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Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems
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Decoherence-free subspaces (DFSs) provide a strategy for protecting the dynamics of an open system from
decoherence induced by the system-environment interaction. So far, DFSs have been primarily studied in the
framework of Markovian master equations. In this work, we study decoherence-free (DF) states in the general
setting of a non-Markovian fermionic environment. We identify the DF states by diagonalizing the nonunitary
evolution operator for a two-level fermionic system attached to an electron reservoir. By solving the exact master
equation, we show that DF states can be stabilized dynamically.
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I. INTRODUCTION

Quantum decoherence is a fundamental issue in open
quantum systems and is also the most important obstacle to the
realization of a large-scale quantum computer. Unavoidable
interactions with noisy environments typically render initially
prepared pure states mixed very rapidly. Nonetheless, a
subspace of Hilbert space can exist where a system undergoes
a unitary evolution irrespective of the interaction with its
environment. Such a decoherence-free subspace (DFS) can
in principle provide a theoretically perfect strategy to protect
a system against quantum decoherence. The possibility of
DFSs was already pointed out by Zurek [1], who observed
that if the interaction Hamiltonian of the system with the
environment has a degenerate eigenvalue, then superpositions
of the corresponding eigenstates remain coherent. Generally,
degenerate eigenvalues can notably arise if the coupling has
a certain symmetry, and the resulting protection against deco-
herence has been observed early in the context of rotational
tunneling [2–9]. In the late 1990s, DFSs were rediscovered
independently by several groups [10–15]. The theory of DFSs
has already been extensively discussed in the context of the
symmetries of the Hamiltonian [12,13], semigroup dynamics
in the language of a quantum master equation [14–19], and the
operator sum representation based on Kraus operators [20].
Meanwhile, the existence of DFSs has also been verified
experimentally with polarization-entangled photons [21–23],
trapped ions [24,25], nuclear spins using nuclear magnetic res-
onance techniques [26–29], and neutron interferometry [30].
These experiments show that encoding quantum information in
a DFS can significantly prolong the storage time. Therefore,
DFSs have attracted wide interest for applications in fault-
tolerant quantum computation [17,31,33–38], long distance
quantum communication [39], quantum key distribution [40],
quantum teleportation [41], quantum metrology [42], robust
quantum repeaters [43,44], and coherent quantum control
[45–47]. The requirement of symmetry in the coupling to the
environment is not always necessary [48]. Recently, a new
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Heisenberg-limited metrology protocol was proposed which
exploits the evolution of a DFS due to a collective change of
the couplings to the environment [49].

According to Refs. [14,16], a DFS in a system ruled by
Markovian dynamics is defined formally by the vanishing of
the nonunitary Lindblad (decohering) part in the Markovian
master equation [50]; see Eq. (3). This defines a Hilbert
subspace in which the dynamics is locally (in time) unitary.
Even so, decoherence can still arise if the Hamiltonian of
the system drives a state out of the DFS. This happens on
the time scale of the system Hamiltonian, which is typically
much longer than the microscopic decoherence times [32].
However, leaking out of the DFS can be suppressed by
coupling the system relatively strongly to the environment
[33,51]. An alternative definition of a DFS in the Markovian
context has been given in Ref. [18]. These authors not only
derived necessary and sufficient conditions for the vanishing
of the nonunitary part of the master equation [see Eq. (4)],
but also found criteria for globally DF states, for which the
dynamics resulting from the full master equation (including
the Hamiltonian part) remains unitary.

The extension of such DFS criterion to non-Markovian
dynamics is not straightforward. The general non-Markovian
master equation of the Nakajima-Zwanzig form [52] involves
a complicated time-nonlocal memory integrand in the nonuni-
tary terms. However, the exact master equations that describe
the general non-Markovian dynamics have been recently
developed for some classes of open quantum systems, in-
cluding quantum Brownian motion [53–55], entangled cavities
with vacuum fluctuations [56], coupled harmonic oscillators
[57,58], quantum dot electronic systems in nanosturctures
[59,60], various nanodevices with time-dependent external
control fields [61], nanocavity systems including initial
system-reservoir correlations [62], and photonic networks
imbedded in photonic crystals [63]. These exact master equa-
tions can all have the nonunitary Lindblad form, but the de-
coherence rates are time dependent and may become negative
during the time evolution. This is different from the Markovian
case, where the decoherence rates are always positive. Since
the fact that all rates have the same sign plays an essential role
in showing the necessity of the DFS criterion, other possibil-
ities of creating a DF state may arise in non-Markovian cases.
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In this work, we study the dynamics of an open fermionic
system by solving the exact non-Markovian fermionic master
equation [59–61]. We find pure DF states which arise from
the fact that certain time-dependent decoherence rates in
the master equation switch themselves off after the system
reaches a stable state. We call these DF states dynamically
stabilized DF states. They are generated in particular for
non-Markovian environments. The mechanism of how the
DF states arise is therefore very different from the known
mechanism obtained from the Markovian master equation.
For a two-level fermionic system coupled to an electron
reservoir, we find two dynamically stabilized DF states that
possess full quantum coherence between the singly occu-
pied states of the original two levels. Practical applications
of the dynamically stabilized DF states in electron spin
and charge qubits for quantum information processing are
expected.

