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As quantum key distribution becomes a mature technology, it appears clearly that some assumptions made in the
security proofs cannot be justified in practical implementations. This might open the door to possible side-channel
attacks. We examine several discrepancies between theoretical models and experimental setups in the case of
continuous-variable quantum key distribution. We study in particular the impact of an imperfect modulation
on the security of Gaussian protocols and show that approximating the theoretical Gaussian modulation with a
discrete one is sufficient in practice. We also address the issue of properly calibrating the detection setup and in
particular the value of the shot noise. Finally, we consider the influence of phase noise in the preparation stage
of the protocol and argue that taking this noise into account can improve the secret key rate because this source
of noise is not controlled by the eavesdropper.
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I. INTRODUCTION

Quantum key distribution (QKD) is a cryptographic primi-
tive allowing two distant parties, Alice and Bob, to distill secret
keys in an untrusted environment controlled by an eavesdrop-
per, Eve [1]. Among quantum information technologies, QKD
is one of the most advanced and reaches already commercial
applications. The main argument in favor of QKD is its
provable security based on the laws of quantum mechanics; it is
therefore particularly important to make sure that the security
proofs derived for theoretical protocols can be applied to
real-world implementations. This is unfortunately never really
the case because the security proofs usually assume idealized
implementations, which do not take into account all possible
experimental imperfections. This opens the door to potential
security loopholes [2] that might be successfully exploited
by an attacker. Such side-channel attacks have already been
demonstrated against commercial QKD systems [3,4].

There are basically two ways around side-channel attacks.
A drastic solution consists in deciding that the systems
held by Alice and Bob should not be trusted: this is the
device-independent paradigm, based on the violation of a Bell
inequality [5]. While appealing in theory, this paradigm does
not offer a practical solution since violating a Bell inequality
in a loophole-free fashion has not been achieved until now.
A more practical way to address side-channel attacks aims at
refining the theoretical models used for security proofs in order
to include various sources of experimental imperfections. This
involves, for instance, developing better models for the state
preparation, including the light source, the modulation, and the
noise, and for the detection including the quantum efficiency
and the calibration of the noise.

In this paper, we follow the second approach in the
case of continuous-variable (CV) QKD protocols. The main
specificity of these protocols is that they use a homodyne
detection instead of single-photon counters, which makes
them attractive from a practical perspective. Moreover, they
are compatible with wavelength division multiplexing [6],
which is an important advantage when it comes to integrating

QKD in real-world telecommunication networks. CVQKD
protocols are proven secure against coherent attacks [7–9]
and, asymptotically, the secret key rate is given by the
Devetak-Winter formula [10,11] corresponding to collective
attacks [12,13]. At the theoretical level, CVQKD protocols
therefore present the same level of security as those based on
photon counting, such as BB84 [14].

Here, we focus on Gaussian prepare-and-measure CVQKD
protocols, which have already been demonstrated experimen-
tally [15–22] (see [23] for a recent review of all CVQKD
protocols). In particular, we consider the GG02 protocol
[24] where Alice generates coherent states with a Gaussian
modulation and sends them to Bob, who performs a homodyne
measurement for a randomly chosen quadrature. By repeating
this process a large number of times, Alice and Bob obtain
correlated classical data, from which they can extract identical
strings through the process of reconciliation [25] and then
obtain a secret key using privacy amplification.

We study three kinds of imperfections that occur in all
implementations of this protocol and see how they affect its
security and the secret key rate. The first imperfection concerns
the modulation, which, in practice, can only approach the the-
oretical Gaussian modulation. Indeed, a Gaussian distribution
is not only continuous but unbounded and therefore cannot
be exactly achieved since, for instance, an infinite amount
of randomness would be required. We show that the impact
on security is not significant when the Gaussian distribution
is replaced by a bounded, discrete approximation. However,
deviations from a perfect discretized distribution degrade
the security. The second source of imperfection comes from
finite-size effects and in particular from the calibration of the
detection setup. While a first study in this direction has already
considered statistical estimation of the transmittance and
excess noise of the channel [26], it assumed that the quantum
efficiency and the electronic noise of the detection, and more
importantly the shot-noise level, were all perfectly calibrated.
Here, we consider these effects in detail and examine their
impact on the secret key rate and distance. Finally, we study
the effect of phase noise in the preparation process of the
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protocol. This noise is unavoidable but one can safely assume
that it is not controlled by the eavesdropper. We therefore show
that, by calibrating it properly, one can increase the secret key
rate of the protocol.

The three kinds of imperfections are discussed in
Secs. II–IV of the paper, respectively.

