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It is well known that the classification of pure multiparticle entangled states according to stochastic local
operations leads to a natural classification of mixed states in terms of convex sets. We present a simple algorithmic
procedure to prove that a quantum state lies within a given convex set. Our algorithm generalizes a recent algorithm
for proving separability of quantum states [Barreiro et al., Nat. Phys. 6, 943 (2010)]. We give several examples
which show the wide applicability of our approach. We also propose a procedure to determine a vicinity of a
given quantum state which still belongs to the considered convex set.
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I. INTRODUCTION

The importance of quantum entanglement for quantum
computation as well as for many other applications in
quantum information processing has raised many fundamental
questions regarding its characterization [1]. In mathematical
terms, a quantum state is said to be separable if it can be written
as a mixture of projectors onto product states; otherwise it is
entangled. Much work has been devoted to the development
of criteria (in particular, the well-known tool of entanglement
witnesses) that can prove that a quantum state is entangled,
which means that it is outside of the convex set of separable
states [2]. Interestingly, methods which prove that a mixed
quantum state is within the set of separable states (e.g.,
by providing an explicit decomposition into product states)
are less well known. Nevertheless, for some cases explicit
decompositions are known [3–6], and recently even some
algorithms for this task have been developed [7–9].

If more than two particles are considered, the problem
becomes more complicated, since different classes of mul-
tiparticle entanglement exist. One possibility uses the notion
of stochastic local operations and classical communication
(SLOCC) [10,11]. For this notion, one can again ask whether
a given state can be decomposed into states of the same SLOCC
class, which leads for the case of three spin-1/2 particles to the
well-known classification into Greenberger-Horne-Zeilinger
(GHZ) and W states [12]. Distinguishing these classes is a
hard task; for partial results see Refs. [12,13]. Especially if one
wishes to prove that a given state is within an entanglement
class (such as the W class), no general methods are known.

In this paper we propose an algorithm which allows
proof that a given mixed state belongs to a specific SLOCC
entanglement class, i.e., a decomposition exists where the
pure states belong to the specified entanglement class. During
the iterative procedure pure states and probabilities of the
decomposition are determined as well as the “rest” operator,
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which has an increasing mixedness during the iterations. In
case of convergence we determine an explicit decomposition
of the initial mixed state in terms of a convex combination
of projectors onto pure states with the desired properties as
well as a “rest” which is verified to be fully separable. It is
not known whether the algorithm converges in all cases, but
the method is easy to implement and it works well in practice.
Our algorithm is a generalization of the algorithm for proving
separability from Ref. [9].

Additionally, we present a simple method to determine a
lower bound on the ε ball of the calculated decomposition [14].
This we achieve by constructing a cross polytope inside the
convex set spanned by our decomposition. We find a ball with
respect to the Hilbert-Schmidt distance for states in this convex
space. This method helps to verify that such properties also
hold for reasonably small “experimental” errors. In some cases
it also helps to get an idea of how far the state is from sets with
different properties.

The paper is organized as follows. After an overview about
multipartite entanglement and SLOCC entanglement classes in
Sec. II, we present in Sec. III an iterative algorithmic procedure
to incrementally determine constituents of a decomposition of
a given mixed quantum state. The main ingredient, the maxi-
mization of the overlap of a pure state with a given density op-
erator under SLOCC operations, will be presented in Sec. IV,
and the properties of the algorithm in terms of convergence as
well as scaling are discussed in Secs. V–VII. The procedure of
determining an ε ball follows in Sec. VIII. At the end a series of
examples where decompositions are determined and ε balls are
calculated is presented in Sec. IX and compared with results
already known in the literature. We conclude with possible
further improvements and the limitations of our procedure.

II. DEFINITIONS AND NOTATIONS

Let us first consider pure states. Generally, a pure composite
quantum state of n particles is called entangled if it cannot be
written as a tensor product of local states,

|ψE〉 �=
k⊗

i=1

|φi〉, (1)

032307-11050-2947/2012/86(3)/032307(9) ©2012 American Physical Society

http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1103/PhysRevA.86.032307
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where the |φi〉 are states on a subset of all n particles.
Depending on the value of k, one can further distinguish the
number of parties involved which are not of tensor product
form. Consequently, the states are said to be biseparable
(k = 2), triseparable (k = 3), up to n-separable. If a state does
not possess any tensor product structure it is called genuine
multipartite entangled.

This classification of pure-state entanglement can be refined
to the equivalence under stochastic local operations and clas-
sical communication [10,11]. Physically speaking, SLOCC
operations can be implemented with nonzero probability via
local operations and classical communication, i.e., a single
copy of |ψ〉 can be mapped onto |φ〉 using local operations
with probability p > 0, but with probability (1 − p) some
other state may result. If two states can be converted into each
other via SLOCC, this implies that both states are in principle
useful for the same tasks in information processing, albeit
the efficiency might be different. We denote such a class of
SLOCC equivalent states by C.

Mathematically speaking, a general SLOCC operation can
be represented by the action of local operators, i.e., ASLOCC =⊗

i Ai , where Ai are arbitrary operators acting on the ith party.
An SLOCC operation maps the initial state |ψ〉 to |φ〉 by

|ψ〉 �→ |φ〉 = NASLOCC|ψ〉, (2)

where N denotes the normalization.
For mixed quantum states shared between n parties, a

state is called entangled if it cannot be written as a convex
combination of an n-fold tensor product of projectors onto
pure states [15], i.e.,

�ent �=
∑

j

pj

n⊗
i=1

∣∣ψ (j )
i

〉〈
ψ

(j )
i

∣∣. (3)

One can extend this naturally by considering k-separable
states. Finally, a state is genuine multipartite entangled if it
cannot be written as a mixture of biseparable states.

