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(Received 8 August 2012; published 20 September 2012)

The rate of electron-positron pair production in linearly polarized counterpropagating lasers is evaluated from
a recently discovered solution of the time-dependent Dirac equation. The latter is solved in momentum space,
where it is formally equivalent to the Schrödinger equation describing a strongly driven two-level system. The
solution is found from a simple transformation of the Dirac equation and is given in compact form in terms of
the doubly confluent Heun’s function. By using the analogy with the two-level system, it is shown that for high
intensity lasers pair production occurs through periodic nonadiabatic transitions when the adiabatic energy gap
is minimal. These transitions give rise to an intricate interference pattern in the pair spectrum, reminiscent of the
Landau-Zener-Stückelberg phenomenon in molecular physics: the accumulated phase result in constructive or
destructive interference. The adiabatic-impulse model is used to study this phenomenon and shows an excellent
agreement with the exact result.
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I. INTRODUCTION

The production of electron-positron pairs from classical
external fields has a long history, starting with the seminal
work of Schwinger [1], where antimatter production from
a constant electric field was considered. On the theoretical
side, Schwinger’s mechanism is relatively well understood
and is usually interpreted as the decay of the vacuum into
particle-antiparticle pairs (in the Dirac sea picture, this is seen
as a tunneling from the negative- to the positive-energy sea).
However, an experimental validation of this phenomenon is
still out of reach: the intensity of a laser electric field required
to produce an observable amount of pairs is on the order of
1029 W/cm2 [2], which is still unattainable experimentally.
This occurs because Schwinger’s result states that the proba-
bility to produce a pair (per unit volume and time) results from
a tunneling process and is given by [1]

PS ∼ e
− πm2c4

c|e|h̄E , (1)

where m is the electron mass, c the speed of light, |e| the
absolute value of the electron charge, and E the electric-field
strength. Thus, an appreciable amount of pairs can be produced
only if E ∼ ES ≡ m2c3

eh̄
≈ 1018 V/m, which is much larger

than E1s = 5 × 1011 V/m, the typical electric field in the
ground state of an H atom (1s orbital).
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In the last few decades, laser technologies have made a
giant leap forward such that an electric field of unprecedented
intensity level can be attained (on the order of 1022 W/cm2

and higher [3]). At these intensities, relativistic effects start to
be important and thus the spontaneous creation of electron-
positron pairs from laser fields becomes more plausible. This
has triggered many theoretical studies recently where pair
production from generalizations or variations of Schwinger’s
process were considered. Thus, different field configurations
to produce pairs have been studied, such as counterpropagating
lasers [4–7], counterpropagating lasers with space dependence
[8], laser fields with heavy nuclei [9–11], and the combination
of rapidly and slowly varying fields [12,13]. The effect of the
temporal laser pulse shape has also been investigated [14–16].

Although the machinery for computing the number of pairs
produced in the strong external field approximation is well
known [17,18], its evaluation is still a challenging task because
it is related to a solution of the Dirac equation, which is
notoriously hard to solve. For this reason, most of the analytical
studies have focused on simple systems. For instance, the pair
production from a time-varying homogeneous electric field
was treated in [4–6], using different schemes of approximation.
The main goal of this article is to revisit this problem from a
slightly different perspective: the production of pairs from
an electric field representing counterpropagating lasers in the
dipole approximation is evaluated by using a solution of the
Dirac equation and the adiabatic-impulse model, allowing us
to study interference effects in the pair production spectrum.

It was recently argued by using a semiclassical approxi-
mation that these interference effects are related to Stoke’s
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phenomenon and are responsible for the peak-valley structure
in the pair spectrum [15,16,19]. The main justification of this
result is that interference occurs between the semiclassical
turning points due to the different phases acquired during the
time evolution. In this work, this phenomenon is investigated
further by using the formal analogy of the Dirac equation
describing our system with the driven two-level system
(DTLS). It is well known that in a certain regime (defined
later) the time evolution of the DTLS occurs adiabatically,
except for some specific times where the system goes through
an avoided crossing between the “dressed” energy levels. In
this case, nonadiabatic transitions take place between the lower
and upper energy levels. As the avoided crossing region is
passed many times, these transitions interfere and can lead to
constructive or destructive interference according to the phase
accumulated during the transition and the adiabatic evolution.
This phenomenon is named the Landau-Zener-Stückelberg
interferometry (LZSI). It is described extensively in [20],
and references therein, and is important in molecular physics
[21–23]. In this work, it is shown that the LZSI is also relevant
for pair production in a high intensity laser field and that
pair production in lasers proceeds by periodic nonadiabatic
transitions. To make this connection and for simplicity, the
one-dimensional (1-D) case is considered, which corresponds
in three dimensions to the production of pairs at zero transverse
momentum (p⊥ = 0). Other 1-D models have been considered
in the literature [15,16,19,24].