II. SECURITY OF GAUSSIAN PROTOCOLS
WITH AN IMPERFECT MODULATION

We first consider an issue present in all implementations
of CVQKD with a Gaussian modulation, namely, that it is
impossible to use an exact Gaussian modulation in practice.
In the ideal scenario for the prepare-and-measure protocol, for
each signal to be sent, Alice is supposed to draw two random
normal variables q,p ∼ N (0,VA) and to prepare the coherent
state |q + ip〉 centered on the point (q,p) in phase space.
Unfortunately, in practice, ignoring phase noise, the coherent
state really prepared by Alice is centered on (q ′,p′) instead,
where (q ′,p′) is a point on a finite grid, approximating the ideal
value of (q,p). This is unavoidable for several reasons. First,
the analog-to-digital converters that drive the physical modu-
lators used in practice produce discrete voltages; they typically
have a bit depth of 10 like in [20]. Second, intensity modulators
only work in some finite range of values, whereas the Gaussian
distribution is unbounded. Another hardware constraint is the
throughput of the physical random number generators (for
example Quantis, from ID Quantique, is limited to 16 Mbits/s).
But there are also software limitations: one does not want
to use too much randomness in order to draw the Gaussian
variables q and p out of the uniform variables provided by
the physical random number generator because this requires
computational power. For these reasons, it is useful to know
how well the Gaussian modulation needs to be approximated
in order to get a reasonably good level of security.

Intuitively, the presence of shot noise hides the small
imperfections of the modulation and the security should not be
compromised provided that the grid of (q ′,p′) is sufficiently
fine-grained compared to the value of the shot noise. Figure 1
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FIG. 1. Discretization grid used to approximate a Gaussian mod-
ulation in phase space. The modulation variance VA is chosen to be
equal to the shot noise N0. The distribution is truncated to seven stan-
dard deviations and discretized in steps of 1/4 of shot-noise units. A
coherent state of variance N0 covers a large part of the grid, which re-
sults in hiding the small imperfections of the discretized modulation.

illustrates how fine the grid needs to be compared to the shot
noise.

In order to analyze the security of the practical protocol,
it is convenient to look at the situation from Bob and Eve’s
points of view. In the theoretical protocol, the state sent by
Alice to Bob should be a thermal state from Eve’s perspective,
that is, a Gaussian mixture of coherent states. If Eve cannot
distinguish the state sent in practice from a thermal state, then
clearly the security of the protocol is not compromised by the
approximated modulation. More precisely, if the trace distance
between the ideal state and the actual state is bounded by εprep,
and if the usual protocol (with perfect state preparation) is ε

secure, then the true protocol is (ε + εprep) secure. Therefore,
one simply needs to ensure that εprep can be made quite small,
that is, on the order of 10−10 in a realistic implementation.

A. The quality of a Gaussian modulation

Let us write ρ = ρth = ∑∞
n=0

xn

(x+1)n+1 |n〉〈n| for the ideal
thermal state and σ = ∑

k ωk|αk〉〈αk| for the state used in
practice. Here ωk corresponds to the probability of preparing
the coherent state |αk〉.

We will compute the trace distance ||ρ − σ ||1 between the
two states, for two discretizations σ , either with a Cartesian
or a polar grid. For both discretizations, we will use the gentle
measurement lemma [27,28]:

Lemma 1: Gentle measurement. Let ρ be a state and � be
a projector. Then

||ρ − �ρ�|| � 2
√

1 − tr(�ρ�). (1)

Let us take � = |0〉〈0| + |1〉〈1| + · · · + |Q − 1〉〈Q − 1|.
The triangle inequality gives

||ρ − σ || � ||ρ − �ρ�|| + ||�ρ� − �σ�|| + ||�σ� − σ ||

�
∞∑

n=Q

〈n|ρ|n〉 +
∣∣∣∣∣

Q−1∑
n,m=0

〈n|ρ|m〉 − 〈n|σ |m〉
∣∣∣∣∣

+ 2
√

1 − tr (�σ�)

�
∞∑

n=Q

xn

(x + 1)n+1
+

Q−1∑
n=0

∣∣∣∣ xn

(x + 1)n+1
− 〈n|σ |n〉

∣∣∣∣
+ 2

∑
0�n<m<Q

|〈n|σ |m〉| + 2

√√√√1 −
Q−1∑
n=0

〈n|σ |n〉

�
(

x

x + 1

)Q

+ �diag + 2�nondiag + 2
√

Rσ , (2)

with �diag := ∑
0�n<Q | xn

(x+1)n+1 − 〈n|σ |n〉|, �nondiag :=∑
0�n<m<Q |〈n|σ |m〉|, and Rσ := 1 − ∑

0�n<Q〈n|σ |n〉.
These three quantities can be estimated from the terms
〈n|σ |m〉, 0 � n, m < Q.

Notice that Rρ := ( x
x+1 )Q does not depend on the actual

approximation used, but only on the mean photon number x

of the ideal thermal state. When using a Gaussian modulation
of variance VA (in shot-noise units), one has x = 2VA. This
means that larger values of VA require larger values of Q in
order to obtain a good bound in Eq. (2). A typical range for
VA is [1,20]. For VA = 20 and εprep = 10−10, one needs to
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have Q ≈ 1000 to ensure that Rρ � εprep. Furthermore one
also needs Rσ � ε2

prep, which puts additional constraints on Q.

