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The dynamics of driven binary oscillators in the PT -symmetric harmonic potential is investigated and the
corresponding analytical solutions of the time-dependent wave function are obtained. Our numerical results
exhibit that there is the population oscillation, which is different from the case of normal dissipation or gain
systems. After studying the motion of driven harmonic oscillators which are coupled via the E

⊗
e Jahn-Teller

effect in the Hermitian potential, we find that the dynamics behavior of these two systems is similar under certain
conditions. As we know, the oscillation behavior is induced by the exchange interaction in the oscillator system
with Jahn-Teller coupling. Our study shows that the binary quantum systems with PT -symmetric Hamiltonians
may be used to approximately describe the dynamics of coupling quantum systems and the quantum transport
process in few-particle or other systems.
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I. INTRODUCTION

Since the pioneering work of Bender et al. [1], the theory
of PT -symmetric quantum mechanics has been extensively
studied. In such quantum systems, the non-Hermitian Hamil-
tonians are assumed to be invariant under simultaneous parity
transform P and time-reversal T , which gives rise to real
eigenvalues [2]. Some significant features of PT -symmetric
systems have been discovered [3–8]. Optical systems in which
the Hermiticity can be broken by arranging the refractive index
and gain or loss properly have important potential applications
in constructing and simulating PT -symmetric systems [3,4].
In addition to their value in theoretical research, such PT -
symmetric optical systems have important applications in chip-
scale optical isolators [9]. We found that current studies are
mainly concentrated on single-particle systems. Many-particle
systems offer a number of new and challenging open problems.
In our paper, we shall investigate, therefore, an elementary
solvable model of the dynamics of two decoupled particles
moving in two mutually conjugate PT -symmetric potentials.

As we know, the model of parametrically driven harmonic
oscillators provides an opportunity to study the dynamics
of a freely oscillating system when driven by an external
force (field). Parametrically driven harmonic oscillators have
become one of the most important physical models [10].
This is because of the long list of applications in modeling
many physical systems, whether in classical mechanics or
in quantum mechanics, such as circuits and idealized spring
systems, quantum Brownian motion, molecular or lattice
vibrations, atomic systems interacting with a light field, the
motion of ions in a Paul trap, and so on. Actually, large numbers
of physical situations can be reduced to it either exactly or
approximately. Such a model, although it is simple, can be
used to interpret the fundamental features of the dynamical
behavior. To study the property of a two-particle system with
PT -symmetric Hamiltonians, the model of parametrically
driven oscillators in a harmonic potential is adopted as a
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working example. We analyze the dynamics behavior of the
two oscillators driven by an external field in thePT -symmetric
harmonic potential. Nonconservation and oscillation behavior
of the probability have been observed and relate with the
form of applied fields. In the meantime, we investigate the
motion of the harmonic oscillators coupled via the E

⊗
e Jahn-

Teller effect and find that the population will be oscillating
owing to the interaction of particle exchange. By comparing
with the properties of these two systems, we find that the
dynamics behavior of harmonic oscillators in the two different
systems above is strikingly similar under some conditions,
which means that the system with PT -symmetric potential is
in profound association with the one with Hermitian potential.
Our results show that PT -symmetric quantum theory has a
potential application in the study of the dynamics of coupling
quantum systems and the quantum transport process in few-
particle or other systems.

The content of the paper is organized as follows: We first
derive the analytic solutions of the driven oscillators in the
PT -symmetric potential in Sec. II. In Sec. III, the dynamics
of harmonic oscillators coupled via the Jahn-Teller effect is
researched and is compared with the results in the former
model. We find that the dynamical behaviors of two different
systems are similar under some conditions. The reason for the
similar behaviors is explained in Sec IV. At the same time,
we show how to realize our PT -symmetric systems in this
section. Finally, we present a brief summation. Some detailed
derivations are appended.

II. DRIVEN OSCILLATORS IN PT -SYMMETRIC
POTENTIAL

In order to clarify the relationship of these two systems,
we begin our analysis by considering the dynamics of the
driven oscillators in the PT -symmetric harmonic potential.
For the system that we considered here, the equations of motion
of wave functions �a and �b corresponding to harmonic
oscillators a and b take the following forms [11] (h̄ = 1 and
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the masses of the oscillators are all unitary):

i
∂

∂t
�a,b = [Ha0,b0 − x̂f (t)]�a,b,

(1)

Ha0,b0 = p̂2

2
+ ω2

2
x̂2 ± igx̂ − g2

2ω2
.

