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Theory of Josephson photomultipliers: Optimal working conditions and back action
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We describe the back action of microwave-photon detection via a Josephson photomultiplier (JPM), a
superconducting qubit coupled strongly to a high-quality microwave cavity. The back-action operator depends
qualitatively on the duration of the measurement interval, resembling the regular photon annihilation operator at
short interaction times and approaching a variant of the photon subtraction operator at long times. The optimal
operating conditions of the JPM differ from those considered optimal for processing and storing of quantum
information, in that a short T2 of the JPM suppresses the cavity dephasing incurred during measurement.
Understanding this back action opens the possibility of performing multiple JPM measurements on the same
state, hence performing efficient state tomography.
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I. INTRODUCTION

Recently, many of the benchmark experiments of cavity
quantum electrodynamics (QED) [1–4] have been reproduced
with superconducting circuits [5–12], which operate in the
quantum regime via exchange of microwave-frequency excita-
tions [13–17]. On these circuits, nonlinear devices couple to the
microwave-frequency modes of transmission lines via ordinary
circuit devices such as capacitors or inductors [18–20], much
as atoms couple to modes of a resonant electromagnetic cavity.
A fixed number of these artificial atoms can be fabricated
in a given circuit, and their energy levels and interactions
are tunable both at fabrication and during the course of an
experiment. For these reasons, circuit-QED (cQED) receives
attention both as a possible platform for scalable, universal
quantum computing [21,22] and for its ability to operate in
regimes inaccessible by atomic cavity-QED [23–30].

While many of the tools available in cavity-QED are
straightforward to reproduce in the circuit analog, the detection
of single microwave-frequency photons proves challenging.
Traditionally, the lower cutoff frequency of photon counters
is determined by the work function or band gap of a certain
material, which is at a minimum in the infrared range for stable
materials. There are currently a few theoretical proposals for
the construction of microwave photon counters [31–34], and
recently it was demonstrated experimentally that a current-
biased Josephson junction [35–40] can be used to count
microwave photons [41]. We refer to such a device as a
Josephson photomultiplier (JPM), distinguishing it from a
phase qubit [42,43] because the optimal operating conditions
for photon detection are different than those required for
storage of quantum information.

Photon counters should be contrasted with amplifiers.
While the former are sensitive to the intensity of the in-
coming radiation but not to the phase, the latter amplify the
quadratures of the signal. Even though commercial microwave
amplifiers operate far from the quantum limit, researchers
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have recently demonstrated single-photon sensitivity in phase-
preserving microwave amplification [44–52]. By contrast,
phase-insensitive photon counters have proven useful in
quantum optics for reconstruction of the quantum state of
light as, for example, in homodyne tomography. Workarounds
to microwave photon counting based on linear amplification
have been formulated [53,54] and demonstrated [55–57].

As microwave photon counters, JPMs have an important ap-
plication in efficient quantum state tomography of microwave
photon states. Given that measurement by a JPM provides
only limited information—a click indicates the presence of
one or more photons—the postmeasurement state still contains
coherent information about the initial state. Following the idea
of quantum regression this postmeasurement state is connected
to the premeasurement state by back-action operators. Hence,
if the back-action operators are known, repeated measurements
on a chain of postmeasurement states can be performed
by multiple JPMs fabricated on the same chip. As each
measurement in sequence extracts independent information
about the initial state, the state can be reconstructed with
fewer re-preparations, opening the possibility of more efficient
quantum state tomography.

In this paper, we theoretically model the back action of
the proposed JPM, obtaining the precise relation between
pre- and postmeasurement states. This knowledge may allow
efficient state tomography [58,59] including, for example,
adaptive techniques [60], or any other application requiring
knowledge of the postmeasurement state. We note that our
results are based on a very abstract model and thus extend
to other detection schemes whereby a quantum two-level
system strongly couples to a resonant linear oscillator, so
long as the observable detection event involves incoherent
tunneling from an energy level of the two-level system (and
not the oscillator). For example, this situation applies to some
setups in atomic cavity QED. We include realistic estimations
of the energy dissipation and dephasing rates of a JPM,
showing that operating the JPM in the regime of fast dephasing
(short T2) reduces the amount of dephasing incurred during
measurement, and is thus advantageous.

In the following section, we discuss our model for the JPM.
In Sec. III, we discuss the formalism of process tomography

032311-11050-2947/2012/86(3)/032311(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.032311


GOVIA, PRITCHETT, MERKEL, PINEAU, AND WILHELM PHYSICAL REVIEW A 86, 032311 (2012)

used to characterize the back action of the JPM. In Sec. IV,
we give the back action both numerically and analytically in a
variety of instructive and/or experimentally relevant regimes.
In Sec. V, we discuss how to extract the operating regime of
the JPM by simple tests with coherent light. Finally, in Sec. VI,
we discuss the optimal working conditions of the JPM for the
purpose of cavity state reconstruction.

II. PHYSICAL MODEL

A JPM consists of a current-biased Josephson junction
(CBJJ) [35–40] capacitively coupled to the microwave cavity
of interest. The potential energy of a JPM, shown in Fig. 1, is

U (φ) = −Ic

�0

2π
cos φ − Ib

�0

2π
φ, (1)

where Ic is the critical current of the junction externally biased
by current Ib, φ is the superconducting phase difference across
the junction, and �0 = h̄

2e
is the magnetic flux quantum.

We consider a junction biased such that the potential well
contains only a few meta-stable states. All of these states can
tunnel incoherently out of the potential well, but due to the
exponential relationship between tunneling rate and barrier
height, the tunneling rate for higher energy states is several
orders of magnitude higher than that for the ground state. Note
that, in analogy to the phase qubit, the current source can be
replaced by a large, flux-biased superconducting loop [43,61].