B. Cartesian approximation

Here, we consider an approximation of the form

σ =
N∑

k=−N

N∑
l=−N

ωk ωl |αkl〉 〈αkl|, (3)

where ωk = γk∑
k γk

, γk = e−q2
k /(2V ), qk = pk = A

N
k, αkl = qk +

ipk , and A and N are two parameters to be optimized. The
|αkl〉 are coherent states: |α〉 = e−|α|2/2 ∑∞

n=0
αn√
n!

|n〉.
Therefore,

〈n|σ |m〉 =
N∑

k,l=−N

ωkωl〈n|αkl〉〈αkl|m〉

=
N∑

k,l=−N

ωkωl e
−|αkl |2 αn

kl α∗
kl

m

√
n!m!

.

From this expression, �diag, �nondiag, and Rσ can be evaluated
numerically for any choice of x = 2VA,Q,A, and N . Once A is
chosen, N is typically set so that δ = A/N , the discretization
step, has some predetermined value. Given VA, let us show
that a low εprep = ||ρ − σ || can be obtained with reasonable
values of A and N . Assume VA = 20, a rather large value
corresponding to a Gaussian modulation of standard deviation√

20; use (see Fig. 1) (1) A = 7
√

VA, meaning that the actual
Gaussian distribution is truncated to seven standard deviations,
and (2) N = 
4A�, meaning that the distribution is discretized
in steps of 1/4 of shot-noise units. These choices can be used in
practice: for VA = 20, they require 2 × 
4 × 7 × √

VA� + 1 =
253 discretization steps, that is, an 8-bit discretization grid.
The entropy of the corresponding pair of discretized Gaussian
values is 2 × 6.2 = 12.4 bits. Source coding techniques enable
us to use on average no more than this randomness quantity
when drawing them in practice.

For Q = 2000 (chosen to get a sufficiently low value of
Rσ ), a numerical evaluation yields

�diag � 1.02 × 10−11, (4)

�nondiag � 1.04 × 10−11, (5)

Rσ � 1.09 × 10−24, (6)

from which we deduce

||ρ − σ || � 3.31 × 10−11. (7)

In the above discretization scheme, the mass lost because
of the distribution cutoff is evenly distributed among the
remaining coherent states. Let us give a similar result for a
slightly different cutoff scheme where the lost mass is added to
ω±N only: ωk = A

N
1√

2πV
e−q2

k /(2V ) for −N + 1 � i � N − 1,

and ω−N = ωN = (1 − ∑N−1
i=−N+1 ωk)/2. For this scheme with

the same parameters as before, we find

||ρ − σ || � 2.98 × 10−11. (8)

C. Polar approximation

The actual modulation devices implement a polar modula-
tion because phase and intensity are modulated separately. It
is therefore natural to investigate the discretization required in
polar coordinates to obtain a good approximation of a thermal
state.

Let us assume that the polar coordinates are discretized
uniformly on [0,R] × [0,2π ]. Let us note the discretized
values as

rk =
(

k + 1

2

)
R

K
, k ∈ [[0,K − 1]], (9)

θl =
(

l + 1

2

)
2π

L
, l ∈ [[0,L − 1]]. (10)

We consider then an approximation of the form

σ = 1

L

∑
k

ωk

∑
l

|αkl〉 〈αkl|, (11)

where ωk = γk∑
k γk

, γk = rke
−r2

k /(2V ) and |αkl〉 =
e−r2

k /2 ∑∞
n=0

rn
k einθl√

n!
|n〉. Therefore,

〈n|σ |m〉 = 1

L

K−1∑
k=0

L−1∑
l=0

ωk〈n|αkl〉〈αkl|m〉 (12)

= 1

L

K−1∑
k=0

L−1∑
l=0

ωk e−r2
k rn+m

k

ei(n−m)2πl/L

√
n!m!

(13)

= Unm,L

K−1∑
k=0

ωk

e−r2
k rn+m

k√
n!m!

, (14)

with Unm,L = 1 if L divides n − m, and Unm,L = 0 otherwise.
Unfortunately, this polar discretization requires a finer dis-

cretization than the Cartesian one for the same approximation
quality. For instance, with VA = 20 as before, using Q = L =
2000 [thus eliminating the term �nondiag altogether in Eq. (2)]
and R = 7

√
VA, a 17-bit discretization of the amplitude

is required to obtain |〈0|ρ|0〉 − 〈0|σ |0〉| � 10−10. Drawing
values corresponding to this discretization uses 11 bits for the
angle and 15.5 bits for the modulus on average. This situation
can be improved by using, instead of regularly spaced rk , points
placed according to the Gauss quadratures method, especially
the Gauss-Hermite variant: a 9-bit amplitude discretization
entropy is found to be sufficient for εprep � 10−10. This is still
slightly worse than the Cartesian grid, but could be improved
further by making the angle discretization depend on the
amplitude, as less points are needed in the vicinity of the
origin.