Here, Ha0,b0 denotes the Hamiltonians of the two oscillators
a and b in the PT -symmetric harmonic potential, which
addresses the unperturbed part of the system Hamiltonian.
−x̂f (t) represents the dipole interaction part. ω is the
eigenfrequency of the harmonic oscillator, g is a factor that
denotes the magnitude of the non-Hermitian term, and f (t) is
the time-dependent function of the external field. In writing the
abovePT -symmetric Hamiltonians, we have assumed that the
trapped potential of these two harmonic oscillators is chirally
symmetric, namely, Hb0 = PHa0. We can see that Ha0,b0 is
PT symmetric, which exhibits real spectrum. It is straight-
forwardly calculated that the spectrum is En = (n + 1/2)ω, in
which the corresponding eigenfunction is �̃a,b = Hn[

√
ω(x ±

ig

ω2 )] exp[−ω(x ± ig

ω2 )2/2] = exp(∓ g

ω2 p̂)|n〉. Here “plus” and
“minus” are for the harmonic oscillators a and b, respec-
tively. Hn is the nth-order Hermite polynomial and |n〉 =
Hn[

√
ωx] exp[−ωx2/2] denotes the wave function of the

number state of the Hermitian harmonic oscillator. The
operator S(± ig

ω2 ) = exp(∓ g

ω2 p̂) is nonunitary, which displaces
the wave packet in the position of the x direction by the
amount ± ig

ω2 . It is interesting that eigenfunctions �̃a,b with
n = 0 correspond to the wave functions of coherent states in
“x” space.

These equations of motion in Eq. (1) can be solved exactly
by the method introduced in Ref. [12]. If the harmonic
oscillators are initially in the eigenstates with energy En, then
the exact solutions for wave function �a and �b with respect
to time can be worked out to be

�n
a,b(x,t) = Cn exp

[
−ω

(
x ± ig

ω2 − β
)2

2

]

× exp

{
i

[
∂β

∂t

(
x ± ig

ω2
− β

)

+
∫ t

0
dt ′L′

a,b(t ′)
]}

,

∂2

∂t2
β + ω2β = f (t), Cn = C0Hn

[√
ω

(
x ± ig

ω2
− β

)]
,

L′
a,b = 1

2

(
∂β

∂t

)2

− ω2

2
β2 + f (t)

(
β ∓ ig

ω2

)
, (2)

where ∂β

∂t
(0) = β(0) = f (0) = 0, and C0 is a normalization

constant at t = 0. The detailed derivation is shown in the
AppendixA. It should be noticed here that the initial wave
function is normalized in the conventional Dirac way using the
standard Hilbert-space inner product, 〈�a,b(x,0)|�a,b(x,0)〉,
instead of the new inner product for the PT -symmetric quan-
tum theory [13]. Inspecting the solution given by expressions
(2), we can see that the equation obeyed by β describes the
motion of a classical harmonic oscillator driven by an external
field f (t). If g is equal to zero, then L′

a,b corresponds to the
classical Lagrangian of a driven harmonic oscillator. By further
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FIG. 1. (Color online) Occupation probability with respect to
time. (a) Solutions of Eq. (1) with the initial state �a,b(x,0) =
( ω

π
)1/4 exp[− g2

2ω3 ] exp[−ω(x ± ig

ω2 )2/2]; (b) solutions of Eq. (5) with
the initial state �a,b(x,0) = ( ω

π
)1/4 exp[−ωx2/2]. The parameters for

(a) and (b) are ω = 1, f (t) = sin(3t), and g = g′ = 0.03.

calculating, it is easy to achieve the occupation probability of
these two harmonic oscillators, which is expressed as

Pa,b =
∫ +∞

−∞
|�a,b(x,t)|2dx = exp

[
±2g

∫ t

0
β(t ′)dt ′

]
. (3)

