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Double-slit implementation of the minimal Deutsch algorithm
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We report an experimental implementation of the minimal Deutsch algorithm in an optical setting. In this
version, a redundancy is removed from the most famous form of the algorithm. The original version involves
manipulation of two qubits, while in its minimal version, only one qubit is used. Our qubit is encoded in the
transversal spatial modes of a spontaneous parametric down-converted signal photon, with the aid of a double slit,
with the idler photon playing a crucial role in creating a heralded single-photon source. A spatial light modulator
(SLM) is programmed to physically generate one-bit functions necessary to implement the algorithm’s minimal
version, which shows that the SLM can be used in future implementations of quantum protocols.
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I. INTRODUCTION

Quantum computation has emerged in the past decades as
a potentially powerful tool to solve problems more efficiently
than its classical counterpart. One simple example is determin-
ing whether a coin is fair (heads on one side, tails on the other)
or fake (heads or tails on both sides). This is one version of
the Deutsch problem [1]; Deutsch himself showed that when
exploring quantum state superposition, only one examination
step is necessary, while classically the solution requires
individual examination of both sides. Although the algorithm
originally proposed by Deutsch involves manipulation of
two-qubit states, there is also a “minimal” version of it, in
the sense that just one qubit is manipulated [2]. In this sense,
minimal Deutsch algorithm can be considered the most basic
and simple quantum computation.

Many physical systems have shown to be useful for
implementing quantum computation, such as nuclear magnetic
resonance [3,4], trapped ions [5], optical cavities [6], Joseph-
son junctions [7], and photons [8,9]. In particular, the original
Deutsch algorithm and its generalization, the Deutsch-Jozsa
algorithm [10], were implemented using photons [9,11], and its
minimal version was also implemented on quantum dots [12].

Spontaneous parametric down-conversion (SPDC) [13] is
a natural source of correlated photon pairs, with the additional
advantage of having many degrees of freedom that can be
considered quantum systems, such as polarization [13,14],
transversal [15], longitudinal [16,17], and orbital angular
[18,19] momenta. On the other hand, a spatial light modulator
(SLM) can be used to perform state control [20]. It has
been used for tomographing polarization [21] and transverse
momenta [22] states, for measuring Bell inequality violations
in orbital momenta of SPDC photon pairs [23], and optical
quantum algorithm simulation [24].

In this work we report experimental implementation of the
minimal Deutsch algorithm in an optical setting. We use a
double slit to encode logical qubits (in the sense of the {|0),|1)}
logical base of a qubit space) in the transversal spatial modes of
photons generated in a SPDC process [15]. A SLM is employed
as a fundamental part of our experimental setup. It has the
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function of simulating the “fair coin” or the “fake coin” in the
optical setup. Before really applying the quantum algorithm,
we need a calibration process, which can also be understood
as a proof of principle of the algorithm, since one uses many
queries to the oracle. After such calibration, the apparatus is
ready for running the real Deutsch algorithm: With only one
“examination step,” answer which type of “coin” we have, with
probability larger than 1/2. The paper is organized as follows:
In Sec. II we review the theoretical description of the minimal
Deutsch algorithm. The experimental setup is presented in
Sec. III. The results are shown in Sec. IV. Discussion is made
in Sec. V, and conclusions are outlined in Sec. VI.

II. MINIMAL DEUTSCH ALGORITHM

Quantum parallelism allows quantum systems to evaluate a
function f(x) for many different values of x simultaneously.
The Deutsch algorithm is a good example of how to explore
quantum parallelism to answer a classical question; explicitly,
to solve the Deutsch problem evaluating the function only
once.

Consider an oracle that can answer one-bit questions
with one-bit answers described by a deterministic function
f :{0,1} — {0,1}. This function is called balanced if f(0) #
f(1); otherwise the function is constant [ f(0) = f(1)]. The
Deutsch problem consists in determining whether a given
unknown function is balanced or constant. For a classical
algorithm to answer that with certainty it requires the oracle
to be asked twice, that is, asking the value of f on 0 and
1. On the other hand, the Deutsch algorithm requires only a
single query, using quantum parallelism, to reduce the minimal
resource required.

