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This paper considers the extension of the non-Markovian stochastic approach for quantum open systems
strongly coupled to a fermionic bath to the models in which the system operators commute with the fermionic
bath. This technique can also be a useful tool for studying open quantum systems coupled to a spin-chain
environment, which can be further transformed into an effective fermionic bath. We derive an exact stochastic
Schrödinger equation (SSE), called the fermionic quantum state diffusion (QSD) equation, from the first principle
by using the fermionic coherent state representation. The reduced density operator for the open system can be
recovered from the stochastic average of the solutions to the QSD equation over the Grassmann-type noise. By
employing the exact fermionic QSD equation, we can derive the corresponding exact master equation. The power
of our approach is illustrated by the applications of our stochastic approach to several models of interest including
the one-qubit dissipative model, the coupled two-qubit dissipative model, the quantum Brownian motion model,
and the N -fermion model coupled to a fermionic bath. Different effects caused by the fermionic and bosonic
baths on the dynamics of open systems are also discussed.
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I. INTRODUCTION

The theory of open quantum systems has experienced
resurgent interest because of the rapid development of
quantum experimental technologies and their applications to
the fabrication and manipulation of quantum devices (e.g.,
photonic devices, quantum dots, nanomechanical oscillators,
etc.). However, an intricate problem exists since in reality no
system can be completely isolated from its environment (bath,
reservoir, etc.), and the dynamics of the system of interest will
be profoundly affected by the couplings to its environment
[1,2]. When the quantum open systems are coupled to a
Markov environment, the Lindblad master equation is a critical
tool which can be used to study the dynamics of the open
systems [3]. When the Born-Markov approximation is no
longer valid, namely, when the coupling between system
and environment is not weak or the environment cannot be
approximated by a broadband bath, one must extend the
standard Markov theory to a more general non-Markovian
environment. Several attempts to derive the evolution equation
of open quantum systems beyond the Markov approximation
have been proposed [2,4–8]. Notably, the non-Markovian
quantum state diffusion (QSD) approach developed by Strunz
and his coworkers has showed momentous potential for solving
large systems (multiqubit or multicavity) [9–15]. Moreover, as
a computing tool, many numerical advantages of the QSD
approach permit its use in several domains such as high-
precision measurement [16], entanglement dynamics [17],
and coherence dynamics of the large molecules in biophysics
[18]. Therefore, it is highly desirable to extend the QSD
approach for the bosonic baths to the fermionic case where the
non-Markovian features have played increasingly important
roles [19–23].

*xzhao1@stevens.edu
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The primary theme of our current paper is to establish
an exact quantum approach for a class of quantum systems
interacting with a fermionic bath. We consider a class
of systems such that the systems and fermionic bath are
distinguishable; hence the system Hamiltonian and the bath
operators commute. The system of interest in this case may
consist of one or more effective particles such as spins and
effective fermions. The case where the system and bath
operators anticommute will be investigated in a separate
paper [24]. It is noted that the commutative model we proposed
arises from many physical settings including spin bath and
fermionic bath (e.g., see Appendix A).

We derive a fermionic stochastic Schrödinger equation
for an open quantum system embedded in a fermionic bath,
called the fermionic QSD equation. To illustrate the power
of our approach, we solve several models as examples using
this technique, including a one-qubit dissipative model, a
two-qubit dissipative model, the quantum Brownian motion
in a fermionic bath, and a multiple-particle model. In the first
example, we give the explicit analytical solution without any
approximation in a special case. In the second example, we
show how to construct the crucial Q̂ operator contained in the
fermionic QSD equation. In the third example, we consider
a continuous variable model where a Brownian particle is
immersed in a bath of fermionic particles. The last example
involves a genuine multiparticle system that has been solved
exactly by our QSD approach. Finally, the difference between
the bosonic bath and the fermonic bath is discussed.

This paper is organized as follows. In Sec. II, we introduce
the general commutative fermionic bath model and derive the
fundamental dynamic equation for this model. In Sec. III,
we derive the formal exact master equation from the QSD
equation. In Sec. IV, we present a simple example of using
this fermionic QSD approach to solve the one-qubit dissipative
model. In Sec. V, we solve the two-qubit dissipative model to
show the construction of some complicated Q̂ operators. In
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Sec. VI, we apply our fermionic QSD approach to a continuous
variable model to solve the quantum Brownian motion model
in a fermionic bath. In Sec. VII, we solve a genuine multipartite
system, the N -fermion model, to show that our approach is not
only applicable to small systems (one qubit or two qubits) but
also applicable to large quantum open systems. Based on the
last example, we also evaluate the differences between the
bosonic bath and the fermonic bath. Finally, in Sec. VIII, we
conclude the paper. In Appendix A, we provide an effective
commutative model consisting of spinless fermions as an
environment. In Appendixes B and C, we present the details
of derivation of the non-Markovian QSD equation for a
fermionic bath. In Appendix D, we prove a Novikov-type
theorem for a Grassmann Gaussian stochastic process, which
plays a crucial role in deriving the exact master equation
from the corresponding stochastic Schrödinger equation. In
Appendixes E and F, we derive explicit equations of motion
for the coefficients of the master equation for the examples
presented in this paper.

II. NON-MARKOVIAN QSD EQUATION FOR AN OPEN
SYSTEM COUPLED TO A FERMIONIC BATH

For a quantum open system interacting with a fermionic
environment, the total Hamiltonian may be written as

Ĥtot = Ĥs + Ĥb + Ĥint, (1)

where Ĥs is the Hamiltonian of the system, Ĥb is the
Hamiltonian of the bath, and Ĥint is the interaction term. When
we consider the fermionic bath, Ĥb and Ĥint can be written as
(setting h̄ = 1 throughout the paper)

Ĥb =
∑

i

ωi ĉ
†
i ĉi , (2)

Ĥint =
∑

i

(g∗
i ĉ

†
i L̂ + giL̂

†ĉi), (3)

where ĉ
†
i and ĉi are fermionic creation and annihilation

operators satisfying {ĉi ,ĉ
†
j } = δij . Here we emphasize that the

bath may consist of a set of effective fermions or spins (e.g.,
see [25,26]; an example is shown in Appendix A).