Photon detection relies on an incident microwave photon
to transition the JPM to its first excited state. This transition
is enhanced by pulsing the bias current, bringing the energy
level splitting of the ground and first excited state of the
JPM on- or near-resonant with the microwave cavity. Once
the JPM reaches its excited state, it tunnels more rapidly out
of the metastable state. This tunneling process is incoherent,
resulting in a measurable voltage pulse in the circuit that is
interpreted as the detection of a single photon [37–41]. By
comparison, a related method of cavity state reconstruction
determines the number of cavity photons present by the
frequency of coherent oscillation between the cavity and a
phase qubit [24].

We assume that the JPM and cavity states are initially
separable with the JPM in the lowest energy metastable state.

FIG. 1. (Color online) This figure is a diagrammatic represen-
tation of the potential energy of a JPM as a function of the
superconducting phase difference, and shows the interaction with
a microwave cavity.

Physically, this means that the JPM and microwave cavity
must be brought on resonance adiabatically with respect to the
JPM’s internal evolution, but nonadiabatically with respect
to the cavity-JPM interaction. We describe the full system’s
Hilbert space with tensor products of single mode cavity
eigenstates and three detector states, {|0〉d,|1〉d,|m〉d}. The
states |0〉d and |1〉d correspond to the ground and first excited
metastable states of the JPM, while the measured state |m〉d

is an amalgamation of the many possible states that the JPM
can tunnel into incoherently, producing an observable output
voltage.

The coherent interaction between the cavity and the JPM
as well as the relevant incoherent processes (for example,
tunneling into the measured state, dephasing, and relaxation)
are described by the quantum master equation:

ξ̇ (t) = Ŝ[ξ (t)]

= −i[Ĥ ,ξ (t)] +
∑

μ

(
Ĵμξ (t)Ĵ †

μ − 1

2
{Ĵ †

μĴμ,ξ (t)}
)

, (2)

where ξ (t) is the cavity-JPM system’s density matrix. Here H

is the Jaynes-Cummings interaction,

Ĥ ≡ g(â†σ̂− + âσ̂+), (3)

where â and â† are the lowering and raising operator associated
with the cavity mode, σ̂± are the lowering and raising operators
between the states |0〉d and |1〉d, and g is the coupling strength
between the cavity and the JPM, which can be tracked back to
circuit parameters [62]. Note that this Hamiltonian conserves
total excitation number and does not couple photons coherently
to the measured state, which simplifies the following analysis.

A set of Linblad operators {Ĵμ} describe the relavent
incoherent processes.

Ĵ1 ≡ √
γ1(Îc ⊗ |m〉〈1|d) (4)

describes incoherent tunneling out of the excited metastable
state leaving one less excitation in the cavity, and thus
corresponding to photon measurement. Tunneling out of the
metastable ground state is described by

Ĵ0 ≡ √
γ0(Îc ⊗ |m〉〈0|d), (5)

where γ0 is the effective dark count rate since a measurement
signal is produced without changing the number of excitations
in the cavity. We also include Linblad operators to describe
pure dephasing of the JPM over characteristic time T2,

Ĵ2 ≡ 1√
T2

(Îc ⊗ |1〉〈1|d), (6)

and energy relaxation from the excited state to the ground state
of the JPM over characteristic time T1,

Ĵ3 ≡ 1√
T1

(Îc ⊗ |0〉〈1|d). (7)

In general the cavity decoheres as well [63,64], but this
happens slowly compared to other relevant time scales.

III. PROCESS TOMOGRAPHY

For tomography of the process of cavity state measurement
by a JPM, we calculate the Liouville supermatrix T (t)
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generated by

S ≡ −i(Ĥ ⊗ Î − Î ⊗ Ĥ )

+
∑

μ

(
Ĵμ ⊗ Ĵ ∗

μ − 1

2
Ĵ †

μĴμ ⊗ Î − 1

2
Î ⊗ (Ĵ †

μĴμ)∗
)

,

which transforms an arbitrary, vectorized initial cavity-JPM
state to the solution of (2):

�ξ (t) = T (t)�ξ (0) = eSt �ξ (0). (8)

We then transform the Liouville supermatrix into the more
commonly used χ -matrix representation [65,66], which, for a
given basis {Êμ}N2−1

μ=0 of operator space L(H), satisfies

ξ (t) =
N2−1∑
μν=0

χμν(t)Êμξ (0)Ê†
ν . (9)

In the standard basis, Eμ(α,β) ≡ |α〉〈β| where μ(α,β) ≡
(N × α) + β and {|α〉}N−1

α=0 is an eigenbasis of the full system’s
noninteracting Hamiltonian, the χ -matrix elements are simply

χμ(α,β)ν(γ,δ)(t) ≡ χαβγ δ(t) = 〈α|(eSt |β〉〈δ|)|γ 〉, (10)

and can be obtained by a permutation of the Liouville
supermatrix elements: χαβγ δ = Tαγβδ . In all calculations, we
assume an initial state of the form,

ξ (0) = ρc(0) ⊗ |0〉〈0|d, (11)

a product state of the initial cavity state, ρc(0), and the
lowest energy metastable state of the JPM. Preparation of this
factorized state has already been described earlier (Sec. II).

We are interested in the back action of the JPM onto
the cavity state conditioned on measurement outcome s ∈
{0,1,m},

ρs
c (t) = 〈s|eŜt ξ (0)|s〉d

P s(t)
, (12)

where P s(t) normalizes the cavity state by the probability of
obtaining JPM final state |s〉d. Only incoherent tunneling into
the measurement state is allowed by our model, so no coherent
superposition between the measured and nonmeasured state is
possible. Therefore, ρs=m

c gives the cavity state after detection
of a photon, and in the case that no photon is detected, the cavity
will be in a mixture of the states with s = 0,1. Each outcome
is completely described by an off-diagonal d2

cav × d2
cav block

of the full χ matrix, which is by itself a valid χ matrix of the
isolated cavity. We label these reduced χ matrices χs , which
completely describe the evolution of an arbitrary initial state
ρc(0), in the case of measurement outcome s.