This article is separated as follows. In Sec. II, the formalism
to compute the rate of pairs produced is presented. More
precisely, it is shown that the average number of pairs produced
is related to coefficients in the solution of the Dirac equation.
The latter is solved in Sec. III in the background field of linearly
polarized counterpropagating lasers. In Sec. IV, a theoretical
approach to evaluate the wave function approximately in the
adiabatic-impulse model is presented. The pair production
and numerical results are shown in Sec. V, along with an
interpretation in terms of nonadiabatic transitions. We take
advantage of the analogy with the DTLS and evaluate the
number of pairs produced with the adiabatic-impulse model,
allowing us to understand the spectrum in terms of the LZSI.
We conclude in Sec. VI. Throughout this work, we use the
metric gμν = diag(1, − 1, − 1, − 1). Also, units in which
h̄ = c = m = 1 (where m is the electron mass) and e = √

α

are utilized in most numerical calculations. In this case, the
unit length is lu = h̄/(mc) ∼ 3.86159 × 10−13 m (38.6 pm)
while the unit time is tu = h̄/(mc2) ∼ 1.2880885 × 10−21 s
(1.288 zs), as compared to atomic units: la.u. = 0.052 nm
and ta.u. = 24 × 10−18 s (24 as). Note that in these units the
Schwinger field obeys |ecES | = 1.

II. PAIR PRODUCTION FROM STRONG
CLASSICAL FIELDS

The mathematical description of pair production requires
a quantum-field-theory (QFT) treatment because it involves
particle creation and annihilation. The main tool to calculate
observable quantities in this framework is a perturbation
theory in terms of the coupling constant (Feynman diagrams),
which allows us to evaluate approximately the value of field
correlators. The latter can be linked to physical observables by

using the reduction formula based on the Lehmann-Symanzik-
Zimmermann (LSZ) asymptotic conditions for the field at
t = ∓∞, assuming that particles are free at these times. In
these limits, the quantized field operator �̂ is known and is
given by [25]

�̂in,out(x) = lim
t→∓∞ �̂(x,t) (2)

=
∫

dp

(2π )

[
âin,out(p)

2E
in,out
p

uin,out(p)e−iEin,out
p t+ipx

+ b̂
†
in,out(p)

2E
in,out
−p

vin,out(p)eiE
in,out
−p t−ipx

]
, (3)

where âin,out(p),b̂in,out(p) are annihilation operators that anni-
hilate the “in,out” vacuum as

âin,out(p)|0in,out〉 = b̂in,out(p)|0in,out〉 = 0. (4)

As usual, the subscripts “in,out” stand for t = ∓∞, respec-
tively. In these last equations, we have also introduced the
asymptotic energies Ein,out

p and the free positive- and negative-
energy spinors uin,out,vin,out. The explicit expression of these
quantities depends on the form of the electromagnetic potential
and the gauge chosen; they will be described precisely below.
On the other hand, the final result for the number of pairs
produced is gauge invariant.

When a strong external field such as a laser is involved
and coupled to the fermionic degrees of freedom, the “naive”
perturbation series is no longer asymptotically convergent
because field insertions, being parametrically of order 1/e,
contribute to leading order. The field insertions have to be
resummed to obtain the leading-order contribution. For some
observables, such as the average number of pairs produced
from the vacuum 〈n〉, this resummation can be performed
in the Schwinger-Keldysh formalism by using the Lippmann-
Schwinger equation [26–28]. The main result of this procedure
is a relation between the physical quantity 〈n〉 and a solution
of the “classical” Dirac equation in the laser background field.

This relation is the starting point of this work and is given
by [26–28]

〈n〉 =
∫

dp̃+
outdq̃−

in

∣∣ lim
t→∞ eiEout

p tu
†
out(p)�q(t,p)

∣∣2
, (5)

where �q(t,p) is the Fourier transform (with respect to space)
of �q(t,x), the retarded solution of the 1-D Dirac equation in
coordinate space. Here, the subscript refers to the momentum
of the initial state: the wave function is subjected to the initial
condition

lim
t→−∞ �q(t,p) = vin(q)eiEin

−q t (2π )δ(p + q). (6)

It should be noted here that this condition is derived in
the resummation procedure [26–28]. Physically, this means
that the average number of pairs produced is computed by
preparing the system in a negative-energy state at t → −∞,
by evolving the wave function in time and projecting it onto a
positive-energy state at t → ∞. Although the Dirac equation
is solved with an initial state representing a positron, the
quantity 〈n〉 represents the number of pairs produced from the
vacuum, without positrons in the initial state. This may seem
counterintuitive but it is related to causality and the fact that

032118-2
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〈n〉 requires the evaluation of Wightman propagators. This can
also be understood in the Feynman-Stückelberg interpretation
of the positron as an electron evolving backward in time.

In one dimension, the wave function � is a bispinor and
the Dirac equation obeyed by �q(t,p) is then

i∂t�(t,p) = {α[cp + Ax(t)] + βmc2}�(t,p), (7)

where m is the electron mass. The Dirac equation is expressed
in a gauge where the scalar potential is A0 = 0 while the vector
potential Ax(t) is both time dependent and space independent.
Throughout this work, we work in a representation where the
Dirac matrices are given by Pauli matrices such as α = σz

and β = σx . In such representation, Eq. (7) is supersymmetric
[29] for which semiclassical WKB approximation is exact for
bound states [30].