In the minimal version [2], the oracle’s behavior is encoded
in a unitary operation U to be applied on a well-chosen input
state, depending on the function f. For the computational basis
one has Uy |x) = (—1)7™ |x) as output, for x = 0,1. Now, if
the superposition state \/LE(IO) + |1)) is used as input, both
questions are asked at the same time, with the output state
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Note that the first answer is orthogonal to the second, so we
can make a projective measurement in the basis {|+), |—)}
and find out if the function is balanced (]—)) or constant (|+)).
The unitary operations are implemented by the oracle. Four
possible maps U;; are generated and we label them with the
values of i = f(0) and j = f(1):
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III. EXPERIMENTAL SETUP

The scheme of the experimental setup is shown in Fig. 1.
A 50-mW He-Cd laser operating at A = 325 nm is used to
pump a 2-mm-thick lithium iodate crystal and generate, by
type I SPDC, degenerate noncollinear photon pairs. Signal
and idler (A; = A; = 650 nm) beams pass through a 1 /2 plate

Mirror

Double Slit +
SLM

Detector 1

FIG. 1. (Color online) Experimental setup scheme for minimal
Deutsch algorithm implementation. The L; lens focuses the pump
beam in the double-slit plane; lenses L,; and L, are used to detect
the signal and idler beams at Fourier plane, while the Ly, lens is used
to project the double-slit images in the detector. A half-wave plate is
placed right after the crystal, and a polarizer P; is positioned in front
of detector 1. CNC denotes coincidence counter and SLM denotes
spatial light modulator.
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(half-wave plate), before they cross a double-slit placed at a
distance of 250 mm from the crystal. The double-slit plane
(xy plane) is aligned perpendicular to the plane defined by the
pump laser and the down-converted beams (yz plane), with
the small dimension of the slits parallel to the x direction.
The slits are 2a = 100 um wide and have a separation of
2d = 250 pm. The lens L, is used to generate photon pairs
in entangled transversal path states [25]. A natural question
is why to use down-converted biphotons for implementing the
one-qubit Deutsch algorithm. In our case, one can consider the
selective detection of the idler photon as part of the heralded
preparation of the signal-photon state.

Our experimental setup is arranged in a way that a photon
passing through the inferior slit of the double slit corresponds
to state |0), while a photon that passes through the superior
slit corresponds to state |1). The SLM after the double slit,
together with the A /2 plate and the polarizer Py, works as the
quantum oracle. The map of the oracle function is constant
(Ugo or Uyy) if the phases added by the SLM are equal, or
balanced (Uy; or Uyg) if the phase difference is 7. Once the
pump beam is focused at the double-slit plane, a Bell state |1.)
is created by the twin photons in the slit path states [25,26].
A dichroic mirror placed just after the crystal removes the
pump beam and transmits signal and idler beams. The trigger
photon (idler) also passes through a double slit and is reflected
by the SLM, but without the polarizer at its path, no phase
change or amplitude variation in its state occurs due to the
manner in which the SLM works. In Figs. 2 and 3, we show,
experimentally, that we are able to introduce spatial phase
changes at the signal-photon path state while preserving the
state amplitudes by using the SLM. However, there are many
other maps that the SLM can implement in a double-slit qubit.
The SLM maps can be described by
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FIG. 2. Coincidence double-slit interference patterns. Closed
squares show the interference pattern when the SLM gray levels are
the same in both slit aperture directions that define the signal-photon
path states. Open squares show the interference pattern when there
are different gray levels producing a relative phase of 7, between the
signal states. Idler path phase, in both measurements, is not changed
by the SLM. The idler detector is kept fixed at x; = 0, while the
signal detector is scanned in steps of 40 wum; the detection time is
60 seconds. Lenses L; and L, were used.
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FIG. 3. Signal double-slit image, measured in coincidence
counts. The result is recorded with the idler detector fixed at x; = 0,
while signal detector is scanned in the x direction, when the same
gray level of the open square pattern used in Fig. 2 is applied and the
detection time is 20 seconds. Lenses L; (the same lens used in Fig. 2)
and L, were used. Signal detector is placed at the image plane while
idler detector is at the Fourier plane.

where A is the attenuation and ¢ is the phase applied in
the photon state |k). The SLM maps in this kind of setup
are diagonal because it cannot exchange photon population
between slits, i.e., an operation like |0(1)) — A |0) + A [1)
cannot be done if Ay # 0. Instances of these SLM maps
were implemented in Refs. [21,22], while a general one
can be made through a calibration described by Moreno
et al. [27].