In the interaction picture, the total Hamiltonian becomes

Ĥtot(t) = Ĥs +
∑

i

(g∗
i e

iωi t ĉ
†
i L̂ + gie

−iωi t L̂†ĉi). (4)

We use the fermionic coherent state (e.g., see [27–29]) to
describe the state of the environment. For a single mode, the
fermionic coherent state is defined as

ĉi |ξi〉 = ξi |ξi〉, (5)

where ξi is a Grassmann variable which satisfies the following
properties: {ξi,ξj } = 0, {ξi,ξ

∗
j } = 0. Generally, the coherent

state can be expanded in terms of Fock states as |ξi〉 = |0〉 −
ξic

†
i |0〉. The coherent states for the multimode environment

are given by |ξ 〉 = |ξ1〉 ⊗ |ξ2〉 ⊗ |ξ3〉 ⊗ · · ·.
Now, we can define

ψt (ξ
∗) = 〈ξ |ψtot(t)〉, (6)

where |ψtot(t)〉 is the total state vector for the system and
environment and 〈ξ | is a coherent state representation for the
environment. In this paper, we focus on the case where the

initial state of the bath is the vacuum state. The finite tem-
perature bath will be discussed in [24] using the Bogoliubov
transformation [30]. With the coherent state representation, we
can derive the non-Markovian QSD equation for the fermionic
bath as

∂

∂t
ψt (ξ

∗) =
[

− iĤs + L̂ξ ∗
t − L̂†

∫ t

0
dsK(t,s)

δl

δξ ∗
s

]
ψt (ξ

∗),

(7)

where ξ ∗
t = −i

∑
i g

∗
i e

iωi t ξ ∗
i is the Grassmann Gaussian

noise satisfying 〈ξt 〉s = 〈ξ ∗
t 〉s = 0, 〈ξt ξ

∗
s 〉s = K(t,s) (Here,

〈· · ·〉s stands for the statistical mean over Grassmann
noise, see Eq. (19) for the explicit definition). K(t,s) =∑

i |gi |2e−iωi (t−s) is the correlation function. (Details of the
derivation can be found in Appendix B.) We use δl

δξ∗
s

to denote
the left functional derivative with respect to the Grassmann
variables. Our fermionic QSD approach is applicable to
arbitrary correlation functions, especially for the general
non-Markovian case.

Similar to the formal bosonic QSD equation [9], the
fermionic QSD equation contains a time-nonlocal Grassmann
functional derivative which renders a direct application of the
derived fermionic QSD equation extremely difficult, if not
impossible. In order to find a time-local QSD equation, one
can introduce a time-dependent operator (also ξ ∗ dependent in
general) Q̂, defined as

δlψt (ξ ∗)

δξ ∗
s

= Q̂(t,s,ξ ∗)ψt (ξ
∗). (8)

If no confusion arises, we use the shorthand notation Q̂ =
Q̂(t,s,ξ ∗). With this Q̂ operator, the exact stochastic QSD
equation can be written as

∂

∂t
ψt (ξ

∗) = [−iĤs + L̂ξ ∗
t − L̂†Q̄]ψt (ξ

∗), (9)

where Q̄(t,ξ ∗) = ∫ t

0 dsK(t,s)Q̂(t,s,ξ ∗). The stochastic QSD
equation for a fermionic bath we have presented here is
an exact equation of motion for the open quantum system
directly derived from the microscopic Hamiltonian without
any approximation. It should be noted that in our derivation of
the QSD equation, we have not explicitly specified the system
Hamiltonian and the coupling operators, Ĥs and L̂. Here we
have introduced a new type of stochastic process ξ ∗

t . The
solution of our QSD equation is called a Grassmann quantum
trajectory. By construction, the reduced density matrix of the
open system can be recovered by the statistical mean over the
Grassmann noise. Although the fermionic QSD equation looks
formally similar to the bosonic case, the dynamic behaviors
of the system governed by the two types of equations can
be different due to distinct differences between the bosonic
and fermionic particles. Mathematically, the most striking
difference between the bosonic and fermionic QSD equations
is that the former contains a complex Gaussian noise while
the latter is driven by a noncommutative Grassmann Gaussian
noise. We illustrate the difference in a concrete example in a
subsequent section.
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In order to derive the dynamic equation for the Q̂ operator,
we consider the consistency condition (CC),

δl

δξ ∗
s

∂

∂t
ψt (ξ

∗) = ∂

∂t

δl

δξ ∗
s

ψt (ξ
∗). (10)

Applying the QSD Eq. (9) to CC, the equation for Q̂ operator
is derived as

∂

∂t
Q̂ = −i[Ĥs,Q̂] − {L̂ξ ∗

t ,Q̂} − L̂†Q̄(−ξ ∗)Q̂

+ Q̂L̂†Q̄ − L̂† δ

δξ ∗
s

Q̄, (11)

where the sign of Q̄(−ξ ∗) depends on the functional form of
noise contained in Q̄. (Details of derivation and discussion
can be found in Appendix C.) The initial condition for the Q̂

operator is

Q̂(t,s = t,ξ ∗) = L̂. (12)

However, for a simple case in which Q̂ is independent of
Grassmann noise, the equation for the Q̂ reduces to

∂

∂t
Q̂ = −i[Ĥs,Q̂] − {L̂ξ ∗

t ,Q̂} − [L̂†Q̄,Q̂]. (13)

Equations (11) and (13) can be used to determine the exact
Q̂ operator. However, for most practical problems, it may be
a daunting task to determine the exact Q̂. Therefore, it is
important to develop a perturbation approach similar to that
developed for the bosonic bath [10]. In fact, we may expand
the Q̂ operator as

Q̂(t,s,ξ ∗) = Q̂(0)(t,s) +
∫ t

0
Q̂(1)(t,s,s1)ξ ∗

s1
ds1

+
∫ t

0

∫ t

0
Q̂(2)(t,s,s1,s2)ξ ∗

s1
ξ ∗
s2
ds1ds2

+ · · · +
∫ t

0
. . .