The covariant measure dp̃±
in,out ≡ dp

(2π)2E
in,out
±p

is defined with

respect to the “asymptotic” energies

Ein,out
p ≡

√
(cp + Gin,out)2 + m2c4, (8)

which are obtained by the on-shell conditions at t = ±∞.
The Gin,out are constants related to the gauge potential as
limt→±∞ Ax(t) = Gin,out. Thus, although the physical electric
field vanishes asymptotically, the potential may have a nonzero
value which depends on the gauge chosen.

The spinors uin,out(p) and vin,out(p) are the positive- and
negative-energy solutions of Eq. (7) with G(t) = Gin,out and
normalized such that u†

in,out(q)uin,out(q) = v
†
in,out(q)vin,out(q) =

2Ein,out
q . Explicitly, they are given by

uin,out(q) =
⎡
⎣

√
E

in,out
q + (cq + Gin,out)√

E
in,out
q − (cq + Gin,out)

⎤
⎦ ,

(9)

vin,out(q) =
⎡
⎣

√
E

in,out
−q − (−cq + Gin,out)

−
√

E
in,out
−q + (−cq + Gin,out)

⎤
⎦ .

As usual, the index in,out represents the limits at t → ∓∞.
So far, we have defined a general expression for 〈n〉. We

now specialize this to the case of an external laser field. More
precisely, the electric field considered is given by

E(t) = E sin(ωt) = −1

c

∂Ax(t)

∂t
, (10)

where E is the field strength and ω is the laser frequency. It
represents the field from linearly polarized counterpropagating
lasers where the space variations are neglected. In other
words, we consider pair production in the neighborhood of
the standing wave antinodes, where the electric field reaches
its maximum value. This field is applied during a time interval
t ∈ [0,T ] where T is the final time. By working in a gauge
where the scalar potential is zero (A0 = 0), the vector potential
is given by

Ax(t) =

⎧⎪⎨
⎪⎩

G(0) ≡ Gin, t ∈ (−∞,0]

G(t), t ∈ [0,T ]

G(T ) ≡ Gout, t ∈ [T ,∞)

, (11)

where G(t) ≡ −c
∫ t

E(t ′)dt ′ = F
ω

cos(ωt), with F the nor-
malized field strength (normalized as F ≡ |e|cE).

The solution of the Dirac equation in the potential consid-
ered can then be written as

�q(t,p)

=

⎧⎪⎨
⎪⎩

vin(q)eiEin
−q t (2π )δ(p + q), t ∈ (−∞,0]

ψ(t,p), t ∈ [0,T ]

Auout(p)e−iEout
p t + Bvout(−p)eiEout

p t , t ∈ [T ,∞)

,

(12)

where ψ(t,p) is a solution of the Dirac equation with the laser
vector potential; A,B are integration constants that need to be
determined from the data at t = T (thus, their values depend
on T and p); and which allows us to have a linear combination
of negative- and positive-energy free solutions. Thus, initially,
the wave function is given by vin, which represents a positron.
Substituting the last equation in Eq. (5), taking the limit,
using the fact that u†(p)v(−p) = 0 and u†(p)u(p) = 2Ep,
and integrating on the positron momentum (using the delta
function of the initial state, related to translation invariance),
we get

〈n(T )〉 = V

2π

∫
dp

Eout
p

Ein
p

|A(T ,p)|2. (13)

where V = δ(0) is the infinite volume. As usual, this diverging
quantity is treated by redefining 〈n〉 as the number of pairs
produced per unit volume. This is the convention used in the
rest of this work.

By requiring the continuity of the solution at t = T , we get
the following conditions:

ψ(T ,p) = A(T ,p)uout(p)e−iEout
p T + B(t,p)vout(−p)eiEout

p T .

(14)

This can be used to compute the constant A which is directly
related to pair production via Eq. (13). It is a straightforward
calculation to obtain

A(T ,p) =
[

uout,1(p)ψ1(T ,p) + uout,2(p)ψ2(T ,p)

2Eout
p

]
eiEout

p T .

(15)

Thus, we have all the ingredients to calculate the pair
production from the vacuum in a counterpropagating laser
field. In the following, the coefficient A will be evaluated
numerically to obtain the average number of pairs produced.
The calculation starts by obtaining an exact solution of the
Dirac equation with the time-dependent background field: the
wave function ψ(T ,p) has to be determined.

III. SOLUTION OF THE DIRAC EQUATION

Substituting the potential defined in Eq. (11) for t ∈ [0,T ]
in Eq. (7) yields the following Dirac equation:

i
d

dt
ψ(t,p) =

[
σz

(
cp + F

ω
cos(ωt)

)
+ σxmc2

]
ψ(t,p).

(16)

It should be noted here that this is identical to the equation
describing the strongly periodically driven two-level system
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[20,31] and is also in the supersymmetric form of the Dirac
equation [29,30]. The formal analogy between the two systems
is recovered by letting mc2 → −�/2, cp → ε0 and F

ω
→ A

(in the notation of [20]). This means that each momentum p

corresponds to a different two-level system.
Using the explicit expression for Dirac and Pauli matrices,

the last equation can be written componentwise as

[
i

d

dt
∓

(
cp + F

ω
cos(ωt)

)]
ψ1,2(t,p) = mc2ψ2,1(t,p).