D. Robustness of bounds

An important question related to the discretization is the
robustness of the bounds given in the previous sections
when the discretization grid is disturbed by some small
systematic error term. This can happen, for instance, because of
calibration errors or because of complex discretization effects
due to the experimental setup. For example, an amplitude
modulator generally produces an amplitude A = cos(cV + φ),
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where V is the voltage applied to it; since V is discrete, the
modulated amplitude values are projected to a set that is the
image of the discrete set of attainable voltages by the functional
realized by the modulator. To model the effect of these errors,
we added a small disturbance with Gaussian distribution of
standard deviation σerror to each point of the Cartesian grid and
numerically computed the resulting εprep. With parameters as
in Sec. II B, we get ||ρ − σ || ≈ 0.1 × σerror. This shows that
obtaining εprep � 10−10 in practice may be difficult; it is more
realistic to expect εprep ≈ 10−4 or 10−5.

It is true that the proof techniques used today force us to
include εprep in the final security parameter of the key, but it is
plausible that this is too pessimistic. Indeed, it is known that
protocols with a non-Gaussian modulation are secure against
all attacks corresponding to a linear channel between Alice and
Bob [29]. This gives a hint that approximations of the order of
10−4 or 10−5 might be sufficient in practice.

III. IMPERFECT CALIBRATION
OF THE DETECTION SETUP

We consider now finite-size effects related to the detection
setup. We note that a proper calibration of Alice and Bob’s
devices is crucial to prove the security of the final key [30].
Our goal is to improve and expand the analysis of Ref. [26]
concerning finite-size effects in CVQKD.1 In particular, the
values of the quantum efficiency and the electronic noise of
Bob’s homodyne detection (HD) can only be estimated up to
some finite precision. These inaccuracies must be taken into
account when computing a secret key rate compatible with a
realistic scenario (where these sources of noise are not assumed
to be controlled by Eve) while considering finite-size effects.
In the same way, the modulation variance on Alice’s side and
the excess noise on Bob’s side both need to be estimated, in
shot-noise units, when computing the secret key rate. This
implies that any imperfect precision on the estimation of the
shot noise has an impact on the secret key rate.

The effect of a noisy HD has already been taken into account
in the security proofs [17,20]. The efficiency of the detection is
modeled by a beamsplitter of transmittance η and the electronic
noise is modeled by a thermal noise of variance Nel added at
the second input of the beamsplitter. That is, before Bob’s
HD, the state received by Bob is mixed with a thermal state of
variance Nel on a beamsplitter of transmittance η. The variance
of the electronic noise of the HD, vel, is linked to Nel by
vel = (1 − η)(Nel − 1). Interestingly, the final key rate depends
only on one parameter, namely, the added noise referred to the
input of the measurement device, denoted as χhom = 1−η

η
Nel =

1+vel
η

− 1. Therefore, all the combinations of the parameters
(η,vel) that give the same χhom have the same impact on the
secret key rate.

1Note that finite-size effects are also considered in [8], where an
entropic uncertainty relation is used to prove the security of an
entanglement-based CVQKD protocol. Unfortunately, the bounds
derived there are too pessimistic to be used in realistic experimental
conditions.

In [20], these parameters were supposed to be calibrated in a
secure laboratory, which implies that no attacker can interfere
with the calibration procedure. Since this calibration is not
performed during a QKD run, the statistical noise due to the
finite number of samples used for the estimation can be made
arbitrarily small. However, both parameters are still known
imperfectly because of the finite precision of the measurement
apparatuses. Here we consider an imperfect knowledge of
these parameters and its effect on the secret key rate.

In order to calibrate a fiber-based HD, like the one used
in [20], one should in fact estimate three quantities: (1) the
interferometer mode matching ηmod with precision �ηmod, (2)
the efficiency of the photodiodes ηphot with precision �ηphot,
and (3) the fiber-optic transmittance ηopt with precision �ηopt.
Then, the HD efficiency reads2 η = η2

modηphotηopt and the
overall uncertainty is

�η = η

(
2
�ηmod

ηmod
+ �ηphot

ηphot
+ �ηopt

ηopt

)
. (15)

The interferometer mode matching efficiency ηmod is close
to 99%, while a typical value for ηphot is 80% with the p-i-
n photodiodes used in [20]. The fiber-optic transmittance is
usually low (around 80% for fiber-based HD since losses are
usually applied on one arm of the interferometer to compensate
for an unbalanced beamsplitter).

As far as vel is concerned, this is estimated as the variance
of the HD electronic noise, i.e., the detection output variance
when no optical signal enters the detection device. This
noise is mainly due to the thermal noise introduced by the
load resistance at the entrance of the amplifier circuit (the
intrinsic noise of the photodiodes is typically negligible).
A straightforward way to determine vel is to measure it
directly as the variance of the HD output when no light
enters the homodyne detection. Alternatively, one can plot
the relationship between the power of a light source entering
one branch of the beamsplitter of a balanced shot-noise limited
HD and the variance of the HD output, when the other entrance
of the HD is disconnected. This relationship should be linear,
the Y intercept being the variance of the electronic noise.
Experimentally, the latter method leads to less accurate values
of the electronic noise. However, even with the direct method
vel can only be known up to a precision �vel.