Single slits with 100 «m width are placed in front of each
detector. Their planes (xy; s planes) are aligned perpendicular
to the propagation direction of the idler and signal beams (z; ¢
direction), respectively. The small dimension of each slit is
parallel to the corresponding x direction. The SLM used is a
Holoeye Photonics LC-R 2500, which has a 1024 x 768 pixel
resolution (each pixel consists of a 19 x 19 um square), and it
is controlled by a computer. Signal and idler beams are focused
on the detectors with a microscope objective lens (not shown
in Fig. 1). Two interference filters, centered at 650 nm and
10 nm FWHM bandwidth, are kept before the objective
lenses. Pulses from the detectors are sent to a photon counter
and a coincidence detection setup with a 5.0 ns resolving
time.

IV. EXPERIMENTAL RESULTS

First of all, we must be able to implement the maps Uj;;
(i,j € {0,1}) of Eq. (3). It was shown [27] that a SLM plus the
input and output polarizers can be properly calibrated to obtain
this goal (Ag = A; and ¢, = 0,7). The liquid crystal display of
the SLM is divided in two regions, each region adding a phase
to the photon path state, |0) or |1), defined by the slits (inset
of Fig. 1). A SLM gray level is associated with each region
of the display. Pre-determined gray levels, along with correct
half-wave plate and polarizer angles, introduce a relative phase
between the photon path states without relative amplitude
attenuation. The evolution maps U;; are implemented when
the correct phase differences (0 or m) with no amplitude
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attenuation are introduced in the photon path states by the
SLM.

Figure 2 shows two double-slit interference patterns, mea-
sured in coincidence counts. Both are obtained by scanning the
signal beam detector, with steps of 40 um, while maintaining
the idler beam detector fixed in the position that corresponds
to an interference pattern maximum (x; = 0). In the closed
square pattern, we have used the same SLM gray level for the
|0) and |1) signal-photon path states. But in the open square
pattern we have inserted a relative phase between the photon
states, through an appropriate choice of SLM gray levels for
each one. Fitting the two interference graphs, we measure a
relative phase of A¢ = 3.25 &£ 0.03. To obtain the interference
pattern in both detectors, we have used the L; and Ly lenses
in our experimental configuration. It is important to note that
the phase in the idler photon path states is not affected by the
SLM gray level, because there is no polarizer in front of this
detector [27].

In Fig. 3 we have the coincidence double-slit image for the
signal beam. This result is obtained when the L, lens is used
in the signal beam and the L; is used in the idler beam. Here the
experimental setup is such that the peak in the x; displacement
negative region is associated with the inferior slit, i.e., with
the |0) signal photonic state, while the peak in the positive
displacement region is associated with the |1) photonic state.
Once again we kept the idler detector fixed at x; =0, i.e.,
its interference pattern maximum and scan the signal beam
detector, with steps of 20 um and acquisition time of 20 s.
The signal detector is placed at the image plane while idler
detector is at the Fourier plane. The SLM gray levels were the
same as the ones used to obtain the open squares interference
pattern shown in Fig. 2. We can infer that the SLM gray levels
used to obtain phase 7 do not attenuate the state amplitude by
calculating the areas under the peaks corresponding to each
state. In the curve shown, we have an area of (77 & 2) arb.
units for the |0) signal-photon state and (72 = 2) arb. units,
for the |1) state. Therefore, with the curves shown in the open
squares of Figs. 2 and 3, we can implement the Uy; map. To
implement each U;; a proper gray level was chosen in each
slit, corresponding to add a 7w phase for the value 1 and no
extra phase for the value 0.