For three qubits and pure genuine entangled states there
exist two types of entanglement classes which are not SLOCC
equivalent [10]: The two representatives are the GHZ state and
the W state:

|GHZ〉 = 1√
2

(|000〉 + |111〉),
(4)

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉).

Any pure entangled state can either be transformed into |GHZ〉
or |W 〉, but these two states cannot be converted into each
other. The analysis and the hierarchy of the set of mixed W
and GHZ states was then developed in Ref. [12]. For more
than three qubits already an infinite number of inequivalent
SLOCC classes exist [11].

III. THE MAIN IDEA FOR THE ALGORITHM

A. Structure of the problem

In this section, we will describe the main idea from Ref. [9]
to design an algorithm for proving that a quantum state �

belongs to a given class C. In the most general case, the task
is to prove that a quantum state � is a convex combination of

some projectors onto pure states |φk〉. This means that we can
write

� =
∑

k

pk|φk〉〈φk|, (5)

where the pk form a probability distribution. The |φk〉 ∈ C are
states within a specific class C. For instance, if one wishes to
prove that � is fully separable, then C is the class of pure fully
product states, or if � should be proven to belong to the W
class for three qubits, then C is the class of pure W class states
(that is, the SLOCC orbit of |W 〉). In the following, we will
denote the set of density matrices that can be decomposed as
in Eq. (5) as conv(C), meaning the convex hull of C.

In order to design an algorithm to check whether � can be
decomposed as in Eq. (5) we will use the following two facts:

a. Convexity. First, the set of density matrices with a
decomposition as in Eq. (5) forms a convex set, i.e., if �a and �b

are in conv(C), then (1 − p)�a + p�b is also in conv(C). This
is indeed obvious by definition and it will be used as follows:
Assume that we have three states �a,�b, and �c which obey

�b = 1

1 − p
(�a − p�c) ⇔ �a = (1 − p)�b + p�c, (6)

where 0 � p � 1 and �c lie in the set conv(C). In this situation,
if we can prove that �b ∈ conv(C), then �a ∈ conv(C) must
hold, too. We will use this fact in terms of the first part of
Eq. (6): Starting from �a we will subtract a term p�c with
�c = |φk〉〈φk| and |φk〉 ∈ C. If we can then show that �b ∈
conv(C), this implies that �a ∈ conv(C).

b. Highly mixed states are in conv(C). As a second fact we
need statements which imply that highly mixed states are in
conv(C). This, of course, requires a specification of the degree
of mixedness and depends on the structure of C. For instance,
if we consider a bipartite N × M system and if C denotes the
set of pure product states, then it has been shown that if

tr(�2) � 1

NM − 1
, (7)

then � is separable, that is, � ∈ conv(C) [16]. Similar results
have been obtained for other situations [17–20]. For instance,
an N -qubit state with N � 3 for which

tr(�2) � 1

2N − α2
with α2 = 2N

17
2 3N−3 + 1

(8)

holds, is fully separable [21]. This condition will be used as a
termination condition in the algorithm below.

It should be noted that there are cases where a condition
as Eq. (7) is not directly given. For instance, if C is the set
of all symmetric product states, then the maximally mixed
state is clearly not in conv(C), as conv(C) consists of matrices
acting on the symmetric space only. Even for the identity
operator 1S on the symmetric space, a condition like Eq. (7)
is not straightforward to derive, since there are nonsymmetric
states close to 1S which are not in conv(C). In our paper such
problems do not play a role; a detailed discussion of symmetric
states will be given elsewhere.
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B. The algorithm

Now we can formulate the iterative algorithm to prove that
a state � is in conv(C). The algorithm consists of the following
steps:

(1) Take the input state � as �k with k = 1.

(2) Consider the optimization problem

max
|φ〉∈C

|〈φ|�k|φ〉| (9)

and find some state |φk〉 within C which has a high overlap
with �k.

The only aim is to find a state with high overlap; one does
not need a certified optimal solution of the maximization in
Eq. (9). Also, one may replace in Eq. (9) the matrix �k by√

�k, which may improve the convergence properties of the
algorithm (see Sec. VII for more discussion).

(3) Find an εk � 0 such that

�k+1 := 1

1 − εk

(�k − εk|φk〉〈φk|) (10)

has no negative eigenvalues and that furthermore, tr(�2
k) �

tr(�2
k+1) holds. In fact, one can directly calculate the optimal

εk such that tr(�2
k+1) is minimal (see Sec. VI). This choice is

not mandatory, however. In practical implementations, it can
be useful to set an upper bound εk � εmax, as this prevents the
algorithm from subtracting too much from �k .

The main idea is that if |φk〉 has a high overlap with �k , then
it also has a high overlap with the eigenvector corresponding
to the maximal eigenvalue λmax(�k) of �k . The construction of
�k+1 leads typically to λmax(�k+1) � λmax(�k) and, due to the
normalization, λmin(�k+1) � λmin(�k) holds. Hence, �k+1 will
be closer to the maximally mixed state than �k and is more
likely to obey conditions as in Eq. (7).