(17)

These two equations can be decoupled easily to get the
following system of differential equations:

[
d2

dt2
− iF sin(ωt) +

(
cp + F

ω
cos(ωt)

)2

+ m2c4

]
ψ1(t,p)

= 0, (18)

ψ2(t,p) = 1

mc2

[
i∂t −

(
cp + F

ω
cos(ωt)

)]
ψ1(t,p). (19)

Equation (18) is a second order Hill’s differential equation. It is
to be noted that Eq. (18) contains an explicit imaginary part as
in optical potential problems, corresponding to absorption out
of the wave function ψ1 into the state ψ2, i.e., a nonadiabatic
transition [32]. As demonstrated in [33], the last equation can
be solved analytically in terms of Heun’s function (similar
equations were also treated in [34,35]), allowing us to evaluate
the first component of the wave function ψ1. The second
component can then be found by substituting ψ1 into Eq. (19).
This way of calculating the solution ensures that the general
solutions of Eqs. (18) and (19) are also solutions of the
first-order system of equations given in Eq. (17), at all times.

To solve Eq. (18), we follow a strategy similar to [33]: the
time domain R+ is separated into subdomains of length π/2ω,
parametrized by a positive integer n (see Fig. 1). Then, Eq. (18)
is solved for t ∈ �tn = [ (2n−1)π

4ω
, (2n+1)π

4ω
]; the general solution

at all times is determined by matching solutions at points
tn = (2n−1)π

4ω
for each interval, using continuity conditions. The

rationale behind this procedure is related to the convergence
radius of Heun’s functions, as will be clarified later.

FIG. 1. The domain R+ for t separated into subdomains
parametrized by n ∈ Z+ such that t ∈ [ (2n−1)π

4ω
, (2n+1)π

4ω
]. At the final

time t = T , the wave function is matched to the free solution uout,vout.

The following change of variable is then applied to Eq. (18)
for t ∈ �tn:

z = −i tan

(
ωt

2
− nπ

4

)
. (20)

This transformation maps the time interval �tn onto a new
variable iz ∈ [− tan(π/8), tan(π/8)]. The inverse transforma-
tion is given by

t = 2

ω
arctan(iz) + nπ

2ω
, (21)

where the arctan function should be evaluated on its principal
value. Using this prescription and the transformation in
Eq. (20) on the domain �tn, the change of variable is bijective
and well defined. A differential equation in terms of the
variable z and the model parameters is obtained (not shown
here for simplicity). The latter is solved by seeking solutions
of the form

ψ1(z) = exp

[
−ei nπ

2
2F

ω2

z

z2 − 1

]
H (n)

a (z), (22)

where H (n)
a (z) is the first linearly independent solution [the

second linearly independent solution will be denoted by
H

(n)
b (z)]. These two transformations convert Eq. (18) into a

double confluent Heun’s equation [36]:[
d2

dz2
− −2z5 + 4z3 + α(n)z4 − 2z − α(n)

(z − 1)3(z + 1)3

d

dz

+ z2β(n) + (γ (n) + 2α(n))z + δ(n)

(z − 1)3(z + 1)3

]
H (n)

a (z) = 0, (23)

where α(n),β(n),γ (n),δ(n) are parameters whose value depends
on the interval considered. They are given explicitly by

α(n) = −ei nπ
2

4F

ω2
, (24)

β(n) = 8Fcp cos
(

nπ
2

)
ω − 4iF sin

(
nπ
2

)
ω2 − 4ω2(c2p2 + m2c4) + 2F 2[(−1)n − 1]

ω4
, (25)

γ (n) = −16iF cp sin
(

nπ
2

) + 8F cos
(

nπ
2

)
ω

ω3
, (26)

δ(n) = 8Fcp cos
(

nπ
2

)
ω − 4iF sin

(
nπ
2

)
ω2 + 4ω2(c2p2 + m2c4) − 2F 2[(−1)n − 1]

ω4
. (27)
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Equation (23) has singularities at z = ±1 while the point
z = 0 is regular. This allows us to obtain a power series
solution around z = 0 with a radius of convergence
defined by the condition |z| < 1. Note here that this
condition is always fulfilled for all intervals �tn because
iz ∈ [− tan(π/8), tan(π/8)] ≈ [−0.414,0.414]. This power
series is well known and the solution is given by [36]

H (n)
a (z) = HD(α(n),β(n),γ (n),δ(n),z), (28)

where HD is the doubly confluent Heun’s function. The
partition of the domain has been chosen such that the
argument of the Heun function z is always within the radius
of convergence, guaranteeing that it is a valid solution and
facilitating the numerical evaluation.

