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Nonlocal multipartite correlations from local marginal probabilities
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Understanding what can be inferred about a multiparticle quantum system given only the knowledge of its
subparts is a highly nontrivial task. Clearly, if a global system does not contain an information resource of
some kind, neither do its subparts. For the case of entanglement as an information resource, it is known that the
converse of this last statement is not true: Some nonentangled reduced states are only compatible with global
states which are entangled. We extend this result to correlations and provide local marginal correlations that are
only compatible with global genuinely tripartite nonlocal correlations. Quantum nonlocality can thus be deduced
from the mere observation of local marginal correlations.

DOI: 10.1103/PhysRevA.86.032117 PACS number(s): 03.65.Ud

I. INTRODUCTION

In contrast to classical systems, multipartite quantum
systems can be entangled and exhibit nonlocal correlations.
Beyond their fundamental interest, both properties are re-
sources for quantum information theory [1,2]. It is thus a
relevant question to understand the types of quantum states and
correlations that are possible in composite quantum systems.

In a multipartite system, every subset of parties constitutes
a proper system in itself. The fact that these subsystems
describe parts of the same total system requires them to
satisfy some compatibility conditions. For instance, a bipartite
quantum state �AB is compatible with a tripartite state �ABC

if and only if �AB = trC(�ABC). While it is straightforward
to check whether some reduced states are compatible with a
given global state, the question becomes much subtler when
the global state is unknown and one is interested in knowing
whether there exists a quantum state compatible with the
given marginals. Finding the conditions for compatibility
among reduced quantum states is known as the quantum
marginal problem [3–6]. It is the quantum counterpart of
the classical marginal problem, which is concerned with the
compatibility of marginal probability distributions.

The quantum marginal problem is trivial in the bipartite
case: Two reduced states, �A and �B , are always compatible
with the product bipartite quantum state �AB = �A ⊗ �B .
However, the situation becomes more interesting when
more than two parties are involved. For instance, it is well
known that if two parties share a maximally entangled
state, then any tripartite quantum state compatible with it
must be such that the third party is uncorrelated to the
first two. This phenomenon is known as the monogamy of
entanglement [7,8] and implies that a maximally entangled
state |φ+〉AB is incompatible with any correlated state ρAC

or ρBC . A similar property, known as the monogamy of
nonlocality, is displayed by nonlocal correlations [2]. Parts of
a system can thus constrain the set of possible full systems in
ways that show up in other parts of the same system.
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In this work we are interested in the question of what can be
inferred about the correlations of a global state given only the
knowledge of some of its subparts. It is clear that if subparts
of a system display entanglement or nonlocality so does the
global system. However, is the converse also true? For the case
of entanglement it is known that the answer to this question is
negative: There are separable states of two qubits that are only
compatible with entangled multipartite states [9,10]. To show
this, the authors of Refs. [9,10] used spin-squeezing inequal-
ities to detect entanglement and found entangled multiqubit
states whose reduced two-qubit states are separable. As the
entanglement criteria they used only rely on two-body correla-
tions, this demonstrates the existence of nonentangled reduced
states that are only compatible with entangled global states.

Here we pose a similar question in the context of no-
signaling correlations, where one deals with the raw corre-
lations of classical inputs and outputs described by a joint
conditional probability distribution. Therefore, one does not
assume the whole Hilbert space formalism of quantum me-
chanics, but just the validity of the no-signaling principle. Our
goal then is to see whether there are local marginal correlations
that are only compatible with multiparite nonlocal correlations.
We show that this is indeed the case and that, similarly to what
happens with entanglement, nonlocality of multipartite corre-
lations can be certified from marginal correlations that admit a
local description. We further provide a quantum state and cor-
responding measurements that exhibit this type of correlations.
In this case we also demonstrate that the nonlocality present
in the full correlations can be genuinely multipartite [11,12].
Concerning the question of certifying entanglement from sepa-
rable marginals, we further provide new examples of separable
reduced states that are only compatible with an entangled
global state. Our findings show how the compatibility condi-
tions lead to nontrivial results even when acting on a priori use-
less marginals: It is possible to witness the presence of useful
correlations in the global system from useless reduced states.

II. NONLOCALITY FROM LOCAL MARGINALS

Quantum nonlocality represents a quantum property
inequivalent to entanglement. In the paradigm of
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device-independent quantum information processing,
nonlocality has been identified as an alternative resource for
quantum information protocols, necessary, for instance, for
secure key distribution [13] or randomness generation [14].
The corresponding scenario consists of different distant
observers that can input a classical setting xi into this part of
the system and obtain an output ai . The correlations of the
inputs and outputs are encapsulated in the joint conditional
probability distribution P (a1, . . . ,aN |x1, . . . ,xN ) that denotes
the probability of obtaining the outputs a1, . . . ,aN when
inputs x1, . . . ,xN are used.