(4) Check whether �k+1 fulfills conditions like Eqs. (7)
and (8). If this is the case, then �k+1 is separable, and due to
Eq. (6), also �k and finally �1 are in conv(C). Then the
algorithm can terminate.

(5) If �k+1 does not fulfill Eqs. (7) and (8), return to step 2
and k �→ k + 1 and iterate further until Eqs. (7) and (8) hold
for some k.

Before discussing and extending this algorithm in detail,
two facts must be mentioned: First, it is of course not
guaranteed that for a given state in conv(C) the algorithm
will terminate after a finite number of steps. So we do not
claim that the algorithm can in general prove that a state �

is in conv(C). We claim only (and demonstrate in this paper)
that the algorithm is a powerful tool which works very well in
practice.

Second, a crucial step in the algorithm is the optimization
in Eq. (9). As already mentioned, one does not need a certified
solution, but still it is important to find a good approximate
solution. Clearly, the difficulty of this task depends on the
structure of C.

For the simple case that C are the pure bipartite product
states, one can do this as follows: For the optimal |φ〉 = |a〉|b〉
the part |a〉 is the eigenvector corresponding to the maximal
eigenvalue of XA = trB(�k1 ⊗ |b〉〈b|), and |b〉 is similarly
the vector corresponding to the maximal eigenvalue of XB =
trA(�k|a〉〈a| ⊗ 1). This can be used to tackle the maximization
iteratively: Starting from a random |a〉 one computes the

optimal |b〉 via XB , then with this |b〉 the optimal |a′〉, then
again the optimal |b′〉, etc. In practice, this converges quickly
against the desired solution. For multiparticle fully separable
states, this can be done similarly [22].

If C denotes the SLOCC equivalence class of some
pure state, however, it is not so clear how to perform the
optimization in Eq. (9). For pure three-qubit W-class states
one may use the explicit parametrization of pure W states
from Ref. [12], but for more qubits, such explicit formulas
are not available. A central step to extend the algorithm from
Ref. [9] to SLOCC classes is therefore a simple algorithm
for the maximization in Eq. (9). Such an algorithm will be
described in the next section.

Finally, note that the termination conditions Eqs. (7) and
(8) can also be used for SLOCC classes: From any pure
state, one can obtain all pure product states by (noninvertible)
SLOCC; hence the fully separable mixed states are a subset
of conv(C).

IV. MAXIMIZING THE OVERLAP OF N-PARTITE
STATES VIA SLOCC

As mentioned in the previous section, a crucial part of the
algorithm is to perform the maximization in Eq. (9). If C is
the SLOCC orbit of a suitably chosen n-partite pure quantum
state |�0〉 in H = ⊗n

i=1Hi , the state after a general SLOCC
operation is given by

|�′〉 = ⊗n
i=1Ai |�0〉√

〈�0|
[ ⊗n

i=1 A
†
i

]
[⊗n

i=1Ai]|�0〉
, (11)

where Ai is the local filtering (or SLOCC) operator of the ith
party.

The goal is then to maximize the overlap of |�′〉 with a
given quantum state � by applying such an SLOCC operation,
so one has to compute

max
{Ai }

〈�′|�|�′〉. (12)

The general optimization over the tensor product of SLOCC
operators is a hard task. Therefore, one may consider an
iterative procedure where in each iteration step (ϕ) we optimize
the overlap (fidelity) with respect to a single party (i), i.e., we
calculate a new state by applying a local SLOCC operator
of the ith party, and using the identity for the remaining
parties,

|�ϕ〉 = 1n\i ⊗ Aiϕ |�ϕ−1〉√
〈�ϕ−1|1n\iϕ ⊗ A

†
iϕ
Aiϕ

|�ϕ−1〉
. (13)

Here 1n\iϕ denotes the identity operator on all parties except
the ith party. In the following, we will usually omit the symbol
1n\iϕ when there is no risk of confusion.

In each iteration step the optimizing party is changed, e.g.,
by going from the first to the second up to the nth party and
then starting with the first party again. This iterative procedure
is continued up to a fixed point where the state does not change
anymore. The calculated SLOCC operator Aiϕ is in this case
up to some factor proportional to the identity. Note that in
general this optimization may converge to a local extremum
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only, but, as discussed above, global optimality is not required
for the separability algorithm.

A possible way to deal with Eq. (13) is to perform a direct
numerical optimization over the Aiϕ . If di is the dimension
of the local Hilbert space Hi , this requires an optimization
over 2d2

i − 1 real parameters. For multiqubit states this is
directly feasible; however, for larger local dimensions or
for a large number of particles n, it is necessary to have
an analytical method to find an Aiϕ which increases the
overlap. This analytical approach will be explained in the
following.