This yields the first particular solution. A second linearly
independent solution can be found using a well-known
procedure [33]:

H
(n)
b (z) = e

−α(n) z

z2−1 HD(−α(n),β(n),γ (n),δ(n),z). (29)

The final result obtained from this is that the first component
of the time-dependent wave function is given by

ψ
(n)
1 (t) = A(n)e

−ie
nπ
2 F

ω2 sin(ωt− nπ
2 )

× HD

[
α(n),β(n),γ (n),δ(n), − i tan

(
ωt

2
− nπ

4

)]

+ B(n)e
ie

nπ
2 F

ω2 sin(ωt− nπ
2 )

× HD

[
−α(n),β(n),γ (n),δ(n), − i tan

(
ωt

2
− nπ

4

)]
,

(30)

where A(n),B(n) are integration constants that need to be fixed
by initial conditions. The second component ψ

(n)
2 is then given

by Eq. (19).
The wave function obtained from Eq. (30) is plotted in

Fig. 2 for one laser cycle and is compared to an accurate
numerical solution (the numerical method is described in
Appendix A): both give the same result up to numerical errors.

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1
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3
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Time

R
e

(ψ
1(t

))

 

 
Analytical
Numerical

FIG. 2. Real part of the first component of the wave function as
a function of time, over one cycle of the electric field, in units where
h̄ = c = m = 1 and e = √

α. The analytical solution is compared to
the numerical solution. The frequency is ω = 0.1, the momentum is
p = 0, and the field strength is F = 1.0.

The constants A(n),B(n) are determined by using the continuity
of the wave function and its first derivative at points tn.

IV. ADIABATIC-IMPULSE MODEL

Before computing numerical results obtained from the
exact solution, it is interesting to look more closely at the
analogy with the two-level quantum system to gain a better
understanding of the pair creation process and interference
effects. In the adiabatic regime, where the laser frequency or
photon energy h̄ω is much less than the gap 2mc2 and/or the
magnitude of the vector potential, i.e., when [37]

4m2c4 + F 2

ω2
� ω2, (31)

it is possible to obtain an accurate approximation of the
wave function using the well-known adiabatic-impulse model
described in [20]. The main advantage of this approach is that
it yields a very simple formula for the transition probabilities
such as the Landau-Zener formula, that allows us to obtain
new insights into interference phenomena. This model is also
relevant in our case because the conditions in Eq. (31) are
fulfilled in most prospected laser infrastructures aiming at
electron-positron production. In a typical laser used to probe
relativistic effects and pair production, the intensity would
be above I ∼ 1024 W/cm2, leading to an approximate field
strength of Flaser ∼ 2.7 × 1015 V/m. Using these conservative
values, the frequency should obey ωlaser � 3.5 × 1018 Hz to
fulfill the conditions in Eq. (31). This implies that in high
intensity lasers (with I � 1024 W/cm2) the production of
electron-positron pairs can be approximated accurately by the
adiabatic-impulse model unless the laser frequency is in the
γ -ray frequencies.

Our description of the adiabatic-impulse model starts by
considering the adiabatic energy of the system given by

E±
adia.(t) = ±

√(
cp + F

ω
cos(ωt)

)2

+ m2c4. (32)

The adiabatic energies are plotted in Fig. 3. In this approach,
it is assumed that the wave function evolves adiabatically
at all times except at points where the energy difference
δEadia.(t) ≡ E+

adia.(t) − E−
adia.(t) is minimal; at these points, the

system undergoes nonadiabatic transitions [20] and the energy
difference is δEadia.(t1,2) = 2mc2. These points correspond to
the position of avoided crossings and are given by ωt1 =
arccos(− cpω

F
) and ωt2 = 2π − ωt1 (see Fig. 3). It should

be noted here that these conditions are realized only if
|p| < F/cω, implying that nonadiabatic transitions do not
occur for large momenta since then the adiabatic levels
[Eq. (32)] are well separated at all times.

In the adiabatic-impulse model, the time evolution is split
in two parts (with ε a small positive time):

(1) Adiabatic evolution, for t ∈ [0,t1 − ε], t ∈ [t1 + ε,t2 −
ε], or t ∈ [t2 + ε,T ]. Then, the wave function is given by
Eq. (B14), which is the adiabatic wave function.

(2) Nonadiabatic evolution, for t ∈ [t1 − ε,t1 + ε] and
t ∈ [t2 − ε,t2 + ε]. Then, the wave Dirac equation can be
linearized close to t1,2. The resulting equation has a solution
in terms of parabolic cylinder function (see Appendix B).
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FIG. 3. (Color online) Adiabatic energies in the driven two-
level model. The nonadiabatic transitions occur at times t1,2. The
probability of transition is given by PS while the probability of
staying in the same state is 1 − PS . In red are the different paths
for transitions from negative- to positive-energy states. After one
transition (at t2 and all times afterwards), the part of the wave function
in the negative-energy states that transits upward interferes with the
part of the wave function in the positive-energy states. This is the
LZSI.

