the
expectation value of energy) for MCE results at zero temperature for
Ĥrw with ε = � = g1 = 1, g2 = 2.7, M = 10 (with ωm = 0.1m for
1 � m � 10), and different values of N and comp. All the quantities
plotted are dimensionless.

spanned by the basis grid) for the parameters cl,j , which can
be derived by Eq. (2) and reads

N∑
k=1

[
i
jkċl,k + i
jk

(
α∗

j · α̇k − α∗
j · α̇j

2
− α̇∗

j · αj

2

)
cl,k

−
d∑

h=1

〈αj ,l|Ĥ |h,αk〉ch,k

]
= 0,

where 
jk = 〈αj |αk〉. To enhance the stability of the nu-
merical treatment, the parameters cl,j are actually redefined
by multiplication with a smooth phase factor (essentially, a
semiclassical action).

APPENDIX C: CONVERGENCE OF MCE RESULTS

To give an idea of the quality and range of reliability of our
results, here, we provide some evidence of the convergence of
our numerics.

Throughout our paper, the centers of the initial set of
coherent states are distributed in phase space with a Gaussian
distribution with standard deviation 1/comp. The parameter
comp is a free parameter of the paper, which is tuned to
optimize convergence. As indicators of the quality of the
numerics, we will observe the convergence of specific entries
of the density matrix of the two qubits 
 as well as the norm
Tr(
) and the expectation value of the energy Tr(Ĥ
), which
are obviously conserved in the exact dynamics. Notice that
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FIG. 19. (Color online) Entries of the qubits’ density matrix
(a) 
11 and (b) 
13 for MCE results at zero temperature for Ĥrw with
ε = � = g1 = 1, g2 = 2.7, M = 10 (with ωm = 0.1m for 1 � m �
10), and different values of N and comp. The line label is the same as
in Figs. 18(a) and 18(b). All the quantities plotted are dimensionless.
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FIG. 20. (Color online) (a) Norm and (b) E/� (where E is the
expectation value of energy) for MCE results at zero temperature for
Ĥ with ε = � = g1 = g2 = 1, M = 10 (with ωm = 0.1m for 1 �
m � 10), and different values of N and comp. All the quantities
plotted are dimensionless.

our method does not have any built-in routine guaranteeing
the conservation of the state vector’s norm so that Tr(
) is a
relevant figure of merit to assess its reliability.

Figures 18(a) and 18(b) display the norm and expectation
value of the energy for a case of non-number-conserving
rotating-wave Hamiltonian (initial spin state | ↑↑〉), whereas,
in Figs. 19(a) and 19(b), the entries 
11 and 
13 are plotted.
The reliability of the numerics over the whole time frame
considered is apparent (for the large enough compression
parameter comp) in terms of both convergence with increasing
number N of coherent states and of conservation of invariant
quantities. As anticipated, the situation is much more dire for
the full Hamiltonian Ĥ . In this case, Figs. 20 and 21 show that
our numerics are only reliable up to rescaled times around
2.5, after which, both convergence and norm and energy
conservation are lost, even at smaller coupling strengths (in
that g2 = 1 rather than g2 = 2.7 as before). By reducing both
couplings g1 and g2 to 0.5, the convergence can be extended
to slightly more than t = 5 as is the case in the plots reported
in our paper.

It is important to stress that the inconsistencies shown in
Figs. 20 and 21 are only reported to illustrate the regime
of validity of our method. All data corresponding to times
where any check, based on matrix elements’ convergence,
norm conservation, or energy conservation failed, have been
discarded in the present paper and bore no consequence
whatsoever on our analysis.
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FIG. 21. (Color online) Entries of the qubits’ density matrix
(a) 
11 and (b) 
13 for MCE results at zero temperature for Ĥ with
ε = � = g1 = g2 = 1, M = 10 (with ωm = 0.1m for 1 � m � 10),
and different values of N and comp. All the quantities plotted are
dimensionless.
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FIG. 22. (Color online) (a) Choi fidelity, concurrence for two different separable initial states (b) |↑↑〉, and (c) |↑↓〉 versus rescaled time
for Ĥrw with ε = � = 0, g1 = 1, g2 = 2.1, β = 0.5, and different values of NT and M . In all plots, M = 10 with ωm = 0.1m for 1 � m � 10.
“Conjugate” refers to the fact that, for those curves, the initial centers of the coherent states αj are in complex-conjugate pairs.

Finally, we show three examples of convergence of our
results at finite temperatures (here, β = 0.5) with respect to

the increase in the number of states NT over which, the thermal
distribution of Eq. (16) is sampled [Figs. 22(a)–22(c)].
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