The paper is organized as follows. In Sec. II, we briefly
review the general criterion of DFSs based on the Markovian
master equation formalism. In Sec. III, we discuss the
dynamics of electron systems in nanostructures via the exact
master equation. In particular, we consider a two-level electron
system whose two levels are coupled identically to an electron
reservoir. We find that the system Hilbert space can be split
into two closed subspaces. Then in Sec. IV, in terms of
the full Lindblad generator, we discuss all the possibilities
of how DF states can arise in the system. We find that the
vanishing of one of the two decoherence rates in the problem
can give rise to dynamically stabilized DF states. With only
one decoherence term in the master equation remaining, the
well-known criterion of DFSs for Markovian decoherence
still provides a necessary and sufficient condition for DF
states. In Sec. V, we investigate under what conditions the
dynamically stabilized DF states can be reached by the same
dissipative process that allows their existence. We find that
the initial state and the details of the dynamics given by
time-dependent nonequilibrium Green’s functions determine
which DF state can be reached. In Sec. VI, we discuss
the generation of DF states in the Born-Markovian (BM)
dynamics within our exact framework. We show that the
concept of DF states in the BM dynamics is a special
case of the exact solution. Finally, a conclusion is given in
Sec. VI.

II. CRITERION FOR DFS IN MARKOVIAN CASE

In this section, we briefly review the general criterion
of DFS based on the Markovian master equation following
Ref. [18]. Consider an open system S coupled to an external
noisy environment E; we can write the total Hamiltonian
as

H = HS ⊗ IE + IS ⊗ HE + HI , (1)

where I is the identity operator and HI denotes the interaction
Hamiltonian between the system and its environment. If the
dynamics of the system is Markovian and the system and
the environment are initially decoupled, the master equation
for the density matrix of the system takes the Lindbladian

form [64–66]

ρ̇(t) = −i[H̃S,ρ(t)] + L[ρ(t)], (2a)

L[ρ] = 1

2

N∑
α=1

aα(2FαρF †
α − F †

αFαρ − ρF †
αFα), (2b)

where H̃S = HS + � is the renormalized system Hamilto-
nian with � a possible Hermitian contribution from the
environment (“Lamb shift”), Fα are orthogonal operators on
the system Hilbert space HS , and aα denote real positive
coefficients. Thus, the commutator involving H̃S in Eq. (2a)
determines an effectively unitary evolution of the system,
while the decohering effect induced by the environment is
totally accounted for by the nonunitary term L[ρ].

For the Markovian master equation (2), the condition of an
instantaneous DFS at time t amounts to the vanishing of L[ρ],
that is [18],

L[ρDF(t)] = 0. (3)

This ensures that ρDF(t) obeys a unitary evolution ρ̇DF(t) =
−i[H̃S,ρDF(t)] at time t . This does not imply necessarily
unitary evolution at all times, as the evolution due to H̃S can
drive the system out of the DFS. In [14] the DFS found from
Eq. (3) was therefore called DFS to the first order.

A sufficient and necessary condition for a state |kDF〉 to be
locally DF is given in terms of the operators {Fα} [18] by

Fα|kDF〉 = cα|kDF〉, ∀α,kDF and
(4)

N∑
α=1

aαF †
αFα|kDF〉 =

N∑
α=1

aα|cα|2|kDF〉.

Equation (4) means that the DF states are degenerate eigen-
states of all the operators {Fα} and degenerate eigenstates of∑N

α=1 aαFαF †
α . A special case is given by cα = 0 ∀α, and the

second condition in Eq. (4) is then automatically fulfilled. In
Ref. [18] it was shown that the space spanned by the |kDF〉 is
a DFS at all times, if and only if in addition to satisfying (4) it
is also invariant under H̃S .

The generalization of Eq. (4) to non-Markovian master
equations is not straightforward. However, it was recently
shown [67] that under certain conditions the solution of a non-
Markovian master equation [52] with a finite-time memory
kernel can be at the same time a solution of a local-in-time
non-Markovian master equation. In principle, local-in-time
generalizations of the Markovian master equation (2b) may
be obtained by making both the rates aα and the operators
Fα time dependent. Interestingly, the exact master equations
describing the general non-Markovian dynamics for a large
class of bosonic and fermionic systems [56,59–63] have been
developed recently. They all have the Lindbladian form of
Eq. (2), but the decoherence rates aα in the nonunitary
term (2b) are time dependent and local in time, whereas
the operators Fα are time independent. The time-dependent
decoherence rates are determined microscopically and nonper-
turbatively by the retarded and correlation Green’s functions
in nonequilibrium Green’s function theory [68], where the
backactions from reservoirs are fully taken into account. As a
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result, the non-Markovian dynamics is fully characterized by
the time-nonlocal retarded integrand in the Dyson equation,
which governs the nonequilibrium Green’s functions [69,70].
In addition to being time dependent, the decoherence rates
can become negative for short times, representing in a certain
sense the backflow of information from the environment to the
system [59,71–74]. Since the fact that all aα have the same
sign is an important requirement for showing that Eq. (4) is
necessary for a Markovian DF state (see the argument after
Eq. (3.15) in Ref. [18]), additional DF states may arise in
the non-Markovian case. In the following, we provide a new
mechanism for generating dynamically stabilized DF states
in fermionic systems, based on the exact fermionic master
equation developed recently [59–61].