IV. ANALYTICAL AND NUMERICAL SOLUTIONS FOR
THE χ MATRIX

A. No tunneling model

To understand the back action of photon detection, we first
consider a simpler model where there are no incoherent pro-
cesses, and measurement of a photon corresponds to projecting
the JPM onto its metastable excited state |1〉d (rather than
|m〉d). In this model, Eq. (2) reduces to ξ̇ (t) = −i[Ĥ ,ξ (t)], and
the cavity conditioned on measurement outcome s at time t can

be expressed in terms of a single time-dependent back-action
operator B̂s(t) acting only on the Hilbert space of the cavity:

ρs
c (t) = B̂s(t)ξ (0)B̂s(t)†

P s(t)
. (13)

Furthermore, in this model, the B̂s(t) are straightforward to
calculate explicitly:

B̂1(t) ≡ 〈1|ξ (t)|0〉d = −i

∞∑
n=1

sin(gt
√

n) |n − 1〉 〈n|c , (14)

B̂0(t) ≡ 〈0|ξ (t)|0〉d =
∞∑

n=0

cos(gt
√

n)|n〉〈n|c. (15)

The cavity is initialized in a superposition of n-photon Fock
states, and when only coherent cavity-JPM interaction is
included, each n-photon Fock state in superposition will
exchange a single excitation with the JPM at a Rabi frequency
g
√

n. Measurement projects the detector onto |0〉d or |1〉d,
modifying the cavity with back action B̂0(t) or B̂1(t), respec-
tively. From these operators we obtain the average detection
probability,

P 1(t) = 〈B̂1†(t)B̂1(t)〉0 =
∑

n

P 1
n (t)〈n|ρc(0)|n〉, (16)

where P 1
n (t) ≡ sin2(gt

√
n) is the detection probability when

the n-photon Fock state is initially prepared.
It is possible, by averaging over repeated measurements

at increasing time intervals, to distinguish Fock states and
incoherent mixtures of Fock states by Fourier transforming
the average detection probability P 1(t), as was demonstrated
in Ref. [67]; however, more sophisticated state tomography
is required for resolving superpositions of Fock states. One
approach is to displace the cavity state and reconstruct a
convenient phase space description of its initial state, repeating
measurements and averaging at every point in phase space
that is resolved [24]. Here we look for a quantum description
of the measured cavity state so that repeated measurements
on a single input state can be used for a more efficient state
tomography.

From the behavior of (14),

B̂1 = (−igt)â + O(
√

ngt)3, (17)

we can see that at short times (and finite n), the measurement
back action is proportional to the photon lowering operator.
Furthermore, at short times, different Fock states can be dis-
tinguished by their tunneling rate into the detector, �n ≡ g2n.
However, at longer times t � tn ≡ 1/g

√
n, the oscillations

from different Fock states become out of phase and difficult to
distinguish. This effect is described by the correction to the â

operator in Eq. (17).
We note that back action is well described by the lowering

operator when the interaction times tn (for the largest occupied
n) are the largest time scales of the system. This happens, for
example, in the free photon regime where coupling strengths
are very weak [68]. In addition, we will later show that in
the richer model where detection corresponds to tunneling
out of the 〈1|d at the rate γ1, the lowering operator is a
good approximation to the back action for times shorter than
the excited state tunneling time γ −1

1 . To detect low-energy
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microwave photons, however, we need measurement times
long compared to tn and γ −1

1 , and corrections to the lowering
operator become important to fully understand the back action
associated with photon detection.

B. Full (tunneling) model

In the full model, a detection event corresponds to the
detector incoherently tunneling to the “measurement” state
|m〉d, which corresponds to the JPM observably tunneling from
a metastable state to a near continuum of levels. The JPM
does not reset to its initial state on a time scale comparable
to the measurement interval and therefore cannot resolve the
total number of photons present in the cavity, only whether
there is at least one present. Therefore, we do not expect the
measurement back action on the cavity to be exactly the photon
annihilation operator, but rather an operator of the form,

B̂m =
∞∑

n=1

|n − 1〉〈n|, (18)

which we refer to as the subtraction operator. We note that this
back action can be used to separate the number-dependent part
of the annihilation operator,

â ≡ B̂mN̂1/2, (19)

and was thus considered as the exponential of a quantum
phase operator by Susskind and Glogower [69], but a currently
more accepted unitary version was proposed by Pegg and
Barnett [70].

While in the no-tuneling model the measurement back
action reflects undamped Rabi oscillations between the cavity
and JPM, we expect these oscillations to be damped by
incoherent tunneling out of the metastable states of the JPM
so that, when averaged over an entire measurement interval,
the back action has the form of Eq. (18). Transitions occur
from |n〉 to |n − 1〉 photon Fock states, with no preference on
the number n of photons originally present. However, because
the initial tunneling rate depends on the number of photons
present, and it takes time for this averaging effect to occur,
we expect that for measurement intervals short compared to tn
and γ −1

1 the back action will more closely resemble that of the
usual photon-number resolving annihilation operator.