∫ t

0
Q̂(n)(t,s,s1, . . . ,sn)

× ξ ∗
s1

. . . ξ∗
sn
ds1 . . . dsn + · · · . (14)

By substituting this equation into Eq. (11), one can derive
the dynamic equations of the coefficients for each order Q̂(i).
Particularly, the zeroth-order term Q̂(0)(t,s) will satisfy the
following equation (neglecting all the noise terms):

∂

∂t
Q̂(0)(t,s) = −i[Ĥs,Q̂

(0)(t,s)] − [L̂†Q̄(0)(t),Q̂(0)(t,s)],

(15)

where Q̄(0)(t) = ∫ t

0 Q̂(0)(t,s)K(t,s)ds, and the initial condi-
tion is

Q̂(0)(t,s = t) = L̂. (16)

III. FORMAL EXACT MASTER EQUATION FOR AN OPEN
QUANTUM SYSTEM COUPLED TO A FERMIONIC

BATH

Now, we derive the master equation governing the reduced
density operator of the open quantum system from the
stochastic QSD equation (9). First, we define the stochastic

density operator as

P̂t = |ψt (ξ
∗)〉〈ψt (−ξ )|. (17)

It is easy to verify that the reduced density matrix of the open
system can be written as

ρ̂ =
∑

n

〈n|ψtot〉〈ψtot|n〉

=
∫ ∏

i

dξ ∗
i dξie

− ∑
j ξ∗

j ξj

∑
n

〈n|ξ 〉〈ξ |ψtot〉〈ψtot|n〉

=
∫ ∏

i

dξ ∗
i dξie

− ∑
j ξ∗

j ξj

∑
n

〈ξ |ψtot〉〈ψtot|n〉〈n| − ξ 〉

=
∫ ∏

i

dξ ∗
i dξie

− ∑
j ξ∗

j ξj P̂t

= 〈P̂t 〉s , (18)

where 〈· · ·〉s denotes the statistical mean over the Grassmann
Gaussian noise defined by

〈· · ·〉s ≡
∫ ∏

i
dξ ∗

i dξie
− ∑

j ξ∗
j ξj (· · ·). (19)

From this expression, we say that the reduced density matrix
can be unraveled by a set of Grassmann quantum trajectories
|ψt (ξ ∗)〉.

From Eq. (9), we have

∂

∂t
〈ψt (−ξ )| = 〈ψt (−ξ )|[iĤs − ξt L̂

† − Q̄†(t, − ξ )L̂]; (20)

thus,

∂

∂t
ρ̂ = ∂

∂t
〈P̂t 〉s = 〈(−iĤs + L̂ξ ∗

t − L̂†Q̄)P̂t 〉s
+〈P̂t (iĤs − ξt L̂

† − Q̄†(−ξ )L̂)〉s
= −i[Ĥs,ρ̂] + L̂〈ξ ∗

t P̂t 〉s − 〈P̂t ξt 〉sL̂†

− L̂†〈Q̄P̂t 〉s − 〈P̂t Q̄
†(−ξ )〉sL̂. (21)

In order to establish the exact master equation from the
fermionic QSD equation (9), one needs to handle the terms
〈P̂t ξt 〉s . In fact, we can prove a Novikov-type theorem for the
Grassmann Gaussian noise (see Appendix D),

〈P̂t ξt 〉s = −〈Q̄P̂t 〉s , (22)

〈ξ ∗
t P̂t 〉s = 〈P̂t Q̄

†(−ξ )〉s . (23)

With the help of the Novikov-type theorem for the Grassmann
noise, the exact master equation can be written as

∂

∂t
ρ̂ = −i[Ĥs,ρ̂] + [L̂,〈P̂t Q̄

†(−ξ )〉s] + [〈Q̄P̂t 〉s ,L̂†]. (24)

If the operator Q̂ is independent of the Grassmann noise, then
the exact master equation is immediately obtained,

∂

∂t
ρ̂ = −i[Ĥs,ρ̂] + [L̂,ρ̂Q̄†] + [Q̄ρ̂,L̂†]. (25)

Moreover, in the Markov limit, Q̄ = γf L̂, this master equation
reduces to the standard Lindblad master equation:

∂

∂t
ρ̂ = −i[Ĥs,ρ̂] + γf [L̂,ρ̂L̂†] + γf [L̂ρ̂,L̂†]. (26)
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In subsequent sections, we derive several interesting master
equations from the corresponding QSD equations.

IV. EXAMPLE 1: ONE-QUBIT DISSIPATIVE MODEL

We start with a very simple example, one qubit in a
fermionic bath. This is a special case where it is possible to
derive the fully analytical solution without any approximation.

A. Master equation and non-Markovian quantum dynamics

The total Hamiltonian for the one-qubit dissipative model
may be written as

Ĥtot = Ĥs + Ĥb + Ĥint, (27)

Ĥs = ω

2
σ̂z, (28)

Ĥb =
∑

i

ωi ĉ
†
i ĉi , (29)

Ĥint =
∑

i

(g∗
i ĉ

†
i L̂ + giL̂

†ĉi), (30)

where L̂ = σ̂− for this particular model.
From Eq. (13), the solution for Q̂ can be obtained as

Q̂(t,s) = x1(t,s)σ̂−, (31)

with the initial condition

Q̂(t,s = t) = L̂ = σ̂−, (32)

and the coefficient x1(t,s) is shown to satisfy

∂

∂t
x1(t,s) = [iω + X1(t)]x1(t,s), (33)

where X1(t) = ∫ t

0 x1(t,s)K(t,s)ds, K(t,s) is the correlation
function, and the initial condition is given by x1(t,s = t) = 1.

Thus, the exact Q̂ operator can be fully determined. It is
worth noting that this Q̂ operator has the same form as the
bosonic case [10]. Finally, the explicit QSD equation for this
model is

∂

∂t
ψt (ξ

∗) =
[
−i

ω

2
σ̂z + σ̂−ξ ∗

t − X1(t)σ̂+σ̂−

]
ψt (ξ

∗), (34)

and the exact master equation is

d

dt
ρ̂ = −i[Ĥs,ρ̂] + [L̂,ρ̂Q̄†] + [Q̄ρ̂,L̂†]

= −i
ω

2
(σ̂zρ̂ − ρ̂σ̂z) + X∗

1(t)(σ̂−ρ̂σ̂+ − ρ̂σ̂+σ̂−)

+X1(t)(σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂). (35)

With this exact master equation, the dynamics of this model
can be fully determined.