III. EXACT MASTER EQUATION

We consider a general nanoelectronic system with N energy
levels coupled to an electron reservoir. The Hamiltonian for
the system, the electron reservoir, and the interaction between
them read

HS =
N∑

i=1

εia
†
i ai, HB =

∑
k

εkc
†
kck,

(5)

HI =
N∑

i=1

∑
k

(Vike
iφi a

†
i ck + Vike

−iφi c
†
kai).

Here a
†
i and ai are electron creation and annihilation operators

for ith level with energy εi . The operators c
†
k and ck denote

electron creation and annihilation operators for the energy
level εk of the electron reservoir. The coupling strength
between the system and the reservoir is described by the
Vik ∈ R, with an explicit phase φi . The total Hamiltonian is
H = HS + HB + HI .

The exact master equation for the system was obtained
in [59–61],

ρ̇(t) = −i[H̃S(t),ρ(t)] + L[ρ(t)], (6a)

where the renormalized system Hamiltonian H̃S(t) and the
decoherence term L[ρ(t)] take the form

H̃S(t) =
N∑

i,j=1

ε̃ij (t)a†
i aj , (6b)

L[ρ(t)] =
N∑

i,j=1

{κij (t)[2ajρ(t)a†
i − a

†
i ajρ(t) − ρ(t)a†

i aj ]

+ κ̃ij (t)[2a
†
i ρ(t)aj − aja

†
i ρ(t) − ρ(t)aja

†
i ]}.

(6c)

Here the shifted energy ε̃ij (t) and the decoherence rates κij (t)
and κ̃ij (t) are all time dependent (but local in time). They are
determined microscopically and nonperturbatively in terms of
the retarded and correlation Green’s functions by eliminating
completely all the reservoir degrees of freedom (i.e., tracing
over all the states of the environment). Their explicit forms are
shown in Eq. (9) of Ref. [59].

To be more specific, let us consider the case of a nanoelec-
tronic system with N = 2. Physically, such a system may be
realized by a double quantum dot system in which each dot
has a single active energy (on-site) level, coupled to electrodes
with all spins polarized in both the dots and the electrodes.
Another example for N = 2 is given by a single-level quantum
dot coupled to electrodes with allowed spin flips between two
antiparallel directions.

Furthermore, we assume that the two energy levels of the
system are degenerate: ε1 = ε2 = ε0. Practically, the energy
degeneracy is easier to be realized in the second setting than
in the first. We also assume that both levels have the same
coupling strength to the electron reservoir, that is, V1k = V2k =
Vk/

√
2. Then we introduce two effective fermion operators

A+ = 1√
2

(a1 + eiφa2), A− = 1√
2

(−e−iφa1 + a2),

with φ = φ1 − φ2. The Hamiltonian (5) can be rewritten in
terms of A± as follows

HS = ε+A
†
+A+ + ε−A

†
−A−,HB =

∑
k

εkc
†
kck,

(7)
HI =

∑
k

Vk[eiφ1A
†
+ck + e−iφ1c

†
kA+].

where the effective energy levels ε± = ε0 are still degenerate.
The system Hamiltonian is diagonalized in terms of A±,

such that the original system is equivalent to an effective
system which has two decoupled energy levels ε±, out of which
only one energy level (ε+) couples to the electron reservoir.
As a result, the corresponding exact master equation becomes

ρ̇(t) = −i[H̃S(t),ρ(t)] + L[ρ(t)], (8a)

with the new expressions of H̃S(t) and L[ρ(t)]

H̃S(t) = ε̃+(t)A†
+A+ + ε−A

†
−A−, (8b)

L[ρ(t)] = κ(t)[2A+ρ(t)A†
+ − A

†
+A+ρ(t) − ρ(t)A†

+A+]

+ κ̃(t)[2A
†
+ρ(t)A+ − A+A

†
+ρ(t) − ρ(t)A+A

†
+].