To understand the distinguishing signatures of â and B̂m

in the framework of process tomography, it is instructive to
examine the χ1 matrices corresponding to each. Both will
have

χ1
j−1jk−1k ≡ βjk ∀ j, k ∈ {1, . . . ,N − 1}, (20)

nonzero, corresponding to superpositions of |j 〉 and |k〉
photons transitioning to |j − 1〉 and |k − 1〉 photons. For a
good photon detector, the number of excitation in a given Fock
state is decreased by exactly one, therefore all other elements
of χ1 are zero. When the back-action operator is â,

βjk =
√

jk, (21)

while for B̂m,

βjk = 1, (22)

for all values of j,k ∈ {1,...,N − 1}. In the following section,
we numerically study the time dependence of the βjk in our full

physical model, using the values of βjk for known examples
of back-action models as a point of reference.

C. Numerical simulations for the χ 1 matrix

1. Bare JPM

Here we present the χ1-matrix elements numerically
generated using the Liouville supermatrix approach, first in the
case of a bare detector experiencing no dark counts, dephasing,
or energy dissipation (γ0 = 0 and T1 = T2 = ∞). In this case,
the χ1 matrix has the same nonzero elements as those for â

and B̂m, labeled above as βjk .
The βjk are plotted as a function of total measurement

time (tm) in Fig. 2 for j,k ∈ {1,2,3,4}. As is demonstrated
clearly by the diagonal αj ≡ βjj plotted in Fig. 2(a), the
χ1-matrix elements show oscillatory behavior at n-dependent
frequencies, as in Eq. (14), g

√
n. Similarly, the off-diagonal

elements also show oscillatory behavior, as can be seen in
Fig. 2(b).

In the long-time limit, the diagonal elements all tend to
unity as expected for a back action resembling the subtraction
operator, however, the off-diagonal elements do not. This
additional dephasing can be explained by the uncertainty
in time of the switching event, which is of the order γ −1

1 .
As the phase of the off-diagonal matrix elements precesses
with frequencies proportional to g, this uncertainty gives
a spread of the phase of size g/γ1. We will later see
how decoherence reduces this uncertainty, thus reducing the
amount of dephasing incurred by measurement.
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FIG. 2. (Color online) (a) Diagonal and (b) off-diagonal χ1-
matrix elements for a bare JPM as a function of time, where αj = βjj

as defined in Eq. (20).
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2. Pure dephasing

We now consider a JPM that experiences pure dephasing
between its ground and excited states, as would be described by
a master equation including the Lindblad operator Ĵ2 of Eq. (6).
In this case, the χ1 matrix has the same nonzero elements as
that for the bare detector since the selection rules imposed by
the conservation of excitation number are still valid. The bare
detector and pure dephasing χ1-matrix elements are compared
in Fig. 3, where the dephasing time has been chosen such that
1
T2

= 10 γ1, deep in the strong dephasing regime.
As can be seen in Fig. 3, decreasing the value of T2 has

multiple effects. On the one hand, the photon transfer from the
cavity into the detector is slowed down by decreasing T2, so at
short time the χ1-matrix elements are smaller. In addition, the
coherent oscillations are damped as T2 has the effect of turning
the coherent tunneling between the cavity and the JPM into
an incoherent process, similar to the crossover from strong
coupling cavity QED to the Purcell regime [3]. In fact, a phase
Purcell effect has been discussed in [71,72]. This affects both
the diagonal and off-diagonal χ1-matrix elements.

Once the photon transfer efficiency is no longer a limiting
factor, the asymptotic limit of the diagonal χ1-matrix elements
is not affected by T2. The off-diagonal elements saturate to a
value that is set by measurement-induced dephasing which
is lowered by short T2 [as seen in Fig. 4(a)]. This reduction
in measurement-induced dephasing is due to the fact that T2

turns the coherent tunneling between cavity and JPM into
an incoherent process, and thus reduces the phase precession
of the off-diagonal elements and with it the uncertainty of
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FIG. 3. (Color online) Comparison of the (a) diagonal and
(b) off-diagonal χ 1-matrix elements of a bare JPM with one
experiencing additional pure dephasing 1/T2 = 10γ1 (marked with
circles). In both plots, each curve’s color indicates its row in the χ1

matrix, and in (b) distance from the diagonal is indicated by line style.
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FIG. 4. (Color online) (a) Shows the asymptotic limit of the
off-diagonal χ 1-matrix elements as a function of T2. (b) Shows the
time scale over which these asymptotic limits are reached; (b) is not
monotonic due to the coherent oscillations present for long T2.

these phases at the moment of measurement. Although the
amount of dephasing decreases with decreasing T2, the total
measurement time required for the χ -matrix elements to reach
their asymptotic value increases, as shown in Fig. 4(b).

To further illuminate the effect of pure dephasing on a
JPM we look at the probability of detection for a coherent
state input and a one-photon Fock state input. In Fig. 5,
we see that for both input states, dephasing suppresses
the oscillations in detection probability exhibited by the
bare JPM. These oscillations result from coherent excitation
swapping (Rabi-type oscillations) between the cavity and JPM,
and superpositions of an excitation in the JPM and in the
resonator are subject to dephasing processes in the JPM. This
pure dephasing turns coherent JPM-cavity oscillations into
incoherent resonant tunneling.

In the long-time limit, both the dephased and bare JPM
detect a photon with the same probability. Thus, it is not
necessary to aim at long T2 values for a JPM as one would
for a phase qubit [42,43]. On the contrary, we see that the
dephasing incurred by measurement is smaller at short T2,
rendering it advantageous. A more detailed discussion about
T2 as an engineering parameter will be given at the end of the
paper.

3. Energy relaxation of the JPM

We consider a JPM experiencing energy dissipation, as
described by a master equation including the Lindblad operator
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FIG. 5. (Color online) (a) Shows the detection probability for a
bare JPM and a JPM experiencing pure dephasing for a coherent
state input (as described in Sec. V A with |α| = 0.5). (b) Shows the
detection probability for a bare JPM and a JPM experiencing pure
dephasing for a one-photon Fock state input.