B. A limiting case: The environment consists
of only one fermion

Now, we consider a very special case for the one-qubit
model where the “environment” [31] contains only one
fermion. By analytically solving this model, we show explic-
itly that the fermionic QSD equation gives rise to results iden-
tical to those predicted by the ordinary quantum mechanics.

The model is described by the following Hamiltonian:

Ĥtot = ω

2
σ̂z + ωbĉ

†ĉ + (g∗σ̂−ĉ† + gσ̂+ĉ), (36)

and the zero-temperature correlation function becomes

K(t,s) = |g|2 e−iωb(t−s). (37)

Substituting the correlation function into the expression of
X1(t) = ∫ t

0 x1(t,s)K(t,s)ds, we find the differential equation
for X1(t) as

∂

∂t
X1(t) = |g|2 − iωbX1(t) + iωX1(t) + X1(t)2. (38)

For simplicity, we consider the resonance case, then the
solution X1(t) can reduce to

X1(t) = |g| tan(|g|t). (39)

From the master equation (35), we can calculate time
evolution for the off-diagonal elements in the density matrix:

d

dt
ρ̂21 = d

dt
〈σ̂+〉 = Tr

(
d

dt
ρ̂σ̂+

)
= iωρ̂21 − X∗

1(t)ρ̂21.

(40)

Finally, we can derive the time evolution for ρ̂21 as

ρ̂21(t) = ρ̂21(0)eiωt cos[|g|t]. (41)

Similarly, we can get

ρ̂12(t) = ρ̂12(0)e−iωt cos[|g|t]. (42)

This result shows that the coherence (off-diagonal elements in
density matrix) will decrease and increase periodically.

On the other hand, we can easily solve this simple case using
elementary quantum mechanics. Since this is only a two-body
problem, we can solve the evolution for the whole system
in a straightforward manner. One can check that elementary
quantum mechanics gives rise to the identical results obtained
by the fermionic QSD approach in Eqs. (41) and (42).

V. EXAMPLE 2: COUPLED TWO-QUBIT
DISSIPATIVE MODEL

In this section, we consider a system containing a pair
of coupled two-level systems (spins or some other effective
two-level models) interacting with a common fermionic bath.
We show how to construct exact and approximate Q̂ operators
in this example. The total Hamiltonian of this model can be
written as

Ĥtot = Ĥs + Ĥb + Ĥint, (43)

where

Ĥs = ωAσ̂A
z + ωBσ̂B

z + Jxy(σ̂ A
+ σ̂ B

− + σ̂ A
− σ̂ B

+ ) + Jzσ̂
A
z σ̂ B

z ,

Ĥb =
∑

j

ωj ĉ
†
j ĉj , Ĥint =

∑
j

(g∗
j ĉ

†
j L̂ + gj L̂

†ĉj ), (44)

Here, the operator L̂ = κAσ̂A
− + κBσ̂ B

− describes the pattern
of interaction with the environment. κA and κB are constants
describing different coupling strengths for the two qubits.

032116-4
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The perturbative zeroth-order Q̂ operator can be derived as

Q̂(0)(t,s) =
4∑

i=1

fi(t,s)Q̂i, (45)

where Q̂i (i = 1,2,3,4) are time-independent basis operators
and fi(t,s) are time-dependent coefficients.

The four basis operators in terms of the Pauli matrices may
be written as

Q̂1 = σ̂ A
− , Q̂2 = σ̂ B

− , Q̂3 = σ̂ A
z σ̂ B

− , Q̂4 = σ̂ A
− σ̂ B

z . (46)

From Eq. (15), we can derive the differential equation for the
coefficients as

∂

∂t
f1(t,s) = +2iωAf1 − iJxyf3 + 2iJzf4 + κAF1f1

− κBF1f3 + κBF3f1 + κBF3f4

+ κBF4f3 + κAF4f4, (47)
∂

∂t
f2(t,s) = +2iωBf2 − iJxyf4 + 2iJzf3 + κBF2f2

− κAF2f4 + κBF3f3 + κAF3f4

+ κAF4f2 + κAF4f3, (48)
∂

∂t
f3(t,s) = +2iωBf3 − iJxyf1 + 2iJzf2 − κAF2f1

+ κBF2f3 + κAF3f1 + κAF4f2

+ κBF3f2 + κAF4f3, (49)

∂

∂t
f4(t,s) = +2iωAf4 − iJxyf2 + 2iJzf1 − κBF1f2

+ κAF1f4 + κBF3f1 + κBF3f4

+ κAF4f1 + κBF4f2, (50)

where Fi(t) = ∫ t

0 dsK(t,s)fi(t,s) (i = 1,2,3,4), and the initial
conditions are

f1(t,s = t) = κA, (51)

f2(t,s = t) = κB, (52)

f3(t,s = t) = 0, (53)

f4(t,s = t) = 0. (54)

Moreover, we can also determine the exact Q̂ operator
for this two-qubit model. We can verify rigorously that the
exact Q̂ operator contains five terms, where the last term is
noise dependent. The details of the derivation are presented in
Appendix E. If we use this zeroth-order Q̂ operator, the master
equation can be explicitly written in the following form:

d

dt
ρ̂ =−i[Ĥs,ρ̂] +

{
4∑

i=1

F ∗
i [L̂ρ̂Q̄

†
i − ρ̂Q̄

†
i L̂] + H.c.

}
.

(55)

Next, we consider a simple case in which all the parameters
are symmetric for two qubits, that is, ωA = ωB, κA = κB = 1.