In what follows we consider a tripartite scenario where each
party can choose from two different inputs, denoted by 0 and 1,
and obtain two different outputs, denoted by −1 and +1, that
is, x,y,z ∈ {0,1} and a,b,c ∈ {−1,1}. It is useful to consider
the following parametrization of the probabilities

P (abc|xyz) = 1
8 [1 + a〈Ax〉 + b〈By〉 + c〈Cz〉 + ab〈AxBy〉
+ ac〈AxCz〉 + bc〈ByCz〉 + abc〈AxByCz〉],

(1)

where 〈Ax〉 = P (a = 1|x) − P (a = −1|x) is the expectation
value for the outcome of the first party A given input x,
〈AxBy〉 = P (ab = 1|xy) − P (ab = −1|xy) is the expecta-
tion value for the product of the outcomes of A and B given
the inputs x and y, and so on.

Given the fact that entanglement can be deduced from
the observation of separable reduced states only [9,10], it
seems natural to ask whether one can infer that some tripartite
correlations are nonlocal, only from the observation of local
bipartite marginals. To answer this question in the affirmative
one needs to find three local bipartite nonsignaling distri-
butions PAB,PAC,PBC such that any tripartite nonsignaling
distribution PABC compatible with them is nonlocal. Being
compatible in this context means that one must have∑

c

PABC(abc|xyz) = PAB(ab|xy), (2)

∑
b

PABC(abc|xyz) = PAC(ac|xz), (3)

∑
a

PABC(abc|xyz) = PBC(bc|yz), (4)

where the left-hand sides are defined independently of the third
input as PABC is assumed to be nonsignaling. In what follows
we provide several examples of distributions satisfying these
requirements.

In the first example, we fix the one-party expectation values
as

〈Ax〉 = 〈By〉 = 〈Cz〉 = 1
3 , x,y,z ∈ {0,1}, (5)

and the two-party expectation values as

〈AxBy〉 = 〈AxCy〉 = 〈BxCy〉 =
{

1 if x = y = 0,

− 1
3 otherwise.

(6)

These values define the three bipartite marginals univocally.
One can check that these bipartite correlations are local, as
they satisfy all possible permutations of the Clauser-Horne-
Shimony-Holt (CHSH) inequality [15], which is the only
relevant Bell inequality for two parties having binary inputs
and outputs [16].

However, only one tripartite nonsignaling distribution has
(5) and (6) as its marginals. To see this, consider any tripartite
nonsignaling distribution PABC that is compatible with the
given marginals. The positivity constraints PABC(abc|xyz) �
0 together with the fixed values for the one- and two-party
expectation values lead to lower bounds on 〈AxByCz〉 and
−〈AxByCz〉 that ultimately only allow for the assignment

〈AxByCz〉 =
{

1
3 if x + y + z ∈ {0,1},

−1 otherwise.
(7)

Equations (5) through (7) define an extremal point of the
tripartite nonsignaling polytope, the box number 29 in the
classification of Ref. [17]. This point is genuinely nonlocal as
it violates a Svetlichny-Bell inequality [17,18]. Thus we found
some bipartite correlations that are local, but only compatible
with (unique) genuinely tripartite nonlocal correlations.

While this first example answers our original question, it
is not entirely satisfactory, as no measurements on a quantum
system can achieve all bipartite correlations (5) and (6) at the
same time. Indeed, the only possible extension of these cor-
relations, namely box 29 in Ref. [17], violates the “Guess-
Your-Neighbor-Input” inequality [19], which is satisfied by
quantum correlations. Let us thus provide a general charac-
terization of marginals that are only compatible with nonlocal
probability distributions. To this end, consider the set � of
bipartite marginals with binary inputs and outputs, which result
from a tripartite local and nonsignaling probability distribution

� = {(PAB,PAC,PBC)|∃PABC

local s.t. (2), (3), (4) hold}. (8)

Clearly, the set � is convex and has a finite number of
extreme points. It is then a polytope and can be described
by a finite number of inequalities that only involve the
marginal correlations PAB,PAC,PBC . If the bipartite marginals
of some tripartite nonsignaling correlations violate any of these
inequalities, then they cannot be compatible with a local
tripartite distribution. Thus, any extension of these marginals
to a tripartite nonsignaling distribution must be nonlocal. On
the other hand, if some bipartite correlations satisfy all the
inequalities that define �, then they are necessarily compatible
with some tripartite local correlations.