Ĵ3 of Eq. (7). In this situation, the JPM will also experience
associated dephasing on a time scale T2 = 2T1. The χ1 matrix
of a dissipating JPM has additional nonzero elements (in
addition to the βjk) attributed to a change of the total excitation
number. As the JPM can lose photons into an external heat
bath, it is possible that multiple photons from the cavity might
excite the JPM before a detection event occurs. The nonzero
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FIG. 6. (Color online) This figure shows the diagonal χ1-matrix
elements shared by a bare JPM and a JPM experiencing energy
relaxation. Energy relaxation matrix elements are represented by
circles on the plots.
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FIG. 7. (Color online) Diagonal χ 1-matrix elements α
(r)
j ≡

χ 1
j−1j+rj−1j+r corresponding to photon detection after loss of r

photons. These elements are zero unless an energy dissipation
mechanism is present.

χ1-matrix elements are of the form,

β
(r)
jk ≡ χ1

j−1j+rk−1k+r , (23)

corresponding to the loss of integer 0 < r < min{k,j} photons
before detection. β

(0)
jk = βjk from the previous sections, and

the diagonal elements are relabeled α
(r)
j ≡ β

(r)
jj .

In Fig. 6 we compare the α
(0)
j for an energy relaxation time

scale of 1
T1

= γ1 to the αj of a detector with infinite T1. Unlike
the case of pure dephasing, energy loss from the JPM reduces
the asymptotic value of these χ1-matrix elements. We also
note that the off-diagonal β

(0)
jk evolve exactly like those of a

JPM experiencing pure dephasing, as shown in Fig. 3(b), but
with an effective T2 of 2T1. The diagonal χ1-matrix elements
α

(r)
j are shown in Fig. 7 for different values of r .

As in the case of pure dephasing, it is instructive to
see the effect of energy relaxation on the probability of
photon detection for specific input states. Figure 8 shows
the detection probability as a function of time for both
coherent states and one-photon Fock states. The short-time
oscillatory behavior of the bare JPM detection probability
is strongly suppressed by energy relaxation because of the
effective dephasing rate T2 = 2T1. In addition to this dephasing
effect, the detection probability of a JPM experiencing energy
relaxation asymptotes more quickly to a smaller value than
that of a bare JPM.

A plot of the asymptotic value of detection probability as a
function of energy relaxation rate, T −1

1 , is shown in Fig. 9 for a
one-photon Fock state input. The JPM experiences competing
decay channels (energy relaxation and incoherent tunneling
into the measured state), only one of which results in photon
detection. This reduces the time required for the probability
to reach its asymptotic value as well as the overall probability
that a detection will occur. In the case where these two decay
rates are equal, the single photon detection probability will be
exactly half of what it would be for a bare detector, as seen in
Fig. 8.

4. Dark counts

The final modification of interest is tunneling out of the
|0〉d state, a detection event which does not change the number
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FIG. 8. (Color online) (a) Shows the detection probability for a
bare JPM and a JPM experiencing energy relaxation for a coherent
state input [same as in Fig. 5(a)]. (b) Shows the detection probability
for a bare JPM and a JPM experiencing energy relaxation for a one-
photon Fock state input [same as in Fig. 5(b)].

of excitations in the cavity and is therefore considered a dark
count. This is described by a master equation including the
Lindblad operator Ĵ0 of Eq. (5). The χ1 matrix has, in addition
to all the nonzero elements of the bare JPM, additional nonzero
elements,

χ1
jjkk �= 0 ∀ j, k ∈ {0,1,..N − 1}. (24)

These elements correspond to detection events that occur
without changing the k-photon Fock state in the cavity. The

FIG. 9. (Color online) This figure shows the asymptotic value of
detection probability for a JPM experiencing energy relaxation as a
function of the energy relaxation rate T −1

1 . The black circles represent
numerically simulated data points, while the curve is a linear fit
between the simulated data points. As expected, it is a monotonically
decreasing function.
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FIG. 10. (Color online) Detection probabilities for a bare JPM
and one experiencing dark counts for (a) a one-photon Fock state
input state and (b) an α = 1 coherent state input state.

JPM experiencing dark counts will appear to have a higher
probability of photon detection than a bare JPM; however, this
increased probability is due to false detections. Dark counts
limit the detector contrast by the ratio between true and false
detections.

We are not aware of any simple way to correct for all
the effects of dark counts on detection probability without
a priori information about the detected state; however, by
the appropriate choice of experimental parameters, the dark
count rate can be made to be quite small for a JPM—as
much as 2–3 orders of magnitude smaller than the excited
state tunneling rate [41]. It is therefore not unreasonable to
simulate a dark count rate of 5% of the excited state tunneling
rate as a conservative estimate.

Figure 10 shows the detection probability for a one-photon
Fock state input with a 5% dark count rate, which is very
similar to that of a bare JPM; however, for a coherent state with
〈n〉 = |α|2 = 1, dark counts significantly change the detection
probability since the coherent state has a significant vacuum
component. This deviation decreases as |α| of the coherent
state increases.

D. Analytical solutions in the low T2 regime

While a full analytic solution of the system’s master equa-
tion does not promise more illumination than the numerical
results presented above, here we obtain the short T2 behavior
of the detector by making appropriate approximations. We
begin by defining the block cavity matrix,

ρij (t) ≡ 〈i|d ξ (t) |j 〉d , (25)

032311-7



GOVIA, PRITCHETT, MERKEL, PINEAU, AND WILHELM PHYSICAL REVIEW A 86, 032311 (2012)

where |i〉d ≡ Ic ⊗ |i〉d project ξ (t) on the basis states of the
noninteracting JPM. We are interested in the unrenormalized
state of the cavity after photon detection, which corresponds
to the cavity state ρmm(t). From the full master equation, it can
be shown that

ρ̇mm(t) = 〈m|d eSt ξ (0) |m〉d = γ1ρ11(t), (26)

in the case that γ0 = 0. Thus, the instantaneous time evolution
of ρmm depends only on ρ11, the unnormalized state condi-
tioned on the JPM being in the excited state.