The different uncertainties mentioned above can be evalu-
ated depending on the measurement procedure and the preci-
sion of the measurement devices. In a practical CVQKD setup,
Alice and Bob estimate the quantities required to compute the
secret key rate through the sampling of m = N − n pairs of
correlated variables (xi,yi)i=1...m, where N is the total number
of quantum signals sent through the quantum channel and n is
the number of signals used for the key establishment.

2Note that ηmod is derived from a measurement of the visibility of the
interference fringes on one arm of the HD when the local oscillator
(LO) interferes with another classical signal of the same intensity. It
is therefore the experimentally useful quantity to characterize mode
mismatching in the interferometer and is used as a reference for
modeling the equivalent beamsplitter transmittance.
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More precisely, the parameter estimation is performed in
two steps. First, after the state distribution and measurements,
Alice and Bob need to roughly estimate the signal-to-noise
ratio of their classical data in order to choose the proper
error correcting code for the reconciliation [25]. This typically
requires m = O(

√
N ). Then, after the (reverse) reconciliation,

Alice knows both her raw string and the one received by Bob.
In practice, Alice and Bob would publicly compare a small
hash of their final string to make sure that the reconciliation
procedure succeeded. The size of these strings is N and the
parameter estimation can be performed on the whole string.
The results of this estimation will be used to compute a tight
bound on Eve’s information about Bob’s string.

Since for CVQKD it is sufficient to estimate the covariance
matrix of the state shared by Alice and Bob, the only
parameters that need to be estimated are the variance on Alice’s
and Bob’s sides, respectively, 〈x2〉 and 〈y2〉, and the covariance
between Alice and Bob 〈xy〉 (assuming here that x and y are
centered variables, that is, that 〈x〉 = 〈y〉 = 0). These values
are linked to the key rate parameters through

〈x2〉 = VA, (16)

〈y2〉 = ηT VA + N0 + ηT ξ + vel, (17)

〈xy〉 =
√

ηT VA, (18)

where T is the quantum channel transmittance, VA is the
modulation variance, ξ is the excess noise, and N0 is the
shot noise (all expressed in their respective units and not in
shot-noise units as it is usually assumed).

Since η and vel are calibrated beforehand, one has four
unknown parameters (VA,N0,T ,ξ ) and only three equations.
However, by forcing a quantum channel with zero transmit-
tance, we get one more equation:

〈y0
2〉 = N0 + vel. (19)

This can be done in Bob’s laboratory by measuring the vacuum.
In order to compute confidence intervals for these param-

eters, we consider here a normal model for Alice and Bob’s
correlated variables (xi,yi)i=1...N :

y = tx + z, (20)

where t = √
ηT ∈ R and where z follows a centered normal

distribution with unknown variance σ 2 = N0 + ηT ξ + vel.
Note that this normal model is an assumption justified in
practice but not by current proof techniques, which show that
the Gaussian assumption is valid once the covariance matrix is
known [12,13]. Exploiting symmetries of the protocol in phase
space might be a way to rigorously justify this assumption
[31,32]. The random variable x is a normal random variable
with variance VA in the case of a Gaussian modulation. Another
set of Bob’s data (y0i)i=1...N ′ can be used to measure the noise
when no signal is exchanged (one can take N ′ to be on the
order of N ):

y0 = z0, (21)

where z0 follows a centered normal distribution with unknown
variance σ 2

0 = N0 + vel. Similarly to the analysis in [26],
maximum-likelihood estimators t̂ , σ̂ 2, and σ̂0

2 are known for

the normal linear model:

t̂ =
∑N

i=1 xiyi∑N
i=1 x2

i

, (22)

σ̂ 2 = 1

N

N∑
i=1

(yi − t̂xi)
2, (23)

σ̂0
2 = 1

N ′

N ′∑
i=1

y0
2
i , (24)

V̂A = 1

N

N∑
i=1

x2
i . (25)

The estimators t̂ , σ̂ 2, σ̂0
2, and V̂A are independent estimators

whose distributions are

t̂ ∼ N
(

t,
σ 2∑N
i=1 x2

i

)
, (26)

Nσ̂ 2

σ 2
,
N ′σ̂0

2

σ 2
0

,
NV̂A

VA

∼ χ2(m − 1), (27)

where t , σ 2, σ 2
0 , and VA are the true values of the parameters. In

the limit of large N,N ′, one can compute confidence intervals
for these parameters:

t ∈ [t̂ − �T,t̂ + �T ], (28)

σ 2 ∈ [σ̂ 2 − �σ 2,σ̂ 2 + �σ 2], (29)

σ 2
0 ∈ [

σ̂0
2 − �σ 2

0 ,σ̂0
2 + �σ 2

0

]
, (30)

VA ∈ [V̂A − �VA,V̂A + �VA], (31)

where �T = zεPE/2

√
σ̂ 2

NVA
, �σ 2 = zεPE/2

σ̂ 2
√

2√
N

, �σ 2
0 =

zεPE/2
σ̂0

2
√

2√
N ′ , �VA = zεPE/2

V̂A

√
2√

N
, and zεPE/2 is such that

1 − erf(zεPE/2/
√

2)/2 = εPE/2 (εPE, typically 10−10, is the
probability that the estimated parameters do not belong to the
confidence region computed from the parameter estimation
procedure). Here we have used the error function erf(x),
defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (32)