Then, we can derive the following master equation:

d

dt
ρ̂ = −iωA

[(
σ̂ A

z + σ̂ B
z

)
ρ̂ − ρ̂

(
σ̂ A

z + σ̂ B
z

)] − iJxy

[
(σ̂ A

+ σ̂ B
− + σ̂ B

+ σ̂ A
− )ρ̂ − ρ̂(σ̂ A

+ σ̂ B
− + σ̂ B

+ σ̂ A
− )

] − iJz

[
σ̂ A

z σ̂ B
z ρ̂ − ρ̂σ̂ A

z σ̂ B
z

]
+ {

F ∗
1 [(σ̂ A

− + σ̂ B
− )ρ̂σ̂ A

+ − ρ̂σ̂ A
+ (σ̂ A

− + σ̂ B
− )] + F ∗

2 [(σ̂ A
− + σ̂ B

− )ρ̂σ̂ B
+ − ρ̂σ̂ B

+ (σ̂ A
− + σ̂ B

− )]

+F ∗
3

[
(σ̂ A

− + σ̂ B
− )ρ̂σ̂ A

z σ̂ B
+ − ρ̂σ̂ A

z σ̂ B
+ (σ̂ A

− + σ̂ B
− )

] + F ∗
4

[
(σ̂ A

− + σ̂ B
− )ρ̂σ̂ B

z σ̂ A
+ − ρ̂σ̂ B

z σ̂ A
+ (σ̂ A

− + σ̂ B
− )

] + H.c.
}
. (56)

Although the master equation derived above is valid for an
arbitrary correlation function, for numerical simulations one
need to consider a specific example of the correlation function.
It is known that the spectral density of a fermionic bath may
be given by [7]

J (ω) = �γ 2/2π

(ω − )2 + γ 2
, (57)

which is called the Lorentzian spectral density. Therefore, the
corresponding correlation function is

K(t,s) = �γ

2
exp[−(γ + i)(t − s)] (t > s), (58)

where γ indicates the correlation time of the bath.
In Fig. 1, we plot the time evolution of the concurrence

which gives the entanglement measure between the two qubits.
Given different non-Markovian environment, the dynamic evo-
lution of entanglement shows different properties depending
on the correlation time. In Fig. 2, we plot the evolution of the
time-dependent coefficients |Fi(t)|. In the Markov limit, all
of those coefficients are time-independent constants; however,
in the general non-Markovian regime, they are functions of

time. In the long time limit, they converge to constants, but
the behavior of evolution before that will be related to the
properties of environment.
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FIG. 1. (Color online) Time evolution of concurrence for different
γ . The other parameters are ωA = ωB = ω

2 , Jxy = 0.5, Jz = 0, � =
1, and  = π/4.
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FIG. 2. (Color online) Time evolution of |F1(t)|, |F2(t)|, |F3(t)|,
and |F4(t)|. In the symmetric case, |F1(t)| = |F2(t)|, |F3(t)| = |F4(t)|.
The other parameters are ωA = ωB = ω

2 , Jxy = 0.5, Jz = 0, � = 1,
and  = π/4.

VI. EXAMPLE 3: QUANTUM BROWNIAN PARTICLE
IN A FERMIONIC BATH

In this section, we consider a continuous variable model
consisting of a Brownian particle interacting with a fermionic
bath (a similar model is discussed in Ref. [21]). The Hamilto-
nian of the Brownian particle is given by

Ĥs = ωm(p̂2 + q̂2). (59)

The Hamiltonian of the fermionic bath is

Ĥb =
∑

i

ωi ĉ
†
i ĉi , (60)

and the interaction Hamiltonian is given by

Ĥint = q̂
∑

i

(g∗
i ĉ

†
i + gi ĉi). (61)

So, the total Hamiltonian is

Ĥtot = Ĥs + Ĥb + Ĥint. (62)

By applying our QSD approach to this model, it can be easily
shown that Q̂ operator takes the following form:

Q̂ = x1(t,s)q̂ + x2(t,s)p̂ + x3(t,s,ξ ∗)p̂q̂

+ x4(t,s,ξ ∗)p̂2 + x5(t,s,ξ ∗)q̂2 + · · · , (63)

which is an infinite series; therefore, it is difficult to determine
the exact Q̂ operator. A useful approximation is to neglect all
the noise-dependent terms, after which we obtain the so-called
zeroth-order approximate Q̂ as

Q̂(0) = x1(t,s)q̂ + x2(t,s)p̂. (64)

By substituting this approximate Q̂ operator into Eq. (15), we
can derive the differential equations for the coefficients x1(t,s)
and x2(t,s) as

∂

∂t
x1(t,s) = 2ωmx2(t,s) + iX2(t)x1(t,s) − 2iX1(t)x2(t,s),

(65)
∂

∂t
x2(t,s) = −2ωmx1(t,s) − iX2(t)x2(t,s). (66)

The initial conditions for coefficients x1(t,s) and x2(t,s) are

x1(t,s = t) = 1, (67)

x2(t,s = t) = 0. (68)

Using this approximate Q̂ operator, the master equation can
be written as

d

dt
ρ̂ = −i[Ĥs,ρ̂] + [L̂,ρ̂Q̄†] + [Q̄ρ̂,L̂†]

= −iωm[(p̂2 + q̂2)ρ̂ − ρ̂(p̂2 + q̂2)]

+{X∗
1[q̂ρ̂q̂ − ρ̂q̂q̂] + X∗

2[q̂ρ̂p̂ − ρ̂p̂q̂] + H.c.}.
(69)

It should be noted that the X∗
2 (including its conjugation X2)

term is zero in the Markov limit. Hence, the approximate
Q̂ operator defined above is different from the Markov
approximation. It is also different from the weak-coupling
approximation since the approximate Q̂ still contains the
higher order terms of the coupling constants. We expect that
the master equation obtained from the approximate Q̂ will be
valid in a weakly non-Markovian regime.

From the master equation we can derive the evolution
equations for all the mean values of operators q̂,p̂,

d

dt
〈q̂〉 = 2ωm〈p̂〉, (70)

d

dt
〈p̂〉 = −2ωm〈q̂〉 − iX∗

1〈q̂〉 − iX∗
2〈p̂〉 + iX1〈q̂〉 + iX2〈p̂〉.

(71)
In Fig. 3, we plot the time evolution of 〈q̂〉 in different

kinds of environments with different γ . In order to show
the transition from non-Markovian to Markovian regimes,
Ornstein-Uhlenbeck noise K(t,s) = γ

2 e−(γ+i)(t−s) is chosen
in our numerical simulations. The reason for using Ornstein-
Uhlenbeck noise is that the memory time of the environment
can be described by one parameter 1/γ . Figure 3 shows
how the evolution of 〈q̂〉 is affected by γ . This is a unique
phenomenon in the non-Markovian case.
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FIG. 3. Time evolution of mean values of operator q̂ in different
environments. The parameter γ indicates the memory effect. The
other parameters are ωm = ω = 1, and  = π/2.
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VII. EXAMPLE 4. N-FERMION SYSTEM COUPLED TO
A FERMIONIC BATH

A. Dynamic equation for the general N-fermion model

In this example, we establish the exact time-local fermionic
QSD equation and master equation for a genuine multipartite
system coupled to a fermionic bath. We show that, using the
fermionic QSD approach, the exact Q̂ operator of the N -qubit
model can be easily determined.