The time evolution of ρ11 is governed by a system of four
first-order operator differential equations:

ρ̇11 = ig(ρ10â
† − âρ01) − γ1ρ11,

ρ̇00 = ig(ρ01â − â†ρ10),
(27)

ρ̇01 = ig(ρ00â
† − â†ρ11) − γ1 + κ2

2
ρ01,

ρ̇10 = ig(ρ11â − âρ00) − γ1 + κ2

2
ρ10,

where we have introduced the pure dephasing rate κ2 = 1
T2

for
notational convenience. This system can be reduced to a single
fourth-order operator differential equation in terms of ρ11(t),
as shown in Eq. (A1).

Now for simplicity, we consider the occupation probability
of the cavity state |n〉 〈n|c given that a photon detection has
occurred,

Pn(t) ≡
∫ t

0
〈n|c ρ̇mm(t ′) |n〉c dt ′, (28)

which from (26) can be expressed as

Pn(t) = γ1

∫ t

0
x(t ′)dt ′, (29)

where we have defined the matrix element

x(t) ≡ 〈n|c ρ11(t) |n〉c . (30)

The full master equation reduces to the fourth-order differen-
tial equation in x(t), given in Eq. (A2).

Before attempting to solve the somewhat cumbersome
Eq. (A2), we make the simplifying assumption that T2 is the
smallest time scale of the system’s evolution, and keep only
the highest order terms in g

κ2
,
γ1

κ2
� 1. This gives

x(4) + κ2x
(3) + 1

4κ2
2 x(2) + 1

4γ1κ
2
2 x(1) + κ2g

2γ1(1 + n)x = 0,

(31)

which can be solved with Laplace transforms. Defining X(s) ≡
L[x(t)], Eq. (31) in the Laplace domain is

X(s) = 2g2(n + 1)x0

(
s + κ2 − 3γ1

2

)

×
(
s4 + κ2s

3+ 1

4

(
κ2

2 s2+κ2
2 γ1s

)+κ2g
2γ1(n+1)

)−1

,

(32)

where x0 ≡ x(0) = 〈n|cρ11(0)|n〉c.
While still very general and valid for all input states,

Eq. (32) is still somewhat unwieldy. However, in the limit
of short T2, we can assume that coherent oscillations between

the cavity and JPM become incoherent tunneling. Defining
�α,β→δ,γ to be the tunneling rate from state |α〉c ⊗ |β〉d to
state |γ 〉c| ⊗ |δ〉d, we take

�n,0→n−1,1 = �n−1,1→n,0 = 4ng2T2,
(33)

�n,1→n,m = γ1.

Here �n,0→n−1,1 is the incoherent tunneling rate from the cavity
into the JPM when n photons are present, and �n−1,1→n,0 the
rate for the inverse process. Both rates are broadened by short
T2, which can be understood in terms of the Purcell effect. If we
consider only Fock state inputs, the occupation probabilities,

Pn,j(t) ≡ 〈n|c ρjj(t) |n〉c j ∈ {0,1,m}, (34)

of the cavity being in the n-photon Fock state and the detector
being in state |j〉d obey the Pauli master equation. Using the
rate in Eq. (33), this simplifies to

Ṗn,0 = nγ2(Pn−1,1 − Pn,0),

Ṗn,1 = (n + 1)γ2(Pn+1,0 − Pn,1) − γ1Pn,1, (35)

Ṗn,m = γ1Pn,1,
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FIG. 11. (Color online) These figures show the detection prob-
ability of a JPM experiencing pure dephasing in the low and
intermediate T2 regimes for one- and two-photon Fock state inputs.
The detection probability obtained from the analytical solution
described in this section is compared to a numerical simulation
(via the Liouville supermatrix approach) of the detection probability.
(a) represents the low T2 regime, with 1

T2
= 10 000γ1 and (b) is the

intermediate T2 regime, with 1
T2

= γ1.
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where γ2 ≡ (2g)2T2 ≡ (2g)2/κ2. For an n-photon Fock state
input, Pn,0(0) = 1 and the total number of excitations in the
system is fixed to n, so at later times only Pn,0, Pn−1,1, and
Pn−1,m are nonzero.

Equation (35) can be solved to find the detection probability
as a function of time (the details of this are shown in
Appendix A), giving

Pn,m(t) = 1 + γ1γ2n

(s+ − s−)

(
es+t

s+
− es−t

s−

)
, (36)

where

s± = 1
2

( − γ1 − 2γ2n ±
√

γ 2
1 + 4γ 2

2 n2
)
. (37)

We can distinguish two regimes for this solution. In the
tunneling-limited regime, γ1 � γ2n we find s+ � −γ1/2 and
s− � −2γ2n and have

Pn,m(t) = 1 − e−γ1t/2 + O(γ1/γ2n). (38)

In the opposite regime, photon capture is the slower, limiting
process (γ1 � γ2n). In this regime, s+ = −γ2n and s− =
−γ1 − γ2n and we find

Pn,m = 1 − e−γ2nt + O(γ2n/γ1). (39)

The differences between these regimes is evident in Fig. 3(a);
with added dephasing, γ1 � γ2n, and the detection proba-
bilities Pn,m = αn reach their asymptotic values more slowly
and with n dependence. Without the added dephasing, γ1 �
γ2n, the rate at which the detection probabilities reach their
asymptotic value is determined by γ1, and independent of n.