It is then possible to match the wave functions in the
two regimes by looking at the asymptotic behavior of each
solution at a time ta (which obey tS � ta � |t1 − t2|, where
tS is the typical transition time) and solving for the integration
constants (see Appendix B and [20] for calculation details
and [22] in the molecular physics context). The result of this
procedure can be cast in a very compact notation using transfer
matrices. The final result is that (for T ∈ [t2,t1 + 2π/ω])

B(T ) = U (T ,t2)NU (t2,t1)NU (t1,0)B(0), (33)

where the vector

B(t) =
[

B+(t)

B−(t)

]
(34)

contains the integration constants of the adiabatic solution.
Note that in our case, given the initial condition of the wave
function in Eq. (12), we have that B(0) = (0,

√
2E(0))T. The

adiabatic time evolution is generated by the operator

U (tf ,ti) ≡ exp

[
−iσz

∫ tf

ti

E+
adia(t)dt

]
, (35)

while the nonadiabatic evolution is characterized by the matrix
N defined in Eq. (B17).

Using this result, it is straightforward to compute the
rate d〈n〉/dp. Defining the momentum-dependent Schwinger
probability by (see Appendix B)

PS(p) ≡ exp

⎡
⎣− πm2c4

F

√
1 − c2ω2p2

F 2

⎤
⎦ , (36)

we obtain the following:
(1) For T ∈ [0,t1],

d〈n〉
dp

= 0. (37)

Initially, the system only has negative-energy states and no
transition to the positive-energy states occurs adiabatically.

(2) For T ∈ [t1,t2],

d〈n〉
dp

= 1

2π

Eout
p

Ein
p

PS(p). (38)

When the time reaches t = t1, there is an nonadiabatic
transition from the negative- to the positive-energy states with
a probability PS .

(3) For T ∈ [t2,t1 + 2π/ω],

d〈n〉
dp

= 1

2π

Eout
p

Ein
p

4PS(p)[1 − PS(p)] cos2(χ + φ̃), (39)

where χ = ∫ t2
t1

E+(t)dt and φ̃ is Stoke’s phase defined in
Eq. (B18). When the time reaches t = t2, there is another
nonadiabatic transition. The wave function coming from the
negative-energy states interferes with the part of the wave
function already present in the positive-energy state, creating
an interference pattern characterized by cos2(χ + φ̃). This is
the essence of LZSI and is depicted in Fig. 3. These features
will be seen explicitly in the next section, where the pair
production will be evaluated numerically.

Note also that these formulas can be used to evaluate 〈n〉
at later times by applying the matrices U and N . For instance,
for j laser cycles when T ∈ [t2 + 2jπ/ω,t1 + 2(j + 1)π/ω],
this would be given by

B(T ) = U (T ,t2)N [U (t2,t1)NU (t1,t2)N ]j

× U (t2,t1)NU (t1,0)B(0), (40)

for j ∈ Z+. An explicit expression of the matrix
[U (t2,t1)NU (t1,t2)N ]j is given in [20].

V. NUMERICAL RESULTS

In this section, the rate of electron-positron pair production
is calculated numerically using the exact solution and the
adiabatic-impulse model. The first result concerns the quantity
d〈n〉/dp in the adiabatic regime, which is plotted in Fig. 4.
In this figure, we also include the position where nonadiabatic
transitions take place. It is clear from this figure that qualitative
changes occur at these points. This can be understood very
clearly by looking at the theoretical results obtained from the
adiabatic-impulse model, in Eqs. (37)–(39). In the first instants,
there is no pair production because the system starts in a
negative-energy state and there is no transition to the positive-
energy states when the wave function evolves adiabatically.
For a given momentum p, when the time reaches t = t1, there
is a nonadiabatic transition and pairs start to be produced
with a rate given approximately by Eq. (38). Later in the time
evolution at t = t2, a second transition happens and interferes
with the preceding one, resulting in an interference pattern
described by Eq. (39). This is the well-known LZSI. After this,
each time the system crosses a nonadiabatic transition, a part
of the negative-energy states traverses to the positive ones and
a different interference pattern emerges. The corresponding
average number of pairs produced (the spectrum is integrated
on p at each time) is shown in Fig. 5.

These results show a very good qualitative agreement
between the two theoretical approaches. To investigate this
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FIG. 4. Rate of pairs produced from the counterpropagating laser,
in units where h̄ = c = m = 1 and e = √

α. The frequency is ω = 0.1
and the field strength is F = 1.0, corresponding to PS ≈ 0.04. This
ensures that the system is in the adiabatic regime. The black line
shows the position in (p,T ) space where the nonadiabatic transitions
take place.

comparison more quantitatively, the pair production spectrum
after one laser cycle (for T = 2π/ω) is plotted in Fig. 6,
along with the prediction of the adiabatic-impulse model
[more precisely, the envelope obtained from Eq. (39)]. The
spectrum shows the characteristic peak-valley structure of an
interference pattern, in agreement with the results obtained
in [15,16,19]. The latter is well described by Eq. (39) [it was
also verified that the maxima and minima of the spectrum
correspond to those of Eq. (39)] and thus this effect is due to
the LZSI. Also, it should be noted that, again, both theoretical
approaches yield very similar results.

Finally, in Fig. 7, the rate of pairs produced is presented
for a smaller value of field strength (F = 0.1). In this case,
the magnitude for the number of pairs is several orders of

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

T

〈n
〉

−10

0

10

FIG. 5. (Color online) Average number of pairs produced and
electric field E(t), in units where h̄ = c = m = 1 and e = √

α. The
frequency is ω = 0.1 and the field strength is F = 1.0.