(8c)

The decoherence rates are κ(t) = γ (t) − γ̃ (t)
2 and κ̃(t) = γ̃ (t)

2 .
The renormalized energy level ε̃+(t) and the rates γ (t) and
γ̃ (t) are determined exactly by

ε̃+(t) = −Im[u̇(t)u−1(t)], (9a)

γ (t) = −Re[u̇(t)u−1(t)], (9b)

γ̃ (t) = v̇(t) − 2v(t)Re[u̇(t)u−1(t)], (9c)

and u(t) and v(t) are the retarded and correlation Green’s
functions in the Schwinger-Keldysh nonequilibrium Green’s
function theory [61]. They obey the integrodifferential
equations

d

dt
u(t) + iε+u(t) +

∫ t

t0

g(t − τ )u(τ )dτ = 0, (10a)

v(t) =
∫ t

t0

dτ1

∫ t

t0

dτ2u(τ1)̃g(τ2 − τ1)u∗(τ2), (10b)
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subjected to the boundary condition u(t0) = 1. The inte-
gration kernels read g(τ ) = ∫ +∞

−∞
dω
2π

J (ω)e−iωτ and g̃(τ ) =∫ +∞
−∞

dω
2π

J (ω)f (ω)e−iωτ , where the spectral density of the
reservoir is given by J (ω) = 2π

∑
k |Vk|2δ(ω − ωk), and

f (ω) = 1/(eβ(ω−μ) + 1) is the initial electron distribution of
the reservoir.

Since the effective energy level ε− is apparently decoupled
from the electron reservoir, one may naively think that the
state generated by the operator A

†
−, namely A

†
−|0〉, becomes

naturally a DF state. This is actually not true. The term
with κ̃(t) in Eq. (8c) will drive this state into another state
since A

†
+A

†
−|0〉 	= 0. However, there is an occupation constant

of motion in this system, [A†
−A−,H ] = 0. This symmetry

separates the system Hilbert space into two closed subspaces
H+ = {|v〉,|+〉} and H− = {|−〉,|d〉}, corresponding to the
occupation N− ≡ 〈A†

−A−〉 = 0 and 1, respectively. Here |v〉
(|d〉) is the vacuum (doubly occupied) electron state, while
|±〉 = A

†
±|v〉 are superpositions of singly occupied states of

the original two levels,

|+〉 = (|1〉 + e−iφ|2〉) /
√

2,
(11)

|−〉 = (−eiφ|1〉 + |2〉) /
√

2,

and |i〉 = a
†
i |v〉 (i = 1,2). The two relative phases are φ

and φ + π , where φ is arbitrary. As a consequence, starting
from any initial state in the closed subspace H+ (H−), the
system will be kept in this subspace throughout the evolution
process.

Equation (8) has the standard form of Lindblad master
equation, except that the decoherence rates, κ(t) and κ̃(t), can
depend on time and even become negative. They are local in
time and determined microscopically and nonperturbatively
from Eq. (10). The DFS criterion of Eq. (4) is then still
sufficient but may not be necessary. The operators A

†
+ and

A+ act on the four basis states {|v〉,|−〉,|+〉,|d〉} according to
the following relations:

A
†
+|v〉 = |+〉, A+|v〉 = 0,

A
†
+|+〉 = 0, A+|+〉 = |v〉,

A
†
+|−〉 = |d〉, A+|−〉 = 0,

A
†
+|d〉 = 0, A+|d〉 = |−〉.

One sees that both A
†
+ and A+ have a fourfold degenerate

eigenvalue cα = 0, but the corresponding eigenspaces are only

two dimensional, given by {|+〉,|d〉} for A
†
+ and {|−〉,|v〉} for

A+. Since these two spaces do not overlap, condition (4) is not
satisfied, and as long as both κ(t) and κ̃(t) are positive, there
is no DFS. In the next section, we explore whether additional
DF states can exist if κ(t) and κ̃(t) are not both positive and
show that a DFS can arise dynamically, when at least one of
the two rates κ(t) and κ̃(t) vanishes.

IV. DF STATES

A. Eigenstates of the Lindblad operator

Since, as discussed above, the Markovian DFS criterion (4)
may not be necessary for a non-Markovian system, we define
a local (in time) DFS by the vanishing of the nonunitary term
L[ρ(t)]. Clearly, this leads to local unitary time evolution. In
the following, we discuss all possibilities of how L[ρ(t)] = 0
can arise by calculating the eigenvalues of the full Lindblad
generator L in Liouville space. If L has a zero eigenvalue,
the corresponding eigenstate is DF. Conversely, a local DF
state is by definition an eigenstate of L with zero eigenvalue.
However, as the eigenstates of L do not necessarily have all the
properties of a density matrix, such states may not be physical.
One must therefore examine for each eigenstate whether it is
a physical state or can be combined with other eigenstates
corresponding to the same (degenerate) eigenvalue to form a
physical state. In this way one can find all physically possible
DF states.