Equation (36) agrees to a high degree of accuracy with
the numerical simulations for a JPM experiencing pure
dephasing with a very short dephasing time T2. As can be
seen in Fig. 11(a) for one- and two-photon Fock states, this
agreement occurs at all times. Interestingly, even at longer
T2 the analytical solution is still a good approximation to
the numerical simulation. By design, the analytical solution
ignores coherent oscillations between the cavity and the JPM,
and so in the long T2 regime the analytical solution does not
display the oscillatory behavior of the numerical solution, but
instead describes its average behavior. This can be seen in
Fig. 11(b), for one- and two-photon Fock state inputs.

V. COHERENT STATE TEST

In this section, we propose a test to determine whether a
given JPM’s back action is closer to the lowering operator or
the subtraction operator in order to correctly characterize the
JPM. Additionally, such a test would allow us to examine the
effects of energy relaxation and pure dephasing on the time
evolution of the back action.

A. The dependence of detection probability on
coherent state power

Consider a coherent state expressed in the Fock basis,

|α〉 = e− |α|2
2

∑∞
n=0

αn√
n!

|n〉. It is straightforward to calculate the
detection probabilities for both the lowering and subtraction
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FIG. 12. (Color online) For a bare JPM, the detection probability is shown for a measurement occurring at tmg values of 0.126 in (a), 1.26
in (b), 2.52 in (c), and 12.6 in (d). α runs from α = 0.01 to α = 1 in 0.01 intervals, and in each figure, all three curves are scaled to be equal at
α = 0.01. The time in (d) is chosen such that it is representative of the long-time steady state of the back action.
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operator back actions, as a function of α:

Plow(α) ≡ Tr[â|α〉〈α|â†] = |α|2 (lowering operator).

(40)

Psub(α) ≡ Tr[B̂m|α〉〈α|B̂†
m] = 1 − e−|α|2

= |α|2 − |α|4
2

+ O(|α|6) (subtraction operator).

(41)

As Eqs. (40) and (41) show, the difference in the detection
probabilities occurs only in the nonlinear response (i.e., terms
of the order of |α|4). This is consistent with the observation
that â and B̂ have identical matrix elements up to one photon
but are different at higher photon numbers. By measuring the
detection probability for coherent states of varying power and
examining how this detection probability scales with the power
of the coherent state, it is possible to characterize the back
action with respect to the lowering operator and the subtraction
operator.

B. Bare JPM coherent state test

First we apply this test to our simulations of a bare JPM,
recalling that we expect B̂1(t) ∼ â at short times [see Eq. (17)]
and B̂1(t) ∼ B̂m at long times (see discussion in Sec. IV A).
The proportionality constants affect the detection probability
and not the structure of the back action, so we remove them

by renormalizing Eqs. (40) and (41) as follows:

P̃low(α) = Plow(α)Pdata(α = α0)

Plow(α = α0)
, (42)

P̃sub(α) = Psub(α)Pdata(α = α0)

Psub(α = α0)
, (43)

where Pdata is the simulated detection probability, and α0 is
the smallest value of α with simulated data. The α scaling
of the JPM can be more directly compared to those of these
rescaled lowering and subtraction operators. Experimentally,
this is important as it accounts for calibration uncertainties that
may occur, such as from attenuation or imperfect impedance
matching.

Figures 12(a) and 12(d) show the detection probabilities of
a bare JPM as a function of the power of the coherent input state
α for a gtm value of 0.126 and 12.6, respectively. As expected,
the back action is very close to the lowering operator at short
times—only deviating slightly at high powers—and at long
times the back action is very close to the subtraction operator.
At short times, the deviation from the lowering operator at
high powers can be explained by Eq. (17), which only predicts
the back action will be proportional to â for

√
ngt � 1. Thus,

at high powers (large |α| = √
n), corrections to Eq. (17) will

become important, as is this case for measurement times long
compared to tcrit = (g

√
n)−1. Figures 12(b) and 12(c) show

the back action at intermediate times. While Fig. 12(b) shows
behavior intermediate between the lowering and subtraction
operators, Fig. 12(c) shows that α scaling can actually fall
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FIG. 13. (Color online) For a JPM experiencing energy relaxation (with T1 = 1
γ1

as before), the detection probability is shown for a
measurement occurring at tmg values of 0.126 in (a), 1.26 in (b), 2.52 in (c), and 12.6 in (d). α runs from α = 0.01 to α = 1 in 0.01 intervals,
and in each figure, all three curves are scaled to be equal at α = 0.01.
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FIG. 14. (Color online) For a JPM experiencing pure dephasing (with T2 = 10
γ1

as before), the detection probability is shown for a
measurement occurring at tmg values of 0.126 in (a), 1.26 in (b), 2.52 in (c), and 12.6 in (d). α runs from α = 0.01 to α = 1 in 0.01 intervals,
and in each figure, all three curves are scaled to be equal at α = 0.01.

below that of the subtraction operator. This effect is a result of
the additional dephasing incurred in measurement.

C. The effects of pure dephasing and energy relaxation

We now study the effects of energy relaxation and pure
dephasing on the α scaling of the coherent state test. Figure 13
shows the detection probability of a JPM experiencing energy
relaxation at a rate 1

T1
= γ1 as a function of α, at the same

times as those of Fig. 12. As can be seen in Fig. 13(d) (which
represents the long-time steady state of the back action),
the major effect of energy relaxation is to prevent the back
action from fully transitioning to the subtraction operator at
long times, but rather it asymptotes to an operator in the
intermediate regime. With the additional energy relaxation
channel present, the JPM detection probability becomes more
sensitive to the number of photons in the cavity and does not
fully approach the subtraction operator, which cannot resolve
photon number.