More specifically, let us consider the following Hamiltonian
operators:

Ĥtot = Ĥs + Ĥb + Ĥint, (72)

Ĥb =
Nb∑
j=1

ωj ĉ
†
j ĉj , (73)

Ĥint =
Nb∑
j=1

gj (ĉ†j L̂ + L̂†ĉj ), (74)

where Ĥb is a fermionic bath. We assume that the system of
interest consists of Ns fermions, that is,

Ĥs =
Ns∑
i=1

Aiâ
†
i âi . (75)

Here, â
†
i and âi are also fermionic creation and annihilation

operators; the Lindblad operator is

L̂ =
Ns∑
i=1

âi . (76)

This Hamiltonian could be an effective Hamiltonian trans-
formed from a set of spins. For example, suppose that we have a
long chain with N sites: If the first Ns(Ns < N ) sites are treated
as system and the other Nb sites are treated as bath (Ns + Nb =
N ), then by performing the Jordan-Wigner transformations for
both the system and the bath, we may result in this type of
effective Hamiltonian (for details, see Appendix A).

We can show that the exact Q̂ operator of this model takes
the following form:

Q̂ =
Ns∑
i=1

xi(t,s)âi , (77)

and the differential equations for the coefficients in Q̂ operator
are given by

∂

∂t
xj (t,s) = iAjxj (t,s) +

Ns∑
i=1

Xj (t)xi(t,s), (78)

where Xj (t) = ∫ t

0 K(t,s)xj (t,s)ds. So, Q̄(t) = ∑Ns
i=1 Xi(t)âi .

The exact master equation of this model is

∂

∂t
ρ̂ = −i[Ĥs,ρ̂] + [L̂,ρ̂Q̄†] + [Q̄ρ̂,L̂†]

= −i[Ĥs,ρ̂] +
[ Ns∑

j=1

âj ,ρ̂

Ns∑
i=1

X∗
i (t)â†

i

]

+
[( Ns∑

i=1

Xi(t)âi

)
ρ̂,

Ns∑
j=1

â
†
j

]
. (79)

B. Fermionic versus bosonic baths

It is instructive to consider a simple case with two fermions
in the system (Ns = 2). The Hamiltonian is then given by

Ĥs = ω1â
†
1â1 + ω2â

†
2â2, (80)

L̂ = â1 + â2, (81)

and it is easy to show that the exact Q̄ operator is

Q̄ = X1(t)â1 + X2(t)â2, (82)

where X1(t) and X2(t) can be determined by Eq. (78) as Ns = 2
case. Then, the explicit master equation can be written as

d

dt
ρ̂ = −iω1(â†

1â1ρ̂ − ρ̂â
†
1â1) − iω2(â†

2â2ρ̂ − ρ̂â
†
2â2)

+{X∗
1(t)(â1ρ̂â

†
1 − ρ̂â

†
1â1) + X∗

1(t)(â2ρ̂â
†
1 − ρ̂â

†
1â2)

+X∗
2(t)(â1ρ̂â

†
2 − ρ̂â

†
2â1) + X∗

2(t)(â2ρ̂â
†
2 − ρ̂â

†
2â2)

+ H.c.}. (83)

On the other hand, we can also solve this model exactly
if the two effective fermions (spins) are coupled to a bosonic
bath. The Hamiltonian takes the same form as Eqs. (72)–(76),
except that ĉj (ĉ†j ) represent bosonic annihilation (creation)
operators (also consider the Ns = 2 case). Using the non-
Markovian QSD approach for the bosonic bath [9], the bosonic
QSD equation can be derived as

∂

∂t
ψt (z

∗) = [−iĤs + L̂z∗
t − L̂†Ō]ψt (z

∗), (84)

where Ō(t,z∗) = ∫ t

0 dsK(t,s)Ô(t,s,z∗). In the bosonic QSD
equation, the noise z∗

t = −i
∑

i g
∗
i e

iωi t z∗
i is the complex

(not Grassmann) Gaussian noise. The exact Ō operator is
determined as follows:

Ō(t,z∗) = X1(t)â1 + X2(t)â2 + X3(t)â†
1â1â2

+X4(t)â†
2â1â2 + i

∫ t

0
ds ′X5(t,s ′)z∗

s ′ â1â2. (85)

Details about the coefficients can be found in Appendix F.
We use this particular example to illustrate different aspects

of the fermionic and bosonic baths. As shown above, we
can find the exact Q̄ (Ō) operators for both the fermnionic
bath and the bosonic counterpart. Since the exact dynamic
evolution of the system will be fully determined by Q̄ (Ō)
operators, we may compare the difference between the two
operators given in Eqs. (82) and (85), respectively. The first
two terms X1(t) and X2(t) are the same for both the Q̄ and
Ō operators (one can easily check that they satisfy the same
equations), and the difference comes from other terms. In the
cases where X1(t) and X2(t) are dominant, one would not
expect sharp differences between the fermionic and bosonic
baths. For example, when ω1 = ω2, two operators Q̄ and Ō

are exactly the same. However, we found that the extra terms
X3(t) and X4(t) occurred in Ō may become important under
certain conditions as shown in Fig. 4, where the coefficients
in the Ō and Q̄ operators are plotted. Clearly, the fermionic
and bosonic baths may result in very different dynamics. In
the numerical simulations, we choose the Ornstein-Uhlenbeck
noise K(t,s) = γ

2 e−(γ+i)(t−s) for simplicity. However, our
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FIG. 4. (Color online) Dynamic evolution of the coefficients in
Q̄ (for fermionic bath) and Ō (for bosonic bath) operators. The
parameters are ω1 = 2, ω2 = ω = 1, γ = 0.4, and  = π/4.

approach is applicable for arbitrary kinds of correlation
functions.