One can then estimate T = t̂2

η
and ξ = σ 2−σ 2

0
t̂2 using the

previous estimators and their confidence intervals. As regards
the shot noise, it is known with a precision that depends both
on the number of samples used to compute the estimator σ̂ 2

0
and on �vel

.
Once the parameters and their respective confidence inter-

vals have been determined, one can in particular express in
shot-noise units all the quantities needed to compute SεPE (y :
E), the maximal value of the Holevo information between Eve
and Bob’s classical data compatible with the statistics except
with probability εPE. Thus, the secret key rate for collective
attacks including all the finite-size effects and calibration
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FIG. 2. (Color online) Secret key rate for collective attacks
including finite-size effects and calibration imperfections with
respect to the distance for different values of the number of
samples. The transmittance T and distance d are linked with
the expression T = 10−αd/10, where α is the loss coefficient of
the optical fiber. VA = 2.5, ξ = 0.01, η = 0.6, vel = 0.01, α =
0.2 dB/km, β = 95%, �η = 0.1η, �vel = 0.1vel, εPE = 10−10, N =
asympt, 1010, 109, 108, 107, 106 from top to bottom.

imperfections discussed previously can be computed as

Kfinite = n

N
[βI (x : y) − SεPE (y : E) − �(n)], (33)

where βI (x : y) is the amount of mutual information Alice
and Bob were effectively capable of extracting through the
reconciliation phase (β is the reconciliation efficiency which
ranges from 0 when no information was extracted to 1 for
a perfect reconciliation scheme) and �(n) is related to the
security of the privacy amplification [26,33].

Figure 2 gives the secret key rate for various values of
the number of samples N = N ′. It appears that, even taking
pessimistic confidence intervals for η and vel, for example,
with �η = 0.1η and �vel = 0.1vel, the impact on the secret
key rate is not significant. However, a high precision on the
shot noise is required for long distances since ηT ξ must be
known with a high precision as already observed in [26]. It is
worth noting that even using 106 samples leads to a positive
secret key rate for the Gaussian protocol unlike discrete
modulation protocols, for which at least 108 samples are
required [26].

IV. IMPROVED KEY RATE WITH PHASE
NOISE CALIBRATION

In order to obtain precise statements about the security of
a given quantum key distribution (QKD) protocol, it is useful
to carefully characterize the equipment of Alice and Bob. For
CVQKD, this issue has already been addressed extensively
for the detection stage. In particular, as was discussed in the
previous section, in a calibrated device scenario, the detection
model includes a finite quantum efficiency and a given level
of electronic noise. Interestingly, both these imperfections act
as sources of noise that can be trusted, in the sense that they
are not controlled by Eve. This corresponds to the so-called

realistic model, as opposed to the paranoid model where the
eavesdropper is supposed to control all sources of noise. The
realistic model allows one to derive a secret key rate that is
actually better than the one obtained without this modeling for
the imperfections of Bob’s detection.

Concerning the preparation phase of the Gaussian CVQKD
protocol that we are considering, recent work has addressed
the issue of imperfections in Alice’s state preparation. In
particular, [34–36] studied the situation where Alice in fact
prepares thermal states instead of coherent states. In fact, it
is even possible to achieve CVQKD in the microwave regime
where the preparation of pure coherent states is impossible
[37,38]. One remark about these works is that they consider
a specific kind of imperfection that can be efficiently dealt
with experimentally (at least in the optical regime). Indeed,
if Alice really prepares thermal states instead of coherent
states, one simple solution is to increase the variance of
modulation and then to strongly attenuate the resulting state
in order to obtain something very close to a coherent state.
For this reason, the problem of preparing thermal states
instead of coherent states is not really an issue in a practical
scenario.

A more relevant issue concerns non-Gaussian sources of
noise. In particular, there always is some phase noise on
the state prepared by Alice. A typical value for the variance
of this noise is 10−4N0 per photon in the pulse [39]. One
cannot suppress this noise by increasing the variance of
the modulation and then attenuating the state, as mentioned
above. Studying this noise is therefore of particular theoretical
interest and of importance for actual experiments.

An important property of this noise is that it leaves the
global state ρB0 = trAρAB0 sent by Alice in the quantum
channel (and therefore seen by Eve) invariant. This is different
from the thermal noise considered in [35,36], which increases
the variance of ρB0 . In particular, this means that this noise
can be modeled as an imperfect measurement for Alice in the
entanglement-based equivalent protocol. In that picture, Alice
prepares two-mode squeezed vacuum states, sends one mode to
Bob, and measures the other one with a heterodyne detection.
When modeling the noise, one can keep the preparation of
two-mode squeezed vacuum states, and only Alice’s detection
will be noisy. This simply means that the classical data
that she gets are noisy (with some phase noise). Therefore,
the only consequence of this noise is that it degrades the
mutual information shared between Alice and Bob, but it
cannot increase Eve’s information about Bob’s measurement
outcome, which is of interest in a reverse reconciliation
scheme.