In addition, energy relaxation suppresses the sub-
subtraction scaling at intermediate times [see Fig. 13(c)].
We expect this is due to the added dephasing at T2 = 2T1,
since Fig. 14 shows that dephasing alone suppresses the drop
below that of the subtraction operator at intermediate times
[Fig. 14(c)]. As can be seen, the effect of pure dephasing
on α scaling is similar to that of energy relaxation; however,
instead of stopping the back action from transitioning to the
subtraction operator, pure dephasing merely increases the time
scale on which this transition occurs.

VI. OPTIMAL REGIME FOR A JPM

Albeit based on a similar circuit, the bare operation
conditions for the JPM are different from those of a phase
qubit, where long T1 and T2 are highly desirable. Operating
a JPM at extremely long T2 leads to the phenomenon of
oscillating detection probability (Fig. 2), sub-subtraction back
action [Fig. 12(c)] and additional dephasing of the cavity
[Fig. 2(b)]. This additional dephasing is undesirable as it
destroys coherences in the original cavity state, irreversibly
reducing its off-diagonal matrix elements, hence limiting the
information available in a repeated measurement.

It is thus advisable to operate the JPM in the short T2 regime.
However, the effective photon-detector transfer rate, Eq. (36),
should be much shorter than the decoherence rate of the cavity,
and this places a lower bound on T2. On the other hand, T1

processes always limit the measurement fidelity and should be
avoided. One way to achieve the limit of long T1 with short T2 is
to damp the JPM with a frequency-dependent impedance with
low-pass character (e.g., along the lines of [73]) by shunting
the JPM with an LR element.

VII. CONCLUSIONS

In this paper we have analyzed the back action of a
JPM on the microwave cavity state it measures. Numerical
investigations of the cavity χ matrix conditioned on a
detection event give us a convenient quantitative description
of the detection process while including several relevant
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environmental processes. At short times, the back action
of a bare JPM is similar to the lowering operator, while
at long times, its back action approaches the subtraction
operator with additional cavity dephasing. This additional
dephasing can be reduced by adding pure dephasing to the
JPM, which dampens the coherent oscillations between the
JPM and the cavity without compromising the purity of
the cavity state. Energy relaxation decreases the asymptotic
value of the diagonal cavity χ -matrix elements and the
detection probability by a factor of γ1/(γ1 + T −1

1 ). It is
useful to develop a test to determine which regime the JPM
is operating in for different measurement times, and the
coherent state test is one such test that is straightforward to
implement.
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APPENDIX: LOW T2 ANALYTICS

The four first-order operator differential equations of
Eq. (28) can be reduced to the following fourth-order operator
differential equation:

ρ
(4)
11 + (κ2 + 2γ1)ρ(3)

11 +
[ (

κ2 + γ1

2

)(
κ2 + 5γ1

2

)
+ 2D0 + 4g2

]
ρ

(2)
11 +

[
(κ2 + 2γ1)(2g2 + D0) + γ1

(
κ2 + γ1

2

)2
]

ρ
(1)
11

+
[

4g2 + D0 ◦ D0 + 2g2γ1

(
κ2 + γ1

2

)
+ 4g2D0 + γ1

(
κ2 + γ1

2

)
D0

]
ρ11 − 4g4ââ†ρ11ââ† = 0. (A1)

The superoperator D0[f ] ≡ g2{â†â,f } = g2(â†âf + f â†â) is introduced for notational convenience. We restrict ourselves to
the occupation probability of the cavity state |n〉〈n|c [see Eq. (30)] and define x(t) ≡ 〈n|cρ11(t)|n〉c. Equation (A1) becomes

x(4) + (κ2 + 2γ1)x(3) +
[ (

κ2 + γ1

2

)(
κ2 + 5γ1

2

)
+ 4g2n + 4g2

]
x(2) +

[
(κ2 + 2γ1)(2g2 + 2g2n) + γ1

(
κ2 + γ1

2

)2
]

x(1)

+
[

4g2 + 4g4n2 + 2g2γ1

(
κ2 + γ1

2

)
+ 8g4n + 2g2nγ1

(
κ2 + γ1

2

)
− 4g4(n + 1)2

]
x = 0. (A2)

This can be further simplified upon the assumption that 1
T2

is large, as shown in Eq. (31).
To obtain Eq. (36), we rewrite the equations of (35) in

matrix form,

∂t

⎛
⎝ P0

P1

Pm

⎞
⎠ =

⎛
⎝−γ2n γ2n 0

γ2n −(γ1 + γ2n) 0
0 γ1 0

⎞
⎠

⎛
⎝ P0

P1

Pm

⎞
⎠ , (A3)

where the index indicating the photon number in the cavity
has been suppressed. The Laplace transform of this system of
equations is⎛
⎝ sP0 − 1

sP1

sPm

⎞
⎠ =

⎛
⎝−γ2n γ2n 0

γ2n −(γ1 + γ2n) 0
0 γ1 0

⎞
⎠

⎛
⎝ P0

P1

Pm

⎞
⎠ , (A4)

where we have used the fact that Pi(0) = δi0, and defined
Pi(s) = L[Pi(t)].

Solving the system of Eq. (A4) for Pm(s) gives

Pm(s) = nγ1γ2

s(s2 + s(2nγ2 + γ1) + nγ1γ2)
. (A5)

Using partial fractions and finding the residues of Pm at the
poles allows us to rewrite Eq. (A5) as follows:

Pm(s) = 1

s
+ γ1γ2n

s+ − s−

(
1

s+(s − s+)
− 1

s−(s − s−)

)
, (A6)

where s± are as defined in Eq. (37). The inverse Laplace
transform of Eq. (A6) can easily be calculated to obtain
Eq. (36).
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