Such a definition is convenient to experimentally verify
if one uses an optical system to simulate the dynamics of
our model in Eq. (1), which corresponds to the transverse
intensity of the laser beam. The details of the optical
simulation system will be discussed in Sec. IV. The above
expression shows that the occupation probability Pa,b becomes
nonconservative if f (t) �= 0. In such a case, the Hamiltonians
are with broken PT symmetry. Recently, a similar feature
has been reported in an optical structure with PT -symmetry
breaking [14]. The dissipation and gain behavior was shown
in Figs. 1(a) and 2(a). The behavior can be distinguished as
follows. Utilizing the displacement operator S(± ig

ω2 ), we get a
transformed Hamiltonian H̄a0,b0 = S†(± ig

ω2 )Ha0,b0S(± ig

ω2 ) =
p̂2

2 + ω2

2 x̂2 − x̂f (t) ± igf (t) = H̄0(t) ± igf (t) with a Hermi-
tian part H̄0(t). The corresponding instantaneous evolution
operator is thus exp[−iH̄0(t)dt ± gf (t)dt]. It is easily seen
that the real part ±g

∫ t

0 f (t ′)dt ′ in the instantaneous evolution
operator directly brings on occupation probability with expo-
nential increase or exponential decline. Thus, the oscillation
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FIG. 2. (Color online) Occupation probability with respect to
time. Same as Fig. 1, but for g = g′ = 0.3.
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behavior of the occupation probability may be understood.
In addition, the nonunitary operator S(± ig

ω2 ) is also a key
ingredient of the oscillation behaviors of the occupation
probability because the normalization constant in Eq. (2) is
related to the displacement parameter g. This is also consistent
with the fact that the occupation probability of the system
with a non-Hermitian Hamiltonian is nonconservative. The
increase and decline behavior depends on the form of f (t),
which differs from the normal case in amplification and loss
media. Figures 1(a) and 2(a) depict the value of occupation
probability Pa,b at time t in different conditions. These figures
show that the occupation probability is oscillating, which is
greatly different from the ordinary decline (increase) behavior
of dissipative (gain) systems. It is the same as the existence
of the exchange of occupation probability between quantum
oscillators and “surroundings” in our case. ThePT -symmetric
system under perturbation should be treated as a pseudoclosed
system. The more interesting thing is that the total occupation
probability Pa + Pb looks like conservation when g is small
[shown in Fig. 1(a)]. In other words, such binary quantum
systems with chirally symmetric Hamiltonians can be used
to approximatively describe the system with a conservation
particle in some conditions. A further discussion will be given
in Sec. IV.

For optical and atomic physics, the dipole moment is
an important parameter. Here the same concept is adopted.
The dipole moment of the harmonic oscillator is defined
as D = ∫ +∞

−∞ x|�(x,t)|2dx, which expresses the location of
the centroid of the harmonic oscillator. By substituting the
expression for wave function �a,b in Eq. (2) into that definition,
the analytic expressions of the dipole moment for the harmonic
oscillator a and b at time t are obtained:

Da,b = β exp

[
±2g

∫ t

0
β(t ′)dt ′

]
. (4)

As an illustration, the dipole moment with respect to time t

is depicted in Figs. 3(a) and 4(a), which clearly indicates that
the non-Hermitian term also trivially affects the instantaneous
dipole moment if g is small enough. Hereto, we have studied
the dynamics of driven harmonic oscillators in the PT -
symmetric potential. As a consequence, the non-Hermitian
terms induce an exchange of quantized particles and impact
the instantaneous location of the centroid of the harmonic
oscillator. On the other hand, we see that the total of occupation
probability Pa + Pb can be considered approximatively as
conservation under certain conditions.

III. HARMONIC OSCILLATORS COUPLED VIA
JAHN-TELLER EFFECT

Subsequently, let us discuss the field-driven dynamics of
two harmonic oscillators coupled via the Jahn-Teller effect in
a Hermitian potential. The Jahn-Teller effect is usually used
to describe the interaction of lattice vibrational modes with
degenerate electronic states [15]. This effect is indispensable
for a proper understanding of the physics of a variety of
molecular systems, such as paramagnetic ions in nonmag-
netic crystals [15], superconductivity in the fullerides [16],
structural phase transitions [17], and so on. The motions of
the harmonic oscillators coupled via the E

⊗
e Jahn-Teller
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FIG. 3. (Color online) Dipole moment with respect to time. (a)
and (b) are the solutions of Eqs. (1) and (5), respectively. The
parameters are the same as Fig. 1.

effect and driven by an external field obey the following
equations [15,18]:

i
∂

∂t
�a =

[
−1

2

∂2

∂x2
+ ω2

2
x2 − xf (t)

]
�a + ig′x�b,

(5)

i
∂

∂t
�b =

[
−1

2

∂2

∂x2
+ ω2

2
x2 − xf (t)

]
�b − ig′x�a.