More specifically, in this case, the secret key rate against
collective attacks is Kasympt = βI (x : y) − χ (y : E), where
βI (x : y) is defined as in the previous section and χ (y : E) is
an upper bound on Eve’s information on Bob’s measurement
outcomes. Because one can model phase noise as a local noise
acting on Alice’s system, it can only decrease the quantity I (x :
y) but cannot help the eavesdropper by increasing χ (y : E).
In such a scenario, one can expect that the phase noise can
be removed from the excess noise when computing Eve’s
information, leading to a realistic model for the preparation
stage, similarly to the detection stage. This should lead to
better secret key rates in practice.
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A. Model for the phase noise

The phase noise can be modeled as applying a phase rotation
U (θ ) = exp(iθa†a) on Alice’s mode with a random phase
θ characterized by some probability distribution p(θ ). This
means that when Alice tries to prepare some coherent state
|α〉 in the prepare-and-measure protocol she actually prepares
a state with a noisy phase: ρα = ∫

U (θ )|α〉〈α|U (θ )†p(θ )dθ .
Let us assume that Alice initially prepares an ideal two-mode
squeezed vacuum state with a variance VA. This state ρideal has
the following covariance matrix (for a displacement vector
[qA,pA,qB,pB]T ):

�ideal =
[

VA12 Wσz

Wσz VA12

]
, (34)

where W :=
√

V 2
A − 1 and σz = diag(1, − 1).

Applying a local phase shift U (θ ) on Alice’s mode gives a
state with a covariance matrix �(θ ) given by

�(θ ) =

⎡
⎢⎢⎢⎣

VA W cos θ W sin θ

VA W sin θ −W cos θ

W cos θ W sin θ VA

W sin θ −W cos θ VA

⎤
⎥⎥⎥⎦ .

(35)

Finally, the state affected by the phase noise is a classical
mixture of states with random phase shifts ρ = ∫

(UA(θ ) ⊗
1B)ρideal(UA(θ )† ⊗ 1B)p(θ )dθ , and its covariance matrix is

�phase noise =
[

VA12
√

κWσz√
κWσz VA12

]
, (36)

where we assumed that the distribution θ is symmetric,
and more precisely that

∫
p(θ ) sin θdθ = 0, and introduced

κ := (
∫

p(θ ) cos θdθ )2 = (E[cos θ ])2, where E[X] is the
expectation of the random variable X.

The interesting point is that from both Bob’s and Eve’s
points of view it does not change anything whether a random
phase shift is applied. In particular, the value of χ (y : E)
quantifying the information that Eve can acquire about the
raw key in a reverse reconciliation scenario does not depend
on the value of the phase noise. Note that this statement would
not be true in a direct reconciliation scenario, where the raw
key would correspond to Alice’s noisy data.

Let us suppose that the quantum channel between Alice and
Bob is characterized by its transmittance T and excess noise
ξ . The covariance matrix �AB of the bipartite state shared by
Alice and Bob after the quantum channel is then given by

�AB =
[

VA12

√
κT Wσz√

κT Wσz (T (VA − 1) + 1 + T ξ )12

]
. (37)

If they were not taking phase noise into account (that is, if κ

was equal to 1), Alice and Bob would estimate a transmittance
T ′ and an excess noise ξ ′ such that

T ′ = T κ
(38)

T ′(VA − 1) + 1 + T ′ξ ′ = T (VA − 1) + 1 + T ξ,

that is,

T = T ′/κ
(39)

ξ = ξ ′ − (1 − κ)(VA − 1).

If the phase noise parameter κ is known, one can estimate
the covariance matrix as usual, hence obtaining values (T ′,ξ ′),
and use the formula above to deduce the parameters (T ,ξ ) that
can be used instead to compute Eve’s information χ (y : E).

For this technique to work, it is necessary to be able to
measure κ = (E[cos θ ])2 experimentally. This is discussed in
the next section.

B. Experimental evaluation of the phase noise

The evaluation of the phase noise can be performed with
a phase sensitive apparatus which allows us to compute an
estimate of the noise between a signal whose quadratures
are modulated following a chosen sequence and the outputs
of some chosen quadrature measurements. A homodyne or
heterodyne detection can be used for this purpose.

Similarly to what is done on Bob’s side when the homodyne
detection efficiency and the variance of the electronic noise
are calibrated, it is necessary to assume that the calibration
of the phase noise is performed in a safe place, i.e., that
Eve cannot interfere with Alice’s apparatus during the phase
noise measurement. The measurement can also be performed
during a run of the protocol but one still needs to assume that
Eve cannot interfere with Alice’s device. This is crucial since
overestimating the phase noise would lead to an overestimation
of the secret key rate.