In the basis of {|v〉,|+〉,|−〉,|d〉}, the density matrix takes
the general form

ρ(t) = ρvv(t)|v〉〈v| + ρ++(t)|+〉〈+| + ρ+−(t)|+〉〈−|
+ρ∗

+−(t)|−〉〈+| + ρ−−(t)|−〉〈−| + ρdd(t)|d〉〈d|.
(12)

Coherences between states with different particle numbers
are not permitted due to the particle number superselec-
tion rule. Since there are only six nonzero elements of
ρ(t), we can define the basis {|1〉 ≡ |v〉〈v|, |2〉 ≡ |+〉〈+|,
|3〉 ≡ |+〉〈−|, |4〉 ≡ |−〉〈+|, |5〉 ≡ |−〉〈−|, |6〉 ≡ |d〉〈d|} in
Liouville space, which is orthogonal with respect to the
scalar product 〈A|B〉 = trA†B. In this basis, the density
matrix can be rewritten as a column vector, |ρ(t)〉 =
[ρvv(t),ρ++(t),ρ+−(t),ρ−+(t),ρ−−(t),ρdd(t)]T . The Lindblad
operator L is represented by a matrix Lt , and its action on a
density matrix reduces to a simple matrix multiplication of Lt

with |ρ(t)〉, where Lt reads

Lt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2̃κ(t) 2κ(t) 0 0 0 0

2̃κ(t) −2κ(t) 0 0 0 0

0 0 −(κ(t) + κ̃(t)) 0 0 0

0 0 0 −(κ(t) + κ̃(t)) 0 0

0 0 0 0 −2̃κ(t) 2κ(t)

0 0 0 0 2̃κ(t) −2κ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)
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The eigenvalues and the corresponding eigenstates of Lt are

l1 = 0,

l2 = −2[κ(t) + κ̃(t)],

l3 = −[κ(t) + κ̃(t)],
(14)

l4 = −[κ(t) + κ̃(t)],

l5 = −2[κ(t) + κ̃(t)],

l6 = 0,

and

|l1〉 = 1

κ(t) + κ̃(t)
[κ(t)|1〉 + κ̃(t)|2〉],

|l2〉 = 1

2
(−|1〉 + |2〉),

|l3〉 = |3〉,
(15)

|l4〉 = |4〉,
|l5〉 = 1

2
(−|5〉 + |6〉),

|l6〉 = 1

κ(t) + κ̃(t)
[κ(t)|5〉 + κ̃(t)|6〉].

We see that all eigenvalues come in pairs, and there are
always at least two eigenvalues equal to zero. In writing
Eq. (15) we have assumed that κ(t) + κ̃(t) 	= 0. The case of
κ(t) + κ̃(t) = 0 is discussed below. The normalization used
for |l1〉 and l6〉 is convenient, as in this way these two states
can be interpreted directly as density matrices if both κ(t) and
κ̃(t) are positive. If one of the rates is negative (and the other
nonzero), both states become nonpositive and therefore cease
to be physical states. Moreover, since they have orthogonal
support, no linear combination of them can bring about a
positive state. Similarly, states |l2〉 and |l5〉, as well as any
linear combination of them, are clearly nonpositive. Finally,
states |l3〉 and |l4〉 as well as any linear combination of them
are traceless and are therefore not physical states either. Since
|l2〉, . . . ,|l5〉 are independent of κ(t) and κ̃(t) [and are therefore
never physical states, regardless of the values of κ(t) and κ̃(t)],
the only possibility of having a physical DF state is through
|l1〉 and |l6〉 with both κ(t) and κ̃(t) non-negative, or one of
them vanishing (in the latter case one may always choose the
eigenvector with positive global sign).

If κ(t) = 0 and κ̃(t) 	= 0, |l1〉 and |l6〉 are two pure DF
states |2〉 and |6〉; that is, the subset of {|+〉,|d〉} contains all
the possible DF states in this case. Likewise, if κ̃(t) = 0 and
κ(t) 	= 0, |l1〉 and |l6〉 are the two pure DF states |1〉 and |5〉,
that is, {|v〉,|+〉}. Below, by examining an explicit example,
we show that the vanishing of one of the decoherence rates is
physically feasible after some time ts , when the system reaches
its steady state; see Fig. 1.

If κ(t) > 0 and κ̃(t) > 0, the two eigenstates |l1〉 and |l6〉
are time-dependent mixed states. They are decoherence free as
much as they are locally stationary states due to local detailed
balance. From a perspective of application for quantum
information processing, these states are less interesting. They
are the analogs of thermal equilibrium states that are stationary
under a Markovian relaxation process.

It remains to consider the case κ(t) + κ̃(t) = 0. All eigen-
values vanish, but as long as κ(t) 	= 0, the eigenvectors are still

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Γt

|u
(t

)|

 

 
d=0.5Γ
d=1.0Γ
d=2.0Γ
d=5.0Γ
d=10.0Γ

FIG. 1. (Color online) The exact solutions of decoherence rates
κ(t) and κ̃(t) for different external bias voltage μ = eV : (a), (b)
for the weakly non-Markovian dynamics (with d = 10�); (c), (d)
for the strong non-Markovian dynamics (with d = 0.5�). Here we
set ε0 = 0.2�, kBT = 0.3�. We note that generally κ(t) and κ̃(t)
are nonzero during the time evolution. However, for a large positive
(or negative) bias voltage, one of them is switched off after some
specific time.

given by Eq. (15) with the only difference that the normaliza-
tion of |l1〉 and |l6〉 through the prefactor 1/[κ(t) + κ̃(t)] has to
be removed. |l1〉 becomes colinear with |l2〉, and |l6〉 colinear
with |l5〉. The dimension of the space of eigenvectors of Lt is
reduced to four, and Lt can therefore not be fully diagonalized.
As the linearly independent eigenvectors |l1〉, . . . ,|l4〉 are never
physical states, this means that Lt has no eigenstates that are
physically possible, and therefore no DF states exist.