−10 −5 0 5 10
0
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0.015
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0.025
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p

d〈
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p

 

 
Exact Result
Adiabatic−Impulse

FIG. 6. Spectrum of pairs produced at T = 2π/ω, in units where
h̄ = c = m = 1 and e = √

α. The frequency is ω = 0.1 and the field
strength is F = 1.0. The exact result is compared to the envelope
obtained from the adiabatic-impulse approximation.

magnitude below the case where F = 1.0, which can be
explained by the much lower value of the transition probability
PS . Moreover, the magnitudes of the interference patterns are
decreased significantly and the spectrum is peaked at the value
of the nonadiabatic crossings. The most likely explanation for
this behavior is related to the nonadiabatic transition time,
which can be estimated as [20,37,38]

tS ∼ mc2

F
. (41)

The adiabatic-impulse model requires that tS � π/ω (the
transition time should be much shorter than a half cycle)

FIG. 7. Rate of pairs produced from the counterpropagating laser,
in units where h̄ = c = m = 1 and e = √

α. The frequency is ω = 0.1
and the field strength is F = 0.1, corresponding to PS ≈ 2.3 × 10−14.
The qualitative behavior is different from the adiabatic regime. The
black line shows the position in (p,T ) space where the nonadiabatic
transitions take place.
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to make sure that each transition is independent and well
separated from each other in time. Clearly, for F = ω = 0.1,
this condition is not fulfilled and the impulse model is not valid
for these parameter values.

VI. CONCLUSION

In this article, the production rate of electron-positron
pairs from high intensity linearly polarized counterpropagating
lasers has been considered. An exact solution of the Dirac
equation in terms of Heun’s function and numerical methods
has been used to compute this observable. The results have
been compared to the ones obtained from another theoretical
approach called the adiabatic-impulse model. The latter is
based on the adiabatic approximation and allows us to
obtain simple expressions for the wave function. The results
obtained from both methods were very consistent with each
other in the adiabatic regime and when the nonadiabatic
transition time is much shorter than a half cycle. Therefore, it
has been concluded that the adiabatic-impulse model is an
accurate theoretical tool that may be used for other more
complex systems. It was demonstrated that pair production
occurs through periodic nonadiabatic transitions and that these
transitions resulted in a complex interference pattern in the
pair spectrum. This is very similar to the results obtained
in [15,16,19]. This phenomenon has been related to the
well-known LZSI by using the formal analogy of our Dirac
equation with the DTLS.
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APPENDIX A: NUMERICAL METHOD

The numerical method used in this work is inspired by
the spectral methods developed in [39–42], where an operator
splitting scheme is used in momentum space to evolve the
solution in time. Other approaches where the Dirac equation
is solved in momentum space can be found in [43,44]. The
solution of the Dirac equation in Eq. (16) can be written
formally as

�(t,p) = T exp

{
−i

∫ t

0
dt ′

[
σz

(
cp + F

ω
cos(ωt ′)

)

+ σxmc2

]}
�(0,p), (A1)

where T stands for the time-ordering operator. This expression
can be used to solve the Dirac equation numerically in
momentum space. First, the time domain is separated into
a N time increment having a size δt . Then, it can be shown
that the last expression can be approximated by

�(t,p)=W (t,tN )W (tN ,tN − 1) · · ·W (t1,t0)�(0,p) + O((δt)3),

(A2)

where tj ≡ jδt and the evolution operators are given by

W (ti ,ti−1) = exp

{
−i

[
(σzcp + σxmc2)δt

+ σz

∫ ti

ti−1

dt ′
F

ω
cos(ωt ′)

]}
. (A3)

The last equation can be computed explicitly by using the
properties of Pauli matrices. It can then be written as

W (ti ,ti−1) = I2 cos(a) − i
axσx + azσz

a
sin(a), (A4)

where

ax = mc2δt, (A5)

az = cpδt + F

ω2
[sin(ωti) − sin(ωti−1)] , (A6)

a =
√

a2
x + a2

z . (A7)

This results in a numerical method for which the error is
O(δt3) [45].

APPENDIX B: SOLUTION AT THE NONADIABATIC
TRANSITION

In this Appendix, the transfer matrix around a nonadiabatic
transition is derived, following the work exposed in [20–23]
(and references therein).

In the neighborhood of t1,2, the vector potential can be
linearized in t ′ and the resulting Dirac equation is given by

i∂t ′ψ(t ′,p) = [∓cσzvt ′ + σxmc2]ψ(t ′,p), (B1)

for t1,2, respectively, and where t ′ = t − t1,2 (in the follow-
ing, we suppress the prime notation). Here, we have v ≡
F

√
1 − c2ω2p2

F 2 . The last equation is formally equivalent to the
Landau-Zener transition which has a well-known solution in
terms of a parabolic cylinder function. The latter can be found
by writing the last equation componentwise and by decoupling
the two resulting equations. This yields[

d2

dt2
+ v2t2 − iv + m2c4

]
ψ1(t) = 0, (B2)

ψ2(t) = 1

mc2

[
i

d

dt
+ vt

]
ψ1(t). (B3)