The terms of spatial-dependent coupling in the right-hand side
of the above equations are caused by the E

⊗
e Jahn-Teller

effect. The factor g′ has a clear physical meaning in Eq. (5),
which describes the strength of coupling. As a matter of
fact, the similar spatial-dependent coupling can exist in other
systems, such as in a Bose-Einstein condensate [19] and in
a superfluid [20]. It is clear that for this coupling system via
the E

⊗
e Jahn-Teller effect, the total occupation probability

P ′
a + P ′

b is conservational [here, P ′
a,b = ∫ +∞

−∞ |�a,b(x,t)|2dx].
Inspecting Eqs. (1) and (5), the non-Hermitian terms in Eq. (1)
are replaced just by the terms of the Jahn-Teller coupling. The
oscillatory behavior of the occupation probability is a prevalent
speciality for coupled quantum systems, which is similar to the
former system. The results of numerical investigation of this
expected phenomenon are illustrated in Figs. 1(b) and 2(b). In
addition, we can analogously define the dipole moment of the
above system as D′

a,b = ∫ +∞
−∞ x|�a,b(x,t)|2dx, for which the
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FIG. 4. (Color online) Dipole moment with respect to time. Same
as Fig. 3, but for g = g′ = 0.3.
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numerical results are given in Figs. 3(b) and 4(b). Observing
Figs. 1 and 3, we can conclude that the systems described
by Eqs. (1) and (5) have strikingly similar dynamics behavior
when the factors g and g′ are small. Relying on these results,
the factor g in Eq. (1) can be considered as the coupling
strength of the harmonic-oscillator system and “surroundings”
in a certain sense. In fact, expression (3) clearly indicates that g
is related to the dissipation (gain) coefficient of the occupation
probability of the harmonic oscillator in the PT -symmetric
potential.

IV. ANALYSIS

One naturally asks why the dynamics behavior of these two
different systems is similar in some cases. In order to give a
physical interpretation, we introduce the Lagrangian density
of Eq. (5), which is given by

L =
∑
i=a,b

[
i(�i�

∗
i,t − �∗

i �i,t ) + 1

2
|�i,x |2

]

+
∑
i=a,b

{[
ω2

2
x2 − xf (t)

]
|�i |2

}

+ igx(�∗
a�b − �a�

∗
b ). (6)

Here, �i,t = ∂�i

∂t
and �i,x = ∂�i

∂x
. The crossover term

igx(�∗
a�b − �a�

∗
b ) is used to describe the particle exchange

between waves �a and �b. At the same time, it is easy to find
that this crossover term is Hermitian, which guarantees the
conservation of the total probability. When a time-dependent
driven field is applied, the balance of the population distribu-
tions between these two waves will be broken. It is the reason
for the oscillation behavior. Considering this equation with the
corresponding Lagrange equation,

∂

∂t

∂L
∂�∗

i,t

+ ∂

∂x

∂L
∂�∗

i,x

− ∂L
∂�∗

i

= 0, (7)

one obtains Eq. (5). In the same way, the Lagrangian density,
which corresponds to the PT -symmetric systems that we
considered in the former, is expressed as

L′ =
∑
i=a,b

[
i(�i�

∗
i,t − �∗

i �i,t ) + 1

2
|�i,x |2

]

+
∑
i=a,b

{[
ω2

2
x2 − xf (t) − g

2ω2

]
|�i |2

}

+ igx(|�a|2 − |�b|2). (8)

Inspecting Eqs. (1) and (5), there is a small difference between
these two expressions. It is obvious that the Lagrange density
(8) is non-Hermitian. In other words, the total probability of
such a system is nonconservative. The term igx in Eq. (1)
could be considered as a direct-current field with an imag-
inary amplitude. The wave functions then are approximated
to be �a,b(x,t + δt) = exp{[±gx + ixf (t)]δt} exp[−i(p2