Similarly, one can check whether some marginals are
compatible with genuinely tripartite nonlocal correlations by
considering the polytope

�′ = {(PAB,PAC,PBC)|∃PABC

bilocal s.t. (2), (3), (4) hold}. (9)

Here we consider the definition of bilocality given in
Refs. [11,12], which solves some inconsistencies of the
original definition of bilocality by Svetlichny [18]. Since the
constraints of the polytope �′ are strictly weaker than those
of �, one has � ⊂ �′. Any inequality satisfied by �′ is thus
also a valid inequality for �.

An example of inequality satisfied by �′ (and �) is

−〈A0(1 + B0 + B1 + C0)〉,
−〈A1(1 + B0 + C0 + C1)〉, (10)

−〈B0 + C0 + B0C0 + B1C1〉 � 4.
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The violation of this inequality implies that the correlations
compatible with the given marginals must be genuinely
tripartite nonlocal. The inequality (10) can be violated by
measuring the noisy W state �W (p) for p > 0.9548, where

�W (p) = p|W 〉〈W | + 1 − p

8
I, (11)

with |W 〉 = 1√
3
(|001〉 + |010〉 + |100〉) and 0 � p � 1. The

corresponding measurement settings are

A0 = cos ασz + sin ασx, A1 = cos ασz − sin ασx,

B0 = −σz, B1 = cos βσz + sin βσx,

C0 = −σz, C1 = cos βσz − sin βσx,

(12)

and α = 3.6241 and β = 2.0221. The reduced states of two
parties of �W (p) are all equal and have the form

�red(p) = 2p

3
|ψ+〉〈ψ+| + p

3
|00〉〈00| + 1 − p

4
I, (13)

where |ψ+〉 = 1/
√

2(|01〉 + |10〉). Since these reduced states
satisfy the Horodecki criterion for the violation of the CHSH
inequality [20] for every 0 � p � 1, any pair of two-outcome
measurements on �W (p) is necessarily local. Thus we have
obtained an example of local quantum marginal correlations
which are only compatible with genuine tripartite nonlocal
correlations.

III. ENTANGLEMENT FROM SEPARABLE MARGINALS

Regarding the problem of entanglement detection from
separable marginals, note that the global state of a system
is known to be generally determinable from its marginals,
if one has the promise that the global state is pure [3].
Indeed, consider the bipartite marginals �AB = �AC = �BC =
� = (|00〉〈00| + |11〉〈11|)/2. If the global state of the systems
is pure, it follows from its Schmidt decomposition that it must
be the Greenberger-Horne-Zeilinger (GHZ) state |GHZ〉 =
1/

√
2(|000〉 + eiφ|111〉). While these bipartite marginals are

separable, the GHZ state is entangled and, thus, the observation
of separable marginals can only be compatible with an
entangled pure state.

Now, if the global state is not assumed to be pure, then the
above analysis immediately fails. For instance, the reduced
states of the GHZ state are also compatible with the three-party
mixed state �ABC = 1/2(|000〉〈000| + |111〉〈111|), which is
separable. Thus the observation of these marginals without
further knowledge on the full state does not guarantee
entanglement in the whole system. Actually, this result applies
to every graph state: For any such state there is always a
separable state that has the same two-body reductions [21].
So no criterion relying on two-particle correlations can detect
graph-state entanglement.

However, as mentioned before, it was shown that there
are separable two-qubit states that are only compatible with
an entangled global state [9,10]. Here, we present further
examples of this feature involving the reduced states of
three-qubit states. The starting point for our investigation is
again a noisy W state. The reduced states (13) are separable
for 0 � p � psep = 3/(1 + 2

√
5). We are interested to see

if there exists a value of p with p � psep such that every

TABLE I. Values for separability of the reduced two-party states
of the noisy W state psep and for the solution to the SDP problem (14)
p
 for a different number of parties.

n 3 4 5 6 7

p
 0.4899 0.6180 0.7464 0.8279 0.8787
psep 0.5482 0.7071 0.8050 0.8640 0.9009

three-qubit state compatible with these reductions must be
entangled.