If κ(t) = κ̃(t) = 0 at some time (for example, if the retarded
Green’s function u(t) took a nonzero steady value, it would
be possible that both rates vanish for t > ts), we have Lt = 0,
and the whole Hilbert space becomes a dynamically stabilized
DFS. From a quantum information perspective this would be
of course an ideal situation. Unfortunately, in the fermionic
system interacting with an electron reservoir considered here,
it appears that this situation does not arise, as shown in Fig. 1.

In summary, as long as we restrict ourselves to pure
states for our non-Markovian master equation and discard the
“trivial” case of Lt = 0, the DFS is still given entirely by the
Markovian criterion (4). This is because the pure DF states
only exist if exactly one of the two terms [proportional to
either κ(t) or κ̃(t)] in the Lindblad superoperator remains, and
the logic of the proof of necessity of condition (4) remains
intact in such a situation. However, the time dependence of
κ(t) and κ̃(t) brings about a new freedom and allows for the
dynamical stabilization of DF states through the switching off
of one of the decoherence rates.

B. Physical realization of DF states

In the following, we discuss to what extent the DF states
just discussed can be reached through the same non-Markovian
dynamics described by Lt . We consider the double quantum
dot system from above coupled to an electron reservoir with a
spectral density of the Lorentz form [59,75,76],

J (ω) = �d2

(ω − ε+)2 + d2
, (16)

where � is the system-reservoir coupling strength and d

is the bandwidth of the effective reservoir spectrum. In
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FIG. 2. (Color online) The exact solution of |u(t)| for an electron
reservoir with the Lorentz spectral density. Here we take ε0 = 0.2�.
Note that |u(t)| decays exponentially for large bandwidth d , cor-
responding to the weakly non-Markovian dynamics. For a small
bandwidth d < 2�, the strong non-Markovian memory effect brings
the short-time oscillations for |u(t)|.

the well-known wide-band limit (i.e., d → ∞), the spectral
density approximately becomes a constant one, J (ω) → �.
This corresponds to the Markovian limit.

With the above spectral density, the solution of u(t) obeying
Eq. (10a) can be obtained analytically

u(t) =

⎧⎪⎨
⎪⎩

e−iε+ t

2d�

[
d+

� e− d
−
�

t

2 − d−
� e− d

+
�

t

2
]
, d 	= 2�,

[
1 + dt

2

]
e−(iε++ d

2 )t , d = 2�,

(17)

where d� = √
d2 − 2�d and d±

� = d ± d� . Obviously, after
some time ts , u(t) always decays to zero, as shown in Fig. 2
where the different behaviors of the amplitude of u(t)
correspond to different bandwidths d. For the bandwidth
d � 2� (weakly non-Markovian case), u(t) exponentially
decays to zero, which is a result similar to the Markovian
dynamics; see the discussion in Sec. VI. When the bandwidth
d < 2�, the non-Markovian memory effect of the reservoir
becomes significant, which induces a short-time oscillation
for |u(t)|.

Using the solution of Eq. (17), combined with Eqs. (10b)
and (9), we can easily calculate the decoherence rates κ(t) and
κ̃(t) in Eq. (8). The result is plotted in Fig. 1 for the cases of
weakly (d = 10�) and strongly (d = 0.5�) non-Markovian
dynamics. In experiments, one can adjust the external bias (μ)
to raise or lower the Fermi surface of the electron reservoir.
Here we display three cases where the bias is much higher
(μ = 10�), relatively small (μ = 0), and much lower (μ =
−10�) than the quantum dot energy level ε0. First, we see
that when d = 0.5�, as shown in Figs. 2(c) and 2(d), κ(t)
and κ̃(t) can jump from a positive value to a negative value
repeatedly during the evolution process, which corresponds to
the forth and back flows of the information between the system

and the environment, in evidence of the strong non-Markovian
dynamics.

We observe that no matter what the values of the width
d and the bias μ are, the two decoherence rates κ(t) and κ̃(t)
never satisfy κ(t) + κ̃(t) = 0. However, if we apply a large bias
to raise (or lower) the Fermi surface of the electron reservoir
much higher (or much lower) than the dot level, one of the two
decoherence rates is switched off after a time scale of a few
1/�, which implies the existence of a DFS.