Increasing the overlap in each iteration step is equivalent to
(for brevity we use i ≡ iϕ)

〈�ϕ|�|�ϕ〉 = 〈�ϕ−1|A†
i �Ai |�ϕ−1〉

〈�ϕ−1|A†
i Ai |�ϕ−1〉

� 〈�ϕ−1|�|�ϕ−1〉, (14)

or equivalently,

〈�ϕ−1|A†
i �Ai |�ϕ−1〉

− 〈�ϕ−1|�|�ϕ−1〉〈�ϕ−1|A†
i Ai |�ϕ−1〉 � 0. (15)

In this inequality only the operator Ai is unknown. We
denote the overlap (fidelity) of the previous iteration step
by Fϕ−1 = 〈�ϕ−1|�|�ϕ−1〉, and choosing a local orthonormal
basis we can rewrite

Ai =
∑
r,s

ar,s |r〉〈s|, (16)

� =
∑

r,ξ1,s,ξ2

rrξ1,sξ2 |r,ξ1〉〈s,ξ2|, and (17)

|�ϕ−1〉 =
∑
r,ξ

crξ |r,ξ 〉, (18)

with ar,s ∈ C, rrξ1,sξ2 = r∗
sξ2,rξ1

∈ C, and crξ ∈ C, where we
used the multi-indices ξ1,ξ2 which denote all index elements
of the n \ i-partite system.

With this parametrization the last term of the left-hand side
in Eq. (15) takes the form

〈�ϕ−1|A†
i Ai |�ϕ−1〉 = tr(A†

i Ai trn\i(|�ϕ−1〉〈�ϕ−1|))
= tr(A†

i AiC) =
∑
h,j,l

a∗
lhalj (C)hj

=
∑
h,j,l

a∗
lhalj (C̃)lh,lj =

∑
ζ1,ζ2

a∗
ζ1
aζ2

(C̃)ζ1,ζ2

= 〈a|C̃|a〉. (19)

Here, C is just the matrix representation of
trn\i(|�ϕ−1〉〈�ϕ−1|) and we used (C̃)l1h,l2j = δl1l2Chj ,
that is,

(C̃)ζ1=(lh),ζ2=(lj ) = ( trn\i(|�ϕ−1〉〈�ϕ−1|))hj
(C̃)ζ1=(lh),ζ2=(i �=l j ) = 0, (20)

and ζ1,ζ2 is a mapping of a two-valued index (the “matrix
element” indices of the ith party) to a single-valued integer
index.

The remaining unknown expectation value of the left-hand
side in Eq. (15) becomes

〈�ϕ−1|A†
i �Ai |�ϕ−1〉 =

∑
h,ξ1
j,ξ2
l,m

a∗
hlc

∗
lξ1

rhξ1,jξ2
ajmcmξ2

=
∑

h,l

j,m

a∗
hlajm

∑
ξ1,ξ2

c∗
lξ1

rhξ1,jξ2
cmξ2

=
∑

h,l

j,m

a∗
hlajmDhl,jm

=
∑
ζ1,ζ2

a∗
ζ1
Dζ1,ζ2aζ2

= 〈a|D|a〉, (21)

where

(D)ζ1=(hl),ζ2=(jm) =
∑
ξ1,ξ2

c∗
lξ1

rhξ1,jξ2
cmξ2 . (22)

Therefore, we can rewrite Eq. (15) as

〈a|D − Fϕ−1C̃|a〉 � 0, (23)

where Fϕ−1 = 〈�ϕ−1|�|�ϕ−1〉. Note that the matrices D and
C̃ are Hermitian and Fϕ−1 is non-negative. The maximum
left-hand side corresponds to the maximal eigenvalue (λmax)
of the matrix D − Fϕ−1C̃ or likewise, the left hand-side of
Eq. (23) is maximized by using the eigenvector corresponding
to the maximal eigenvalue (|amax〉). By undoing the mapping
we obtain the SLOCC operator,

|amax〉 → Ãi . (24)

This procedure gives the following insight into the optimiza-
tion over one local filter as in Eq. (13): If the maximal
eigenvalue of D − Fϕ−1C̃ is positive, one can still increase
the overlap with a suitable Ai . The corresponding eigenvector
gives an Ãi which increases the overlap. Note, however, that
this Ãi is optimal for Eq. (15) but not necessarily the optimal
Ai for 〈�ϕ|�|�ϕ〉 in Eq. (14).

In the practical implementation, especially at the beginning
of the optimization procedure, it is not helpful to use Ãi directly
as the SLOCC operator, because this operator is not necessarily
invertible. This could therefore correspond to an irreversible
operation which destroys entanglement. It turns out that using

Ai = Ãi + λmax1i (25)

avoids this problem. With this SLOCC operator the state for the
next iteration step is calculated according to Eq. (13). During
the iteration procedure, λmax will decrease [see Eq. (15)],
the SLOCC operators become close to the identity, and the
convergence criterion is that λmax is up to numerical precision
zero.

V. FINDING THE OPTIMAL εk

A second optimization occurring in the algorithm is the
task to find the best εk [see Eq. (10)]. In detail, we want to
maximize the decrease in the purity in each iteration, that is,

max
εk

[
tr
(
�2

k

) − tr
(
�2

k+1

)]
, (26)
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with �k+1 = (�k − εk|φk〉〈φk|)/(1 − εk). With the abbrevia-
tion 〈φk|�k|φk〉 = c the above maximization leads to

max
εk

ε2
k

[
tr

(
�2

k

) − 1
] + 2εk

[
c − tr

(
�2

k

)]
(1 − εk)2

. (27)

Taking the derivative with respect to εk , we find the maximum
as

εmax
k = c − tr

(
�2

k

)
1 − c

. (28)

In the implementation, in case of εmax
k > 10−2λd , we define

εmax
k := 10−2λd , where λd is the minimal eigenvalue of �k

(guided by practical experience) to keep the remaining state
positive during the iterations. This corresponds to an upper
bound on εk , as mentioned above.