To implement the minimal Deutsch algorithm we must
create the state |+) for the signal photon and, after the
oracle, measure it in the base {|4),|—)}. By detecting
at the Fourier plane and at the origin of the interference
pattern, we are able to implement experimentally the detection
projector |+) (+| [26]. Using SPDC, a double slit, and by
focusing the pump beam at the double slit’s plane, we prepare
the Bell state |,;) = [ F) = \/Lz(losli) +11,0:) = J%(I +s
—+i) —|—s —i)) [25]. If we detect the idler photon using the
projection operator |+) (+| we project the signal-photon state
in the state we need. Hence, in our setting, an oracle query
corresponds to a detection of the idler photon at the center
of the pattern being the instance where the logical qubit, the
signal photon, is prepared in the appropriate state. The oracle’s
answer is then provided by the detection or no detection of the
signal photon. Note, moreover, that the idler measurement, and
hence logical qubit state preparation, is done after one of the
maps U;; is applied on the qubit. But since these operations
commute, this does not affect the final statistics.
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TABLE I. Experimental results for all map possibilities.

f0) §ieY) Coincidence
0 0 5218 £ 72
0 1 450 £ 21
1 0 427 + 20
1 1 5399 £ 73

The experimental results for all map possibilities are shown
in Table 1. The measured photon coincidences were obtained
with signal and idler detectors kept fixed at x; = O and x; = 0
(center of the interference pattern), respectively, at the Fourier
plane. Measurements were taken in 1000 s. The data show a
clear difference of behavior between constant and balanced
functions.

V. DISCUSSION

In the previous section we presented the result of the
algorithm using many oracle queries, summarized in Table I,
which allows, as expected, perfect discrimination between
constant and balanced functions (high and low coincidence
counts, respectively). The Deutsch algorithm is, however,
about the optimization of the Deutsch problem with regard to
the number of queries to the oracle; and here we discuss what
our experimental setup tells us when only one such query is
allowed.

However, the meaning of this implementation regarding
individual events is more subtle, due, among other reasons, to
the fact that an idler photon detection at position x corresponds
to the preparation of a state JLE(IO) + /™) |1)) for the signal
photon, where ¢(x) is a function depending on the detector
position and other features of the setting (see Refs. [25,26]).
Strictly speaking, the measurement is not of the von Neumman
type, on the states {|+), |—)}, but a positive operator valued
measurement. This means that an infinitesimal detector in
x = 0 measures an operator proportional to |+) (4|, while
a finite detector with opening d (that is, the width of the slit
placed in front the detector) measures a positive operator that
is a weighted sum of all projectors from x = —% tox = %
Moreover, a signal no-detection event does not necessarily
correspond to the state |—). Nevertheless, we can use the
results shown in Fig. 2 to predict the chances of having
a detection (and hence, also no detection) event when the
function is constant or balanced, by computing the area under
the corresponding (normalized) curve over an interval centered
at the origin with the same width as the detector.

From the graphs themselves, and also from Table I, we see
that the chances of detecting a photon when the function is
constant is much higher then when it is balanced, so indeed
a single oracle query gives us some information about the
function. But, in practice, none of the events tell us definitely
which type of function we have. A detection can also be
associated with a balanced function, although it is rare, due
to detector width. A no-detection event, on the other hand,
might be related to one of three distinct situations: the function
is balanced, so, as we want, there is a very low probability of
detecting a photon at the origin; the function is constant, but the
detector failed; or the function is constant, but the photon hit
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the Fourier plane at another point away from the detector. Due
to this third situation, even in a perfect experimental setting a
no-detection event can also correspond to a constant function.

To understand better the quantum advantage within this
implementation, we can consider a scenario where one of
these functions is given to us, with equal probability, and we
must bet on constant or balanced with only one oracle query.
Classically, we cannot do better than a fifty-fifty guess, but with
this implementation we can. Indeed, from the discussion in the
last paragraph, we already see that a detection is more likely
to be associated with a constant function, while no detection
is more likely to be associated with a balanced one.

To see this in a quantitative manner, let S be the event
where the function’s type is correctly guessed. We can write
the probability for this event as

P(S) = Z P(f =ip)PSIf =i)), )
i,j=0,1

where P(f = ij) = 1/4 is the probability of having the func-
tion f(0) =i, f(1) = j while P(S|f = ij) is the probability
of success given that function. We denote by p;; the probability
for a photon to hit the Fourier plane at a point covered by the
detector, given that the function implemented is f = ij. That
is, p;j is just the area under the normalized curve of Fig. 2
corresponding to the function ij, in an interval around the
origin with the detector’s width.