Here, we are interested in the phase noise in the prepare-
and-measure version of the protocol. The procedure to es-
timate it goes as follows: Alice modulates as usual with a
bivariate Gaussian distribution and she measures either one
of the quadratures with a homodyne detection. Computing
the variance of her measurement outcomes allows us here to
infer the quantity κ introduced above. Let us denote by φ

the random variable corresponding to the angle between the
modulated state and the measured quadrature and by B the
random variable corresponding to the noise. This means for

p

q

φ

B

B⊥
B

B

B = B cos φ + B⊥ sinφ

FIG. 3. Experimental evaluation of the phase noise. The noise B
before Bob’s measurement can be decomposed into the sum of a com-
ponent orthogonal to the signal B⊥ and a component parallel to the sig-
nal B‖. The result of Bob’s q-quadrature measurement is A cos φ + B

where Alice prepared the state centered in Aeiφ with A � 0.
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FIG. 4. (Color online) Secret key rate for collective attacks in the
asymptotic regime. The plot at the top is obtained in the so-called
realistic model where the phase noise is calibrated and is considered
as a local noise useless to the eavesdropper. The plot at the bottom
corresponds to the so-called paranoid model where all the sources
of noise are attributed to the eavesdropper. The transmittance T and
distance d are linked with the expression T = 10−αd/10, where α

is the loss coefficient of the optical fiber. VA = 2.5, ξ = 0.025,
α = 0.2 dB/km, β = 95%, E1 = 3 × 10−3.

example that Alice prepared the state centered in Aeiφ (with
A � 0) and that the outcome of her q-quadrature measurement
was A cos φ + B. This noise B can be decomposed into the
sum of a component orthogonal to the signal and a component
parallel to the signal:

B = B‖ cos φ + B⊥ sin φ, (40)

where we assume that B‖ and B⊥ are independent of φ. Figure 3
gives an illustration of this decomposition. We can easily
build estimators of B‖ and B⊥ (in the following, E[X] and
V [X] refer, respectively, to the expectation and variance of the
random variable X):

V [B cos φ] = V [B‖ cos2 φ] + V [B⊥ cos φ sin φ] (41)

= V [B‖]E[cos4 φ] + V [B⊥]E[cos2 φ sin2 φ]

(42)

= 3/8V [B‖] + 1/8V [B⊥], (43)

V [B sin φ] = 1/8V [B⊥] + 3/8V [B‖]. (44)

Since both V [B cos φ] and V [B sin φ] can be measured
experimentally, one therefore has access to the values of V [B⊥]
and V [B‖]. Here, we assume that the only sources of noise are
the shot noise and the phase noise. We assume that B⊥ can be
fully described by the shot noise and the phase noise:

V [B⊥] = N0 + V [A sin θ ] = N0 + E[sin2 θ ]E[A2], (45)

E[sin2 θ ] = V [B⊥] − N0

E[A2]
= E1, (46)

where A is the amplitude of the modulated signal and where
we used E[sin θ ] = 0. The assumption of a small phase noise,
i.e., small values of θ , gives

E[cos θ ] = E[1 − θ2/2] (47)

= 1 − 1
2E1. (48)

Figure 4 compares the so-called realistic and paranoid
models. We consider a pessimistic scenario where the excess
noise on Alice’s side is about 2.5% of the shot noise (the
detector quantum efficiency and electronic noise are not taken
into account here, for clarity). For a modulation variance
VA = 2.5, we measured experimentally E1 = 3 × 10−3 with
a system similar to the one described in [20]. This leads to
a realistic value of the excess noise ξreal = 1.75%. The result
on the secret key rate for collective attacks is an increase in
achievable distance of about 40 km.

V. CONCLUSION

In this work, we have analyzed several types of imper-
fections that appear in practical implementations of Gaussian
continuous-variable QKD protocols. In particular, we studied
a realistic approximate Gaussian modulation in the state prepa-
ration at Alice’s site, the calibration of detection characteristics
estimated with a finite precision at Bob’s site, and the presence
of intrinsic phase noise in the prepared states. In all cases, we
provided a precise model of the imperfection and used this
model to examine its effect on the security and performance
of the protocol. These effects are more or less significant
in practice: it is clear, for instance, that taking into account
the phase noise in the security proof of a realistic scenario
provides an important advantage in terms of secret key rate,
while carefully approximating the ideal Gaussian modulation
with respect to the shot-noise values can minimize the impact
of this imperfection. Finally, as expected, finite-size effects at
all stages of the protocol should always be considered when
calculating practical secret key rates.

This analysis demonstrates the importance of refining
security proofs of QKD protocols to consider practical imper-
fections. In particular for CVQKD protocols, where potential
side channels have not been yet widely studied, it provides
specific ways to bypass attacks based on improperly modeled
devices and procedures.

ACKNOWLEDGMENTS

This research was supported by the French National Re-
search Agency, through the FREQUENCY (ANR-09-BLAN-
0410) and HIPERCOM (2011-CHRI-006) projects, and by the
European Union through the project Q-CERT (FP7-PEOPLE-
2009-IAPP). P.J. acknowledges support from the Agence
Nationale de la Recherche et de la Technologie. A.L. was
supported by the Swiss National Science Foundation through
the National Centre of Competence in Research “Quantum
Science and Technology.”

[1] V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek,
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