VI. INCREASING THE MIXEDNESS

A central strategy of the algorithm is to increase the
“mixedness” of �k in each iteration step, i.e., to lower the
purity tr(�2

k). One may wonder whether this is always possible
by subtracting some |φk〉〈φk| ∈ C. Indeed, one can show that
this is the case, unless �k is outside conv(C), which means that
the algorithm has no chance to succeed anyway.

To see this, the condition for an increase of the mixedness
can be formulated as

tr
(
�2

k

)
> tr

(
�2

k+1

) = tr

([
�k − εk|φk〉〈φk|

1 − εk

]2
)

= 1

(1 − εk)2

[
tr

(
�2

k

) − 2εk tr (�k|φk〉〈φk|) + ε2
k

]
≈ 1

1 − 2εk

[ tr
(
�2

k

) − 2εk〈φk|�k|φk〉]

for small εk . It follows that iff

〈φk|�k|φk〉 > tr
(
�2

k

)
, (29)

the state |φk〉〈φk| can be subtracted with a small weight and
the mixedness increases.

If condition Eq. (29) is not fulfilled for any |φk〉, the
mixedness cannot increase. But this implies that

sup
|φ〉∈C

〈φ|�k|φ〉 � tr
(
�2

k

)
. (30)

Consequently, tr(�kW) � 0 for the observable

W = α1 − �k (31)

with α = sup|φ〉∈C〈φ|�k|φ〉. This W is nothing but a witness
[2] which discriminates between conv(C) and the remaining
states, and tr(�W) < 0 implies that a state is not in conv(C).
Therefore, states which cannot fulfill the condition in Eq. (29)
are either not in conv(C) [in the case that tr(�kW) = 0] or
they may lie at the border of conv(C). This, however, is a set
of measure zero and not of practical relevance.

VII. CONVERGENCE BEHAVIOR OF THE ALGORITHM

Let us now discuss some practical issues. The question
of whether or not the algorithm converges depends first on
the type of state and decomposition to be determined and

second on the distance of the state from the boundary of the
considered convex set. The closer the state is to a boundary,
the slower is the convergence. The algorithm does not work,
e.g., with rank deficit states, because overlap of the optimized
pure states with the kernel of the density operator cannot be
avoided, i.e., it is not possible to ensure ρk+1 � 0. In the three-
and four-qubit case the decompositions consist of the order of
103 states [meaning that the algorithm requires this number of
iterations, until the conditions in Eqs. (7) and (8) apply], i.e.,
usually such decompositions contain many more states then
the Caratheodory bound of d2.

In practice, the overlap optimization in Eq. (9) with the
square root

√
� instead of � has a better convergence behavior.

Also, other fractional powers of � show a similar advantage.
Note that replacing � by

√
� does not affect the proof that the

iterated state is separable, if Eqs. (7) and (8) apply.

VIII. LOWER BOUND ON THE ε BALL VIA
CROSS POLYTOPE

The presented algorithmic procedure allows a decomposi-
tion of the state � with the specified SLOCC properties to be
determined. After n iterations we have a decomposition, i.e.,
the set S = {{|φi〉〈φi |},�n}, of our initial state of the form

� =
n∑

i=1

pi |φi〉〈φi | + qn�n, (32)

where the probabilities pi are given by pi = εiqi−1 and qi =∏i
j=1(1 − pj ) with q0 := 1 and �0 := �.
By construction, our convex set S has specific “entangle-

ment” properties which are valid for all states in its convex hull.
However, if we obtained the state � from experimental data, we
have to deal with errors and imperfections, and so the starting
state � is affected by uncertainties. Therefore it is of great
importance to give some statements about the “stability” of the
determined decomposition, or an estimate of the probability
that an experimental state lies inside this convex set.

A first possibility to deal with this problem was used in
Ref. [9]. There, starting from the experimentally obtained
state �exp the measurements were simulated via a Monte Carlo
simulation, and 200 sampled states were reconstructed via
a maximum likelihood approximation. Then, separability of
the state �exp was only claimed, when the algorithm could
prove that �exp as well as all samples were separable. Note
that the generation of states via Monte Carlo simulation of
the measurements is a standard technique to estimate errors in
ion-trap experiments.

A different possibility can be obtained by answering the
question, How much can an experimental state deviate from
� such that the state still belongs to the set S? Although this
question is in general not easy to answer [23], we can determine
a lower bound on the minimal Hilbert-Schmidt distance of the
state � with respect to the convex hull of S.

The idea is to show that if the state deviates from � in
different directions, then it remains in the convex set. More
precisely, we construct a symmetric cross polytope [14] with
the state � in the center (see Fig. 1 for a two-dimensional
example). For a quantum state � with Hilbert space dimension
d, the set needs at least d2 constituents such that a nonzero
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fcp

εball

|φi φi|

FIG. 1. (Color online) Schematic two-dimensional example for
a decomposition of � (red dot). The convex hull of the states of the
decomposition, i.e., the set S, is denoted by the dashed line. The cross
polytope is shown in blue, the vertex states of the cross polytope are
marked by blue triangles, and εball corresponds to the circle.

volume object in this space is possible. The cross polytope is
a symmetric polytope with 2(d2 − 1) vertex states. The vertex
states of the cross polytope are defined by ��cp

±i = �� ± fcp�ei ,
where we used a vector representation of the density operator
in (d2 − 1)-dimensional Euclidian space by mapping

A =

⎛
⎜⎜⎜⎜⎝

a1 ad + iad+1 · · · a3d−3 + ia3d−2

...
...