To do that, we need to look for the maximal value of
p such that every three-qubit state having �red (p) as its
reductions is not entangled. For simplicity, let us relax this
last constraint, allowing the three-qubit state to have a positive
partial transposition (PPT) instead of being separable [22].
After this relaxation, the maximal value of p corresponds to
the solution p
 of the following instance of a semidefinite
program (for an introduction to SDP see, for instance, the
textbook [23]):

p
 = maximize p
�,p

subject to � 
 0,

trX� = �red(p) for X = A,B,C,

�TX 
 0 for X = A,B,C. (14)

Note that the normalization condition tr(�) = 1 is ensured by
the constraints on the bipartite marginals trX�.

By constructing the dual to the previous problem, it is
possible to prove that the solution of Eq. (14) is p
 =
3/(2 + √

17) � 0.4899 (see the Appendix). Therefore, the
reduced states (13) with p
 < p � psep certify the presence
of entanglement in the global state despite being separable.

The above considerations can be generalized to the case
of more than three parties. Starting from the noisy W state
of n qubits we found a similar behavior: One can choose
separable two-party states that are only compatible with an
entangled global state of n qubits. The value of psep for which
the two-party reduced states become separable reads psep =
n/(4 − n + 2

√
n2 − 4n + 8), while solving the corresponding

SDPs yields a value for p
. Table I summarizes our results for
n � 7.

IV. CONCLUSION

To conclude, we have demonstrated how the compatibility
constraints among marginal distributions allow one to certify
the presence of nonlocal correlations in a global state from
marginals that allow a local description. In particular, we have
provided examples of local bipartite marginals that are only
compatible with nonlocal probability distributions, and even
with genuinely tripartite nonlocal distributions. This result
reveals that local models reproducing some (local) bipartite
marginal correlations can be fundamentally incompatible with
each other since the full correlations representing their joint
behavior admit no such model.

Furthermore, for the case of entanglement we have pre-
sented a collection of three separable two-qubit states that
are only compatible with an entangled tripartite state. From
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a general viewpoint, our work proves how compatibility
constraints lead to nontrivial results even when acting on
separable or local states.
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APPENDIX

This Appendix provides details on the solution of
the SDP from main text. Defining M = 2/3|ψ+〉〈ψ+| +
1/3|00〉〈00| − 1/4I, the corresponding dual problem of
Eq. (14) can be written as

d
 = minimize
1

4
tr(NA + NB + NC)

NX,QX

subject to QX � 0 for X = A,B,C,

tr[M(NA + NB + NC)] = −1∑
X

IX ⊗ NX + Q
TX

X 
 0, (A1)

where NX are 4 × 4 matrices and QX are 8 × 8 matrices;
the expression IX ⊗ NX denotes the operator that acts as the
identity on particle X and as NX on the rest.

From weak duality one always has d
 � p
. Every feasible
point for the primal problem gives a lower bound p′ � p


and every dual feasible point gives an upper bound d ′ � d
.
The following choice of the variables �, NX, QX satisfy
all the constraints of Eqs. (14) and (A1), while yielding

the same bounds d ′ = p′ = 3/(2 + √
17) � 0.4899. Thus, we

have p
 = d
 = 3/(2 + √
17),

� = p


2
(|W 〉〈W | + |W 〉〈W |) + 3(1 − p
)

4
σ

+ p


6
|000〉〈000| + 3 − 5p


12
|111〉〈111|, (A2)

with σ = 1/3(|001〉〈001| + |010〉〈010| + |100〉〈100|) and
|W 〉 = 1/

√
3(|011〉 + |101〉 + |110〉),

NX =
(

1 + 5

3
√

17

)
p


2
|00〉〈00| + (1 −

√
17)

p


12
(|01〉〈01|

+ |10〉〈10|) −
(

1 + 11√
17

)
p


6
(|01〉〈10| + |10〉〈01|)

+ 2

(
1

3
+ 1√

17

)
p
 |11〉〈11| , (A3)

for X = A,B,C, and

QA =
(

1 + 5

3
√

17

)
p


4
(−|000〉〈000| + |000〉〈110|

+ |000〉〈101| + H.c.)

−
(

1

3
− 1√

17

)
p
(|001〉 + |010〉)(〈001| + 〈010|)

+ 4

3
√

17
p
(|001〉〈111| + |010〉〈111| + H.c.)

−
(

3

5
− 1

3
√

17

)
p


2
(|101〉〈101| + |110〉〈110|)

+
(

1

5
− 7

3
√

17

)
p


4
(|101〉〈110| + |110〉〈101|)

− 2

(
1

3
+ 1√

17

)
p
 |111〉〈111| , (A4)

where H.c. stands for Hermitian conjugate. QB and QC are
equal to QA after permutating the parties so that B or C take
the role of A.
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