2 +
ω2

2 x2 − g

2ω2 )δt]�a,b(x,t) after a short-time evolution. By
substituting the new evolute function �a,b(t + δt) into the
last term in Eq. (8), we can obtain the imaginary part of the
Lagrange density, gx[e2gxδt |�a(t)|2 − e−2gxδt |�b(t)|2]. This
term is equal to zero only at some special moments, such as at

the initial time. It means the nonconservation of the total pop-
ulation with time evolution. When the non-Hermitian factor g

and the driven field f (t) are small enough, this imaginary part
can be approximated to zero. This case corresponds to a system
with particle conservation. In addition, the wave packets can be
assumed to move as a whole and the position shift is set to be 	

when f (t) is small. The absolute values of the wave functions
then come to be |�a,b(x,t + δt)| = exp(±gxδt)|�a,b(x +
	,t)|. Further, we get the population Pa,b(t + δt) =
exp(∓2g	δt)

∫
dx exp(±2gxδt)|�a,b(x,t)|2. From this ex-

pression, we can see that the signs of 	 and g determine
the gain or loss property of the population. If the driven field
has the form sin(at), then the shift 	 will oscillate around zero
point. So the oscillation behavior of population |�a,b| appears.
As analyzed above, the oscillator models in thePT -symmetric
harmonic potential in our case may be looked upon as the
approximate model of harmonic oscillators coupled via the
Jahn-Teller effect in a Hermitian potential. Figures 1 and 3
indicate that such an approximation is quite effective for the
case of weak coupling. However, with the increasing of g,
the non-Hermitian term will become larger, which leads to
the different dynamics behavior [see Figs. 2(b) and 4(b)].
To sum up, the system with the PT -symmetric Hamiltonian
is associated with the coupling system. The former can be
considered as the approximate model of the latter under
certain conditions, which provides a potential application of
PT -symmetric Hamiltonians.

In the following, we will demonstrate that the dynamics
of quantum systems with PT symmetry may be simulated
by optical beam propagation in complex optical potentials
in which the special distributions of the refractive index
and gain or loss are properly arranged [21]. It is helpful to
carry out the corresponding experimental study. The complex
refractive-index distribution always can be expressed as
n0 + nr (X,Z) + ini(X,Z) with n0 
 |nr,i |. Here, n0 and nr

present the background refractive index and the perturbation
of the refractive index, respectively, and ni corresponds
to the gain or loss phenomena. Assuming that the optical
beam propagates along the Z axis, and X is the direction
of transverse diffraction, as well as introducing the follow-
ing scaled quantities: x = X/x0, z = Z/(k0x

2
0 ) with wave

number k0 = n0ω0/c, U (x,z) = x2
0k

2
0nr (x,z)/n0, V (x,z) =

x2
0k2

0ni(x,z)/n0, the resulting normalized equation of diffrac-
tion is i ∂

∂z
� = − 1

2
∂2

∂x2 � − U (x)� − iV (x,z)�. Here, x0 is an
arbitrary scaling factor and � means the profile of the laser
beam in the x-z (X-Z) plane. If U (x,z) = ω2

2 x2 − x̂f (z) − g2

2ω2

and V (x,z) = ±gx, then the above equation is analogous to
the time-dependent Schrödinger equation (1) in the former. So
the variable novel behaviors discussed in the former can be
verified with the help of such an optical structure.

V. CONCLUSIONS

In summary, we investigated the dynamics of driven
binary oscillators in the PT -symmetric harmonic potential.
There is the oscillation behavior of the population, which
is different from the dissipation or gain behavior in normal
systems. At the same time, we studied the motion of the
driven harmonic oscillators coupled via the E

⊗
e Jahn-Teller
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effect and observed that the population distribution was also
oscillating owing to the interaction of particle exchange. By
comparing the dynamics of these two systems, we found that
the system with PT -symmetric potential may be considered
as the approximation of the coupled system with a Hermitian
potential under certain conditions, and the corresponding
explanation was given. In order to carry out the experimental
work, we proposed an alternative experiment scheme to
simulate such a PT -symmetric quantum system.
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APPENDIX: DERIVATION OF THE EXPRESSIONS
IN SEC. II

The Schrödinger equation which the harmonic oscillator a

obeys is written as the following expression:

i
∂

∂t
�a =

[
p̂2

2
+ ω2

2
x̂2 − (f (t) − ig)x̂ − g2

2ω2

]
�a. (A1)

By introducing the shifted coordinate y = x − ξ (t) and sub-
stituting that into Eq. (A1), we can get

i
∂

∂t
�a(y,t) =

[
i
∂ξ

∂t

∂

∂y
− 1

2

∂2

∂y2

]
�a(y,t)

+
[
ω2

2
(y + ξ )2 − (y + ξ )(f (z) − ig)

]
�a(y,t).