...
...

· · · ad−1 · · ·
· · · ad2−2 − iad2−1 1 − ∑d−1

i=1 ai

⎞
⎟⎟⎟⎟⎠

−→ �A =

⎛
⎜⎜⎜⎜⎝

a1

a2

...

ad2−1

⎞
⎟⎟⎟⎟⎠.

The elements of the basis vectors in this notation are given by
(�ei)j = δij .

The Euclidian distance of the vertex states of the cross
polytope with respect to the state �, which is given by
fcp, is maximized under the constraint that the vertex
states are contained in the convex hull of our set S

(see Fig. 1).
First, using a divide and conquer algorithm, we calculate

the maximal parameter f of each state ��±i = �� ± f �ei such
that it is contained in the convex hull of our set S. Whether a
state is contained in the convex set can be decided by using
a linear program, e.g., via the MATLAB routine linprog. The
vertex state with the smallest parameter fcp is used for defining
the vertex states of the cross polytope inside our convex hull.
The parameter fcp also depends on the relative orientation
of the chosen orthogonal basis {�ei}; here an additional
optimization is possible.

Then, the smallest Hilbert-Schmidt distance of � with
respect to any point in the convex hull of the cross polytope is
given by εball = fcp√

d2−1
, where d is the dimension of the Hilbert

space and fcp is the maximal parameter such that the cross
polytope is contained inside the set S [14]. We will present an
example below.

IX. EXAMPLES

In this section, we present several examples for the
application of our algorithm outlined above.

A. GHZ states affected by white noise

First, we consider the GHZ state of n qubits affected by
white noise

�GHZn(p) = p|GHZn〉〈GHZn| + 1 − p

2n
1, (33)

where |GHZn〉 = 1√
2
(|0 · · · 0〉 + |1 · · · 1〉). For three qubits,

these states have the following properties:
(a) �GHZ3 is fully separable iff p � 1/5 = 0.2 [24],
(b) �GHZ3 is genuine multipartite (tripartite) entangled iff

p > 3/7 ≈ 0.4286 [25],
(c) �GHZ3 belongs to the GHZ class iff p � 0.6955. For a

detailed discussion see Ref. [13].
With our algorithm we can determine separable and

biseparable decompositions up to the threshold values of
p. A bound with a threshold value of p = 559

805 ≈ 0.6944
for existing W-class decomposition was obtained with our
algorithm, which is close to the optimal threshold value of
p ≈ 0.6955.

1. The ε ball and the robustness depending on p

With our algorithm it is possible to obtain W decomposi-
tions of the state ρGHZ3 up to p = 0.6944. Due to the “small”
number of vertex states forming the convex set, the size of an
ε ball generated via the procedure of Sec. VIII will be small
in comparison to the maximum possible ball which fulfills the
considered properties. However, the lower bound on the size of
this ball will also depend on the distance of the considered state
to the border where the properties are not fulfilled anymore.
In Fig. 2 the lower bound on the size of the ε ball is plotted
versus the parameter p. As expected, for the almost maximally
mixed state (small p) the ball is quite large, but it decreases
by several orders of magnitude as p approaches the threshold
value of the considered convex set.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-b
al

l

p

FIG. 2. (Color online) The lower bound on the size of the ε ball of
the state given in Eq. (33) as a function of p. The decompositions are
obtained with the procedure of Sec. VIII. The line is a polynomial fit
of the points for guiding the eye. The ball size strongly depends on the
number of constituents in the decomposition, especially if states far
away from the border are considered. Therefore here decompositions
are compared, which consists of a total of about 4000 pure states.
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From our ε ball we can also deduce that any state �′ which
has a Euclidean distance from � which is smaller or equal to
the radius of the ε ball is contained in our convex set, i.e., using
the Hilbert-Schmidt distance between two operators A and B

given by d =
√

tr[(A − B)2], we can calculate the distance
between two GHZ-Werner states [see Eq. (33)] with purity p

and p′ = p + δ to be given by

d2 = tr([�GHZ(p) − �GHZ(p′)]2)

= 7
8δ2. (34)

If we have an ε ball in the surrounding of �GHZ(p) with radius
εball then we can deduce that also the state �GHZ(p′) with

δ �
√

8

7
εball (35)

belongs to the same convex set, allowing an increase of the
threshold parameter accordingly.

2. Entanglement properties of ρGHZ4( p)

The maximal parameter popt ≈ 0.467 for biseparability of
the four-qubit GHZ state mixed with white noise was derived in
Ref. [25]. Our algorithm is able to determine decompositions
for values of p up to p ≈ 0.466.

For four qubits there is already a continuous set of
inequivalent SLOCC entanglement classes, and it can happen
that a state can be decomposed into biseparable states, but
not into SLOCC equivalents of some genuine multipartite
entangled states. To investigate this, we considered the state
ρGHZ4(p) and asked when it can be decomposed into SLOCC
equivalents of the four-qubit W state, |W4〉 = 1

2 (|0001〉 +
|0010〉 + |0100〉 + |1000〉). This seems to be only possible
for p � 0.32, but for the larger parameter regime p � 0.467
the state is biseparable.