The solution of Eq. (B2) is found by a change of variable given
by z = √

2vei π
4 t , which transforms the equation to[
d2

dz2
− z2

4
− 1

2
− iδ

]
ψ1(z) = 0, (B4)

where we defined δ ≡ m2c4

2v
. The last equation has a solution

given by [46]

ψ1(t) = C1D−1−iδ(
√

2vei π
4 t) + C2D−1−iδ(

√
2ve−i 3π

4 t),

(B5)

where C1,2 are integration constants and Dν(z) is the Whittaker
parabolic cylinder function. It is then a straightforward
calculation to obtain the second component using Eq. (B3)
and the recurrence relation of the parabolic cylinder functions.
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We have

ψ2(t) = − C1√
δ
e−i π

4 D−iδ(
√

2vei π
4 t)

+ C2√
δ
e−i π

4 D−iδ(
√

2ve−i 3π
4 t). (B6)

The next step is the evaluation of the wave function far from
the nonadiabatic transition region, that is, when t = |ta| � 1.
Using the asymptotic expansions for Dν , we obtain

lim
t→ta

ψ1(t) ∼ C2

√
2π

�(1 + iδ)
e− π

4 δeiφ(t), (B7)

lim
t→ta

ψ2(t) ∼ [−C1e
π
2 δ + C2e

− π
2 δ]

e−i π
4 − π

4 δ

√
δ

e−iφ(t), (B8)

lim
t→−ta

ψ1(t) ∼ C1

√
2π

�(1 + iδ)
e− π

4 δeiφ(t), (B9)

lim
t→−ta

ψ2(t) ∼ [−C1e
− π

2 δ + C2e
π
2 δ]

e−i π
4 − π

4 δ

√
δ

e−iφ(t), (B10)

where we defined the time-dependent phase as

φ(t) ≡ vt2

2
+ δ ln(

√
2vt). (B11)

We would like to match these asymptotic wave functions to
the adiabatic wave function far from the transition times t1,2.
The adiabatic wave function is obtained as follows.

In the adiabatic approximation, the wave function looks like

ψ±
adia.(t) = ϕ± exp

[
∓i

∫ t

E(t ′)dt ′
]

, (B12)

where the ± denotes positive- and negative-energy solutions,
respectively, and ϕ± are adiabatic coefficients to be determined
which obey |∂tϕ

±| � |E(t)ϕ±| for all times. By substituting
this into the Dirac equation

i∂tψ(t) = [σzP (t) + σxmc2]ψ(t), (B13)

where P (t) is the canonical momentum for the system
under consideration; normalizing the wave function such
that |ψ±

adia.|2 = 1, we arrive at the following general solution
(which is a linear combination of positive- and negative-energy
solutions):

ψadia.(t) =
∑
±

B±ϕ± exp

[
∓i

(∫ t

0
E(t ′)dt ′ + π

4

)]
, (B14)

where

ϕ+ =

⎡
⎢⎣

√
E+P (t)

2E√
E−P (t)

2E

⎤
⎥⎦, ϕ− =

⎡
⎢⎣

√
E−P (t)

2E

−
√

E+P (t)
2E

⎤
⎥⎦, (B15)

and where B± are integration constants. Note that the factor
π/4 in the phase appears when the next order in the adiabatic
approximation is considered [21].

Here, we are considering two times ±ta which are lying
in a region close to the transition region but which are much
longer than the typical nonadiabatic transition time tS , that is,
tS � |ta| � |t1 − t2|. In this region, the time evolution of the
wave function can be described accurately by the linearized
Dirac equation, Eq. (B1) [thus, P (t) = −vt], while still being
far from the transition times. In this case, assuming that
v|t | � mc2 also holds, the adiabatic solution can be simplified
to give

ψadia.(±ta) ∼
[

B∓eiφ(ta )−i δ
2 [ln(δ)−1]−i π

4

±B±e−iφ(ta )+i δ
2 [ln(δ)−1]+i π

4

]
. (B16)

The time dependence of the last expression is the same as the
asymptotic solutions in Eqs. (B7)–(B10), allowing us to match
the solutions at t = ∓ta and thus to determine the transfer
matrix that allows us to link the solution at negative times to
the one at positive time. Solving for the integration constants
B± in Eq. (B16), we find that the nonadiabatic transition can
be characterized by the following time-independent transfer
matrix [20,23]:

N ≡
[√

1 − PS(p)e−iφ̃ −√
PS(p)

√
PS(p)

√
1 − PS(p)eiφ̃

]
, (B17)

where the Stoke’s phase is defined as

φ̃ ≡ −π

4
+ δ[ln(δ) − 1] + arg �(1 − iδ). (B18)

The quantity PS(p) ≡ e−2πδ is related to Schwinger’s result for
the pair probability creation in a constant field by PS(0) = PS

(note that it is also similar to the Landau-Zener transition
probability). Thus, there are some momentum and frequency
dependent corrections to PS included in PS(p). Of course, we
also recover Schwinger’s result in the static limit when ω = 0.
The matrix N connects the wave function before and after the
nonadiabatic transition.
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