As shown in Figs. 2(a) and 2(b), in the weakly non-
Markovian case, when applying a positive bias μ = 10�, the
decoherence rate κ(t) shows a positive peak in the beginning
and then decays rapidly to a zero steady value on a time scale
of a few 1/�, while κ̃(t) turns negative first and then climbs
up to a nonzero steady value. For the strongly non-Markovian
regime (d = 0.5�), the same situation happens; see the red
curves in Figs. 2(c) and 2(d). The decoherence rate reaches
κ(t) = 0 on a time scale ts of a few 1/�, while κ̃(t) keeps
jumping from positive values to negative values repetitively. In
this case, the dynamics for t > ts is described by the following
master equation:

ρ̇(t) = −i[H̃S(t),ρ(t)] + L [ρ (t)] , (18a)

H̃S(t) = ε̃+(t)A†
+A+ + ε−A

†
−A−, (18b)

L[ρ(t)] = κ̃(t)[2A
†
+ρ(t)A+ − A+A

†
+ρ(t) − ρ(t)A+A

†
+].

(18c)

Then the states |+〉 and |d〉 become possible dynamically
stabilized DF states, since A

†
+|+〉 = 0 and also A

†
+|d〉 = 0

leads to the vanishing of the nonunitary part L[ρ(t)] after
t > ts . Therefore, the Markovian DFS criterion of Eq. (4) still
is both necessary and sufficient for a time-local DFS when
only one decoherence rate remains.

On the other hand, if we apply a negative bias to the electron
reservoir (e.g., μ = −10�), as shown by the black curves
in Fig. 2, we find that for both weakly and strongly non-
Markovian dynamics, the decoherence rate κ̃(t) goes to zero
very quickly, while κ(t) either reaches a nonzero steady value
(in the weakly non-Markovian regime) or keeps jumping from
a positive value to a negative value for all times (in the strongly
non-Markovian regime). Then the master equation for t > ts
is effectively given by

ρ̇(t) = −i[H̃S(t),ρ(t)] + L[ρ(t)], (19a)

H̃S(t) = ε̃+(t)A†
+A+ + ε−A

†
−A−, (19b)

L[ρ(t)] = κ(t)[2A+ρ(t)A†
+ − A

†
+A+ρ(t) − ρ(t)A†

+A+].

(19c)

Again, the DFS criterion Eq. (4) is then both necessary and
sufficient for DF states. Since A+|−〉 = 0 and A+|v〉 = 0, then
we obtain that |−〉 and |v〉 are possible dynamically stabilized
DF states.

In summary, these results show that the vanishing of one of
the decoherence rates implies that {|+〉,|d〉} or {|−〉,|v〉} are
dynamically stabilized DF states.
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V. PHYSICAL REALIZATION FOR DYNAMICALLY
STABILIZED DF STATES

In the following, by examining the general exact solution
of master equation (8), we prove that all pure dynamically
stabilized DF states {|+〉,|d〉} and {|−〉,|v〉} predicted above
are physically realizable through the decoherence process
given by the same master equation. We also give the exact
conditions for generating these DF states in terms of the initial
state, and a condition on the Green’s functions u(t) and v(t).

First, by solving Eq. (8), we can exactly give the elements
of ρ(t) in Eq. (12) in terms of the initial ρ(t0) and the functions
of u(t) and v(t) as

ρvv(t) = [1 − v(t)]ρvv(t0) + [1 − v(t) − |u(t)|2]ρ++(t0),

ρ++(t) = v(t)ρvv(t0) + [v(t) + |u(t)|2]ρ++(t0),

ρ+−(t) = u(t)eiε−t ρ+−(t0), (20)

ρ−−(t) = [1 − v(t)]ρ−−(t0) + [1 − v(t) − |u(t)|2]ρdd(t0),

ρdd(t) = v(t)ρ−−(t0) + [v(t) + |u(t)|2]ρdd(t0).

This expression for ρ(t) is valid for an arbitrary spectral density
of the reservoir. This solution confirms the fact that H+ =
{|v〉,|+〉} and H− = {|−〉,|d〉} are two independent closed
subspaces. For any initial state in the subspace H+ (H−),
the system will be dynamically stabilized in this subspace.

The general solution (20) shows that if v(t) = 1 is satisfied
when t > ts , the initial vacuum state |v〉 converges to the
stabilized state |+〉, while if v(t) + |u(t)|2 = 1 is reached
when t > ts , the initial singly occupied state |+〉 converges
to the dynamically stabilized DF state |+〉. That is, the same
dynamically stabilized DF state |+〉 can be generated from
different initial states in the same subspace of H+ under
different stabilization conditions for u(t) and v(t). Similarly,
one can obtain the remaining dynamically stabilized DF states
|v〉, |−〉, and |d〉 from different initial states under different
stabilization condition, as shown in Table I.