An intuitive argument for such a behavior is that the four-
qubit W state can be transformed via SLOCC into a three-qubit
GHZ state as well as to a two-qubit Bell state tensored with
a product state, but it is not possible to reach |φ4〉 = |φ+〉 ⊗
|φ+〉; we even have maxW∈SLOCC(W4) |〈W |φ4〉|2 = 0.5.1 States
like |φ4〉, however, are essential in the biseparable decompo-
sition of ρGHZ4(p) [25]. Many lower entangled pure states are
SLOCC inequivalent to specific genuine multipartite entangled
pure states.

B. W states with white noise

In order to give an example where the algorithm is not
capable of computing the threshold of separability, we consider
states of the form

�Wn(p) = p|Wn〉〈Wn| + 1 − p

2n
1, (36)

where the three-qubits W state |W3〉 is given in Eq. (4)
and for four qubits we have |W4〉 = 1

2 (|0001〉 + |0010〉 +
|0100〉 + |1000〉). The border to the class of biseparable

1This property can, e.g., be supported by considering the Schmidt
rank of |W4〉 with respect to the split 1,3 vs 2,4 which is 2, whereas
the corresponding Schmidt rank of |φ+〉 ⊗ |φ+〉 is 4. It is not possible
to increase the Schmidt rank of a state via SLOCC operations.

states can only be roughly approached by the algorithm.
In the three-qubit case we have a gap of about �p =
0.03; the exact value p = 0.4790 is known from Ref. [26].
For the four-qubit W state with white noise, the gap with respect
to the upper bound obtained by an semidefinite-programming
witness (SDP witness) [26] is approximately �p4 = 0.04, i.e.,
we determined a decomposition for p = 1 − 0.526 − 0.04 =
0.434.

C. Bound entangled state from an unextendible product basis

As a second example, we consider the bound entangled
states arising from an unextendible product basis [27].
These states are defined via using the product vectors
|ψ0〉 = |0〉(|0〉 − |1〉)/√2, |ψ1〉 = (|0〉 − |1〉)|2〉/√2, |ψ2〉 =
|2〉(|1〉 − |2〉)/√2, |ψ3〉 = (|1〉 − |2〉)|0〉/√2, |ψ4〉 = (|0〉 +
|1〉 + |2〉)(|0〉 + |1〉 + |2〉)/3. Then the state

�BE = 1

4

(
1 −

4∑
i=0

|ψi〉〈ψi |
)

(37)

is an entangled state on a 3 × 3 system, which is not detected
by the positive partial transpose (PPT) criterion. We considered
the family of states

�UPB(p) = p�BE + (1 − p)1/9. (38)

They have often been used as a test bed for separability criteria.
To our knowledge, the best criterion for these states is the first
step of the algorithm of Doherty et al. [28], which detects
them to be entangled for p > 0.8691. Our algorithm proves
that these states are separable for p � 0.83.

D. Thermal states with the Heisenberg interaction

Let us consider the thermal state

�H(T ) ∼ exp{−HH /T } (39)

of three spin-1/2 particles interacting with the Heisenberg
interaction,

HH =
∑
i<j

hij with hij =
∑

k=x,y,z

σ
(i)
k ⊗ σ

(j )
k , (40)

where i,j ∈ {1,2,3}. In Ref. [29] the entanglement properties
of this system were investigated, and it was shown that the
spin-squeezing inequality (�Jx)2 + (�Jy)2 + (�Jz)2 � N/2
with Jk = 1/2

∑
i σ

(i)
k detects these states as entangled for

T � 5.461. Remarkably, the spin-squeezing inequality shows
that for 4.329 � T � 5.461 the thermal state is biseparable
with respect to any bipartition, but not fully separable. Direct
application of our algorithm gives that for T � 5.462 the
thermal state is fully separable, giving strong evidence that the
spin-squeezing inequality is a necessary and sufficient criterion
for the thermal state. For more than three spins, however, this
does not seem to be the case.

E. Experimental pseudobound entangled state

In Ref. [12] a class of three-qubit bound entangled states
with rank 7 were introduced. We consider the specific state
where the entanglement is maximally robust with respect to

032307-7
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FIG. 3. (Color online) Experimental pseudobound entangled state
[31]. All imaginary elements of the experimental state are small and
therefore are not shown.

white noise [30]:

ρBE3 = 1

N

(
2|GHZ〉〈GHZ|

+ a|001〉〈001| + a|010〉〈010| + 1

a
|011〉〈011|

+ a|100〉〈100| + 1

a
|101〉〈101| + 1

a
|110〉〈110|

)
,

(41)

where |GHZ〉 = 1√
2
(|000〉 + |111〉), a = 0.3460, and the nor-

malization is N = [2 + 3(a + 1
a

)]. The state has the curious
property that it is biseparable with respect to any bipartite
splitting, but it is nevertheless entangled. A pseudobound
entangled state of this form was experimentally generated
and characterized in Ref. [31] (see Fig. 3). It was shown via
a witness operator that the state is entangled and PPT with
respect to any bipartite splitting. Now with our algorithm we
are able to prove that this state is biseparable with respect to
the split B-AC with an ε ball of εball = 4 × 10−4.