(A2)

We then employ the transform �a(y,t) =
exp[i ∂ξ

∂t
y]�a(y,z) with ξ (t) obeying the equation of

motion:

∂2

∂t2
ξ + ω2ξ = f (t) − ig.

It yields

i
∂

∂t
�(y,t) =

[
−1

2

∂2

∂y2
+ ω2

2
y2 − L′

]
�(y,z).

Here, L′ = 1
2 ( ∂ξ

∂t
)2 − ω2

2 ξ 2 + (f (t) − ig)ξ .
In order to reduce the Schrödinger equation above, the

transformation �a(y,t) = exp[i
∫ t

0 dt ′L′(t ′)]�(y,t) is used.
We then obtain the Schrödinger equation of the harmonic
oscillator,

i
∂

∂t
�a(y,t) =

[
−1

2

∂2

∂y2
+ ω2

2
y2

]
�(y,t).

The eigenfunctions can be solved and written as

�n(y) =
√

1

2nn!

√
ω

π
exp

(
−ωy2

2

)
Hn(

√
ωy).

The corresponding eigenvalue is En = ω(n + 1
2 ).

If the initial distribution of the wave function is equal to the
eigenfunction �n(y), then the solution for Eq. (A1) is of the
form

�a(x,t) =
√

1

2nn!

(
ω

π

)1/4

Hn[
√

ω(x − ξ )]

× exp

[
−ω

2
(x − ξ )2 − ∂ζ

∂t
(x − ξ )

]

× exp

[
−iω(n + 1/2)t − i

∫ t

0
dt ′L′

a(t ′)
]

.

By utilizing the shift transform ξ = β − ig

ω2 , we will obtain the
final solution of Eq. (1),

�n
a(x,t) = Cn exp

[
−ω

(
x + ig

ω2 − β
)2

2

]

× exp

{
i

[
∂β

∂t

(
x + ig

ω2
− β

)

+
∫ t

0
dt ′L′

a,b(t ′)
]}

,

∂2

∂t2
β + ω2β = f (t), Cn = C0Hn

[√
ω

(
x + ig

ω2
− β

)]
,

L′
a = 1

2

(
∂β

∂t

)2

− ω2

2
β2 + f (t)

(
β + ig

ω2

)
, (A3)

where C0 is the normalized constant when t = 0. It should
be noted that the value of C0 depends on the label n. At the
same time, the initial condition to solve the derivative equation
obeyed by β is ∂β

∂t
(0) = β(0) = f (0) = 0.

When the initial wave function of harmonic oscillator
a is �0(x) = ( ω

π
)1/4 exp(−ωy2

2 − igx

ω
) and the corresponding

energy is E0 = ω/2, the solution has the form

�0
a(x,t) = C exp

[
− ω(x + ig

ω2 − β)2

2

]

× exp

{
i

[
∂β

∂t

(
x + ig

ω2
− β

)
+

∫ t

0
dt ′L′

a(t ′)
]}

.

(A4)

Here, C = ( ω
π

)1/4 exp[− g2

2ω3 ]. It is straightforward to obtain
the occupation probability Pa of harmonic oscillator a with
respect to time with the help of Eq. (A4), which is

Pa =
∫ +∞

−∞
�0

a(x,t)�0∗
a (x,t)dx

= exp

{
2g

ω2

[∫ t

0
f (t ′)dt − ∂β

∂t

]}

= exp

[
2g

∫ t

0
β(t ′)dt ′

]
. (A5)
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In the derivation above, the equation of motion of β and the
corresponding initial conditions are used. We then achieve the
dipole moment Da = β exp[2g

∫ t

0 β(t ′)dt ′] in the same way.

It is straightforward to get the wave function �b, probability
Pb, and dipole momentum Db of the harmonic oscillator b by
changing the sign of g.
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