Now, if the function is the constant 00, we succeed in
our guess if we detect a photon. This will take place with
probability npgo, where 7 is the detector efficiency. Similarly,
for f = 11, we have P(S|f = 11) = npy,. For the function
01, on the other hand, we succeed if there is no detection,
which has probability (1 — po1) + (1 — n)poi. The first term
in the sum corresponds to the case where the photon goes
to a point away from the detector, while in the second, the
photon hit the detector but the detector fails. Of course, we
have also P(S|f = 10) = (1 — p1o) + (1 — n)p1o. Since the

experiment is designed in a such a way that py ~ p1 = p.
and po1 & pio = pp, we have finally
P(S) = 314 n(pe — pp)l. (6)

Of course, for any detector width, the probability is just
1/2 for n = 0, since we do not gain any information about the
function. It then grows linearly with n and, for the detector
width we have used (100 pum), it goes to a maximum of 0.55.

We could also vary the detector’s size by changing the
width of the slit placed in front of it, to maximize the right
function choice. Figure 4 shows the success probability when
the slit size is changed and the detector is considered perfect.
The best detector slit size is 260 um and the corresponding
success probability is 0.58. For certain values the probability
of detecting photons can be larger for balanced functions than
for constant ones, so we would infer the function wrongly more
often than correctly. Of course, we would then have to bet in
the opposite way: balanced if we detect a photon, constant if
we do not detect anything. For a detector covering the whole
plane we recover the classical fifty-fifty guess since, again, we
do not get any information about f.

We note finally that in this setting we have an asymmetry
between the betting confidence on constant and balanced
functions: For small detector sizes, a detection implies a

032306-4



DOUBLE-SLIT IMPLEMENTATION OF THE MINIMAL ...

0.60
0.58 ]
0.56 |
0.54]
0521
0.50 ]
0.48
0.46 |
0.44]
0.42]

0 1000 2000 3000 4000

Detector Width (um)

Probability of Success

FIG. 4. Probability of success when the signal detector size is
changed (width of the single slit in front of the detector is varied). The
photon detectors are assumed to be fixed at the positions x; = x; = 0,
and it is assumed the detection of the idler photon. Here the detectors
are considered perfect, and we consider the average probability of
both detection and no-detection events. It is assumed that we always
bet in a constant (balanced) function when there is (no) detection. The
optimal size for the detector is 260 pwm, with a success probability
of 0.58.

constant function with high probability, while no detection
implies a balanced one with just moderate probability. Indeed,
from Bayes’ formula we can compute

Dc

P(f = constant|detection) = ————, (7N
Pe+ Db
. 1 —npy
P(f = balanced|no detection) = —— .  (8)
2 —n(pc+ pp)

For instance, for a very small detector we have p, <
pe K1 so P(f = constant|detection) =~ 1 while P(f =
balanced|no detection) & 1/2. This is due to our choice of
the detector position. Choosing a spot on the Fourier plane
corresponding to the state |—) would invert this asymmetry.
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If a CCD was used instead we would have, on average, the
same confidence for betting on both types of functions, but
there would still be inconclusive events. If the signal photon
were detected by the CCD on a position corresponding to the
state preparation, say, %(IO) +i|1)), we could not infer the
type of function we had. For instance, a detection at position
0.11 mm, i.e., where the two interference patterns cross in
Fig. 2, corresponds to such a situation.

VI. CONCLUSIONS

In this work we implement the minimal Deutsch algorithm
version with one qubit, using spontaneous parametric down-
conversion and idler photodetection as a heralded source of
one photon and a spatial light modulator as the key part
of the quantum oracle. A double slit is used to encode a
qubit in the photonic transversal spatial modes, and the state
is manipulated using the SLM. The experimental setup is
able to implement all possible one-bit constant and balanced
functions easily. Furthermore, we discuss the improvement
of this specific quantum experimental implementation when
compared to the analogous classical algorithm. The use of
an SLM opens the possibility to implement more complex
algorithms. For example, by changing the double slit to an
eight-slit interferometer [15], one can also implement the
analogous minimal version of Deutsch-Jozsa algorithm for
three-bit functions f : {0,1}* — {0,1).
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