Besides the initial states listed in Table I, another more
general initial pure state is a superposition of |+〉 and |−〉,
namely |�〉 = α|+〉 + β|−〉 with |α|2 + |β|2 = 1. In this case,
as one can easily check from Eq. (20), the resulting state
becomes

ρvv(t) = [1 − v(t) − |u(t)|2]|α|2,
ρ++(t) = [v(t) + |u(t)|2]|α|2,
ρ+−(t) = u(t)eiε−t αβ∗, (21)

ρ−−(t) = [1 − v(t)]|β|2,
ρdd(t) = v(t)|β|2.

TABLE I. The dynamically stabilized DF states for different
choices of the initial state of the system, plus the different stabilization
conditions.

Initial state Stabilization condition DF state

|v〉 v(t) = 0 (or 1) |v〉 (or |+〉)
|+〉 v(t) + |u(t)|2 = 0 (or 1) |v〉 (or |+〉)
|−〉 v(t) = 0 (or 1) |−〉 (or |d〉)
|d〉 v(t) + |u(t)|2 = 0 (or 1) |−〉 (or |d〉)
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FIG. 3. (Color online) The exact solution of v(t) and v(t) +
|u(t)|2 for an electron reservoir with varying the external bias voltage
μ = eV : (a), (b) for the weakly non-Markovian dynamics (with
d = 10�); (c), (d) for the strongly non-Markovian dynamics (with
d = 0.5�). Here we set ε0 = 0.2�, KBT = 0.3�. By applying a
large positive (or negative) bias voltage, the steady value of v(t) and
v(t) + |u(t)|2 will approach 1 (or 0).

In the case that both α and β are nonzero, one has to have
v(t) = 0 and |u(t)|2 = 1 to generate a stabilized (pure) DF state
|�〉. This is impossible unless the system is totally decoupled
from the environment from the beginning. In other words,
except for a stabilized mixed state, no stabilized DF state can
be obtained. As a conclusion, Table I lists all the possible pure
stabilized DF states in this system. The present results confirm
the statement in the last section that the only possible pure
dynamically stabilized DF states are |v〉,|±〉, and |d〉.

For the Lorentz spectral density, we display the functions of
v(t) and v(t) + |u(t)|2 in Fig. 3. Interestingly, by comparing
Figs. 3(a) with 3(b) and Figs. 3(c) with 3(d), we find that
in the strongly non-Markovian case (d = 0.5�), applying a
relatively small bias voltage (for example, |μ| = 2�) makes
the steady values of v(t) and v(t) + |u(t)|2 quickly approach 1
or 0, whereas this is not the case in the weakly non-Markovian
regime (d = 10�), where v(t) → 0.9 for μ = 2� [and v(t) →
0.1 for μ = −2�]. This indicates that the backflow of infor-
mation from the reservoir, due to a strongly non-Markovian
memory of the reservoir, helps the stabilization of the system in
the states of {|+〉,|d〉} or {|v〉,|−〉}. This facilitates the physical
realization of the dynamically stabilized DF states.

Furthermore, we can now prove that under the stabilization
conditions listed in Table I, one of the decoherence rates
vanishes when t > ts . In fact, κ(t) and κ̃(t) in Eq. (9) can
be further simplified as

κ(t) = |u(t)|2
2

d

dt

1 − v(t)

|u(t)|2 , (22a)

κ̃(t) = |u(t)|2
2

d

dt

v(t)

|u(t)|2 . (22b)

It clearly shows that the condition v(t) = 1 [or (v(t) +
|u(t)|2 = 1] implies κ(t) = 0, and the condition v(t) =
0 [or v(t) + |u(t)|2 = 0] indicates κ̃(t) = 0, namely, one
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decoherence rate is turned off for t > ts . In this case, the
Markovian DFS criterion still provides a necessary and
sufficient condition for generating dynamically stabilized DF
states. However, for the non-Markovian dynamics, we have
shown in Table I that which final state is realized depends both
on the initial state and the details of the dynamics given by the
Green’s functions u(t) and v(t).

VI. COMPARISON TO THE BORN-MARKOV DYNAMICS

In the previous sections, using the exact master equation, we
have shown the generation of DF states for a system coupled to
a non-Markovian reservoir. For comparison, in the following,
we discuss the corresponding results in terms of the BM master
equation.

The BM dynamics usually corresponds to the case where
the coupling strength between the system and the electron
reservoir is very weak, and the characteristic correlation time
of the electron reservoir is sufficiently shorter than that of the
system. In such a case, the electron reservoir has no memory
effect on the evolution of the system. Then the solutions of
u(t) and v(t) are reduced to [59–61]

uBM(t) = e−iε̃+t− 1
2 J (ε+)t ,

(23)
vBM(t) = [1 − e−J (ε+)t ]f (ε+),

where ε̃+ = ε+ + (δε+)BM with the energy shift (δε+)BM =
P

∫ +∞
−∞

dω
2π

�(ω)
ω−ε+

. Note that for the wide-band limit, we simply
have ε̃+ = ε+ and J (ε+) = �. Substituting Eq. (23) into
Eq. (9), we obtain