F. Experimental three-qubit W state

Nowadays it is possible in several experimental setups to
generate quantum states which are, e.g., close to the three-qubit
W state. The generated states are characterized by quantum
state tomography. Here we use data from an experiment by
Roos [32]. This “typical” experiment (see Fig. 4) led to a
fidelity of F = √〈W |�exp|W 〉 = 0.9, where we can prove via
an entanglement witness that this state is genuine multipartite

1 3 4 5 6 7 8
2

Re( (i,j))
IdealExperimental

1

3
5

7

column index

row
index
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0.35

0.15

0.00

FIG. 4. (Color online) Real part of the experimental W state
from Roos [32] (left) in comparison to the ideal W state (right). All
imaginary elements of the experimental state are small and therefore
are not shown.

entangled. Now the question arises whether this state really
belongs to the W class of entanglement. With our algorithm
it is not possible to find a W-class decomposition of �exp,
so probably the state belongs to the class of GHZ-entangled
states. On the other hand, we can find for the slightly
depolarized version of this state, e.g., �′ = 0.96�exp + 0.04

8 1,
a W decomposition and we can prove that it is genuinely
multipartite entangled.

G. Summary of the algorithmic performance

In this section we summarize the obtained threshold
parameters for the various examples considered. Our standard
approach was to consider different types of quantum states
mixed with white noise of the form

�i(p) = p�i + (1 − p)1/d. (42)

Then we determined the threshold parameters p for various
types of entanglement which we can achieve via our algorithm
and compared them with bounds from the literature or
with exact values if they are known. The only exceptional
parametrization was the case of the thermal equilibrium
Heisenberg spin chain state (Sec. IX D), which depends on the
temperature. In Table I we summarize the threshold parameters
reached via our algorithm and show the best-known bounds
from the literature. For several cases we also calculated lower
bounds on the ε ball for our determined decompositions (see
Sec. VIII). For all cases where the exact bounds are known,
we can reproduce the threshold parameters quite well by our
procedure, apart from the three-qubit W state, where there is a
small gap. It is remarkable that our algorithm seems to work
independently of the type of decomposition to be determined.
For the given examples the calculation needs less than 5 min on
a standard personal computer. The number of terms calculated

TABLE I. Threshold values for p, see Eq. (42). The column
Decomp. contains the parameter threshold up to which we are
able to determine S (separable), BS (biseparable), and W (W-type)
decompositions. The specific methods used to obtain bounds on the
threshold values are discussed in the corresponding paragraph of the
examples.

State Ent. Bound Decomp. ε ball

�GHZ3 S 1/5a,b 0.199 8.1 × 10−5

BS 0.429a [26] 0.4285 9.2 × 10−6

W 0.6955a [13] 0.694 7.1 × 10−5

�GHZ4 S 1/9a,b 0.111
BS 0.467a [26] 0.466
W 0.316

�W3 S 3/11b 0.1727 7.6 × 10−4

BS 0.479a [26] 0.45 1.1 × 10−3

�W4 S 1/5b 0.09
BS 0.474 [26] 0.434

�UPB S 0.87 [28] 0.83 1.2 × 10−4

�BE3 S 0.786a [33] 0.726 2.0 × 10−4

BS (AB-C) 1a [12] 0.9 1.1 × 10−3

�H(T ) S 5.61 [29] 5.62 2.1 × 10−5

BS (AB-C) 4.329 [29] 4.33 7.2 × 10−6

aExact values from the literature.
bBounds obtained via the PPT criterion.
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in the decomposition strongly depends on the distance to the
border of the convex set, i.e., already a very small change on
the p-threshold values has a huge influence on the number
of terms in the decomposition. For threshold values with the
precision given in Table I it is possible to find decomposition
within the order of ∼5000 terms.

X. CONCLUSIONS

We presented an easily implemented, fast, and straightfor-
ward method for finding decompositions of quantum states
with specific SLOCC entanglement properties. For a large
variety of examples, decompositions were determined for
those parameters, where they are known to exist. For instance,
it is possible to find separable decompositions of Werner states
with minimal amount of white noise. Also, the threshold values
for biseparability can be reproduced in most cases for three-
and four-qubit states. Especially interesting are the cases where
the exact parameter range for the existing decompositions is
not known. It was possible, e.g., to investigate bound entangled

states with our algorithm. This method of determining specific
decompositions of a quantum state is a complementary tool
to entanglement criteria such as entanglement witnesses.
Together these tools allow us to extensively specify the
entanglement properties of a given quantum state. In the future
we would like to understand better the convergence behavior
of the algorithm, especially why optimally decreasing the
purity of the quantum state in each iteration is in the end
not necessarily a good strategy.

ACKNOWLEDGMENTS

We would like to thank J. Barreiro, M. Kleinmann,
M. Mertz, M. Piani, C. Roos, J. Siewert, and A. Streltsov for
valuable discussions. This project was financially supported
by the Austrian Science Fund (FWF): Y376-N16 (START
prize), the EU (Marie Curie CIG 293993/ENFOQI), the BMBF
(Chist-Era Project QUASAR), and the Deutsche Forschungs-
gemeinschaft (DFG).

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).
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[23] B. Grünbaum, Convex Polytopes 2nd ed. (Springer, New York,

2003).
[24] W. Dür and J. I. Cirac, Phys. Rev. A 61, 042314 (2000).
[25] O. Gühne and M. Seevinck, New J. Phys. 12, 053002

(2010).
[26] B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. Lett. 106,

190502 (2011).
[27] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.

Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999).
[28] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev.

Lett. 88, 187904 (2002).
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