VIII. CONCLUSION

In summary, we have developed the fermionic quantum
state diffusion approach to quantum open systems coupled
to a fermionic environment where the environment operators
commute with the system operators (For the anti-commutative
case, see [24]). Using the Grassmann coherent state, the
exact fermionic QSD equation and the corresponding master
equation are derived for several physically interesting models.
We have shown that the time-local QSD approach developed
in this paper can efficiently solve open systems coupled to
fermionic baths by employing the exact or approximate Q̂

operators. Moreover, our research also suggests that some
spin bath problems can also be solved by using the effective
fermionic bath. Finally, it is of great interest to apply the
fermionic QSD approach to more realistic models such as
finite-temperature fermionic baths and large spin baths, and
we leave these topics open for future discussion.
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APPENDIX A: SPIN CHAIN AS AN EFFECTIVE
FERMIONIC BATH MODEL

In this section, we consider a spin chain as the environment.
We show that the model can be transformed to a fermionic bath
model.

Consider a quantum system interacting with a XX spin
chain. The Hamiltonian is

Ĥtot = Ĥs + Ĥb + Ĥint, (A1)

Ĥb = ∑
i(σ̂

+
i σ̂−

i+1 + σ̂+
i+1σ̂

−
i ), (A2)

Ĥint = L̂†σ̂1 + σ̂
†
1 L̂. (A3)

After performing the Jordan-Wigner transformation,

σ̂−
j = exp

(
− iπ

j−1∑
k=1

ĉ
†
kĉk

)
ĉj , (A4)

and the Fourier transformation [26],

ĉj = 1√
N

N/2∑
p=−N/2

exp(−ijφp)âp, (A5)

the original Hamiltonian Eqs. (A1)–(A3) become

Ĥtot = Ĥs + Ĥb + Ĥint, (A6)

Ĥb =
N/2∑

p=−N/2

2 cos φpâ†
pâp, (A7)

Ĥint = 1√
N

N/2∑
p=−N/2

[L̂† exp(−iφp)âp + exp(iφp)â†
pL̂]. (A8)

This effective Hamiltonian obtained from the transformation
takes the same form given by Eqs. (1)–(3). Therefore, we
may use the QSD approach to study the dynamics of quantum
system coupled to a spin chain.

APPENDIX B: DERIVATION OF THE NON-MARKOVIAN
QSD EQUATION FOR A FERMIONIC BATH

To start with, we list several useful relations between
fermionic coherent state and operators:

〈ξi |L̂ = L̂〈ξi |, 〈ξi |Ĥs = Ĥs〈ξi |,
(B1)

〈ξi |ĉi = ∂l

∂ξ ∗
i

〈ξi |, 〈ξi |ĉ†i = 〈ξi |ξ ∗
i = ξ ∗

i 〈ξi |.

Using these relations, we can derive the QSD equation as

∂

∂t
ψt (ξ

∗) = −i〈ξ |Ĥtot(t)|ψtot(t)〉

= −i〈ξ |Ĥs +
∑

i

(g∗
i e

iωi t ĉ
†
i L̂ + H.c.)|ψtot(t)〉

= −iĤsψt (ξ
∗) + L̂ξ ∗

t ψt (ξ
∗)

− iL̂†
∑

i

gie
−iωi t 〈ξ |ĉi |ψtot(t)〉, (B2)

where ξ ∗
t = −i

∑
ig

∗
i e

iωi t ξ ∗
i . Then, using the chain rule to

introduce the functional derivative,

〈ξ |ĉi |ψtot(t)〉 = ∂l

∂ξ ∗
i

ψt (ξ
∗) (B3)

=
∫

ds
∂ξ ∗

s

∂ξ ∗
i

δl

δξ ∗
s

ψt (ξ
∗). (B4)

Finally, we have

∂

∂t
ψt (ξ

∗) =
[
−iĤs + L̂ξ ∗

t − L̂†
∫

dsK(t,s)
δl

δξ ∗
s

]
ψt (ξ

∗),

(B5)
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where K(t,s) = ∑
i |gi |2e−iωi (t−s). This is just the final QSD

equation.

APPENDIX C: EQUATION FOR Q̂ OPERATOR

First, consider the following two commutation relations:

δl

δξ ∗
s

[ξ ∗
t ψt (ξ

∗)] = −ξ ∗
t

δl

δξ ∗
s

ψt (ξ
∗) (C1)

and

δl

δξ ∗
s

[Q̄ψt (ξ
∗)] = Q̄(−ξ ∗)Q̂ψt (ξ

∗) +
(

δl

δξ ∗
s

Q̄

)
ψt (ξ

∗), (C2)

for fixed order of Q̂ operator. One can prove them easily.
With Eqs. (C1) and (C2), we can apply the consistency

condition to ψt (ξ ∗):

δl

δξ ∗
s

∂

∂t
ψt (ξ

∗) = ∂

∂t

δl

δξ ∗
s

ψt (ξ
∗). (C3)

The left-hand side is

LHS =
[

− iĤsQ̂ − L̂ξ ∗
t Q̂ − L̂†

(
δ

δξ ∗
s

Q̄

)

− L̂†Q̄(−ξ ∗)Q̂

]
ψt (ξ

∗). (C4)

On the other hand, the right-hand side becomes

RHS = ∂

∂t
(Q̂)ψt (ξ

∗) + [−iQ̂Ĥs + Q̂L̂ξ ∗
t − Q̂L̂†Q̄]ψt (ξ

∗).

(C5)

Equating the LHS and RHS, we have

∂

∂t
Q̂ = −i[Ĥs,Q̂] − {L̂ξ ∗

t ,Q̂} − L̂†Q̄(−ξ ∗)Q̂

+ Q̂L̂†Q̄ − L̂† δl

δξ ∗
s

Q̄. (C6)

APPENDIX D: PROOF OF NOVIKOV-TYPE THEOREM
FOR THE GRASSMANN NOISE

In this section, we provide a proof of a Novikov-type
theorem for a Grassmann Gaussian noise, which plays a crucial
role in deriving the exact or approximate master equations from
the corresponding stochastic Schrödinger equations.

Theorem. Suppose that ξt ,ξ
∗
t are Grassmann-type Gaussian

processes and P̂t is the stochastic density operator. Then we
have the following two identities:

〈P̂t ξt 〉s = −〈Q̄(ξ ∗)P̂t 〉s , (D1)

〈ξ ∗
t P̂t 〉s = 〈P̂t Q̄

†(−ξ )〉s . (D2)

Proof. 〈P̂t ξt 〉s =
∫ ∏

i
dξ ∗

i dξie
− ∑

i ξ∗
i ξi

∣∣ψ(ξ ∗)
〉 〈ψ(−ξ )|

(
i
∑

j

gj e
−iωj t ξj

)

= −i
∑

j

gj e
−iωj t

∫ ∏
i
dξ ∗

i dξi

[ ∣∣ψ(ξ ∗)
〉 〈ψ(−ξ )| ∂l

∂ξ ∗
j

(
e− ∑

i ξ∗
i ξi

)]

= i
∑

j

gj e
−iωj t

∫ ∏
i
dξ ∗

i dξi

(
∂l

∂(−ξ ∗
j )

|ψ(ξ ∗)〉 〈ψ(−ξ )|
)

e− ∑
i ξ∗

i ξi

= −i
∑

j

gj e
−iωj t

∫ ∏
i
dξ ∗

i dξi

[
e− ∑

i ξ∗
i ξi

(∫
ds

∂ξ ∗
s

∂ξ ∗
j

δl

δξ ∗
s

)
P̂t

]

= −
∫

ds
∑

j

∣∣gj

∣∣2
e−iωj (t−s)

∫ ∏
i
dξ ∗

i dξi

[
e− ∑

i ξ∗
i ξi

δl

δξ ∗
s

P̂t

]

= −
∫ ∏

i
dξ ∗

i dξie
− ∑

i ξ∗
i ξi

∫
dsK(t,s)Q̂(t,s,ξ ∗)P̂t = −〈Q̄P̂t 〉s . (D3)

Similarly, we can prove 〈ξ ∗
t P̂t 〉s = 〈P̂t Q̄

†(−ξ )〉s . This concludes our proof of the Novikov-type theorem for the Grassmann
Gaussian noise.

APPENDIX E: EXACT Q̂ OPERATOR FOR THE TWO-QUBIT MODEL

For the coupled two-qubit model, the exact Q̂ operator takes the following form:

Q̂(t,s,ξ ∗) = f1(t,s)Q̂1 + f2(t,s)Q̂2 + f3(t,s)Q̂3 + f4(t,s)Q̂4 + i

∫ t

0
ds ′f5(t,s,s ′)ξ ∗

s ′Q̂5, (E1)

where the basis operators are given by Q̂1 = σ̂ A
− , Q̂2 = σ̂ B

− , Q̂3 = σ̂ A
z σ̂ B

− ,Q̂4 = σ̂ B
z σ̂ A

− , and Q̂5 = 2σ̂ A
− σ̂ B

− and fj (j = 1,2,3,4,5)
are some time-dependent coefficients. By substituting Eq. (E1) into Eq. (11), we obtain a set of partial differential equations
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governing the coefficients of the Q̂ operator:

∂

∂t
f1(t,s) = +2iωAf1 + κAF1f1 + κBF3f1 − iJxyf3 − κBF1f3 + κBF4f3 + 2iJzf4 + κAF4f4 + κBF3f4 − iκBF5,

∂

∂t
f2(t,s) = +2iωBf2 + κAF4f2 + κBF2f2 + 2iJzf3 + κAF4f3 + κBF3f3 − iJxyf4 − κAF2f4 + κAF3f4 − iκAF5,

∂

∂t
f3(t,s) = −iJxyf1 − κAF2f1 + κAF3f1 + 2iJzf2 + κAF4f2 + κBF3f2 + 2iωBf3 + κAF4f3 + κBF2f3 − iκAF5,

∂

∂t
f4(t,s) = +2iJzf1 + κAF4f1 + κBF3f1 − iJxyf2 − κBF1f2 + κBF4f2 + 2iωAf4 + κAF1f4 + κBF3f4 − iκBF5,

∂

∂t
f5(t,s,s ′) = +κAF5f1 + κBF5f2 − κBF5f3 − κAF5f4 + 2iωAf5 + 2iωBf5 + κAF1f5 + κAF4f5 + κBF2f5 + κBF3f5,

(E2)

where Fj (t) = ∫ t

0 dsK(t,s)fj (t,s) (j = 1,2,3,4) and
F5(t,s ′) = ∫ t

0 dsK(t,s)f5(t,s,s ′). The boundary conditions of
the equations above are given by

f1(t,s = t) = κA, f2(t,s = t) = κB,

f3(t,s = t) = 0, f4(t,s = t) = 0, (E3)

f5(t,s = t,s ′) = 0,

f5(t,s,s ′ = t) = i[κAf2(t,s) + κBf1(t,s)].

APPENDIX F: DIFFERENTIAL EQUATIONS FOR
COEFFICIENTS OF BOSONIC Ô IN EXAMPLE 4

The coefficients in Eq. (85) satisfy the following differential
equations:

∂

∂t
x1(t,s) = iωax1 + x1X1 + x2X1, (F1)

∂

∂t
x2(t,s) = iωbx2 + x1X2 + x2X2, (F2)

∂

∂t
x3(t,s) = iωbx3 − x4X2 + x3X2 + x2X3

+ x3X3 − x3X4 − x2X4 − iX5, (F3)

∂

∂t
x4(t,s) = iωax4 + x4X1 + x1X4 − x1X3

− x3X1 + x4X3 − x4X4 − iX5, (F4)

∂

∂t
x5(t,s,s ′) = iωax5 + iωbx5 + x5X1 + x5X2

+ x5X3 − x5X4 + x1X5 + x2X5, (F5)

with the initial conditions

x1(t,s = t) = 1, (F6)

x2(t,s = t) = 1, (F7)

x3(t,s = t) = 0, (F8)

x4(t,s = t) = 0, (F9)

x5(t,s = t,s ′) = 0, (F10)

ix5(t,s,s ′ = t) = 2(x2 − x1) + x3 + x4, (F11)

and

Xj (t) =
∫ t

0
K(t,s)xj (t,s)ds (j = 1 to 4), (F12)

X5(t,s ′) =
∫ t

0
K(t,s)x5(t,s,s ′)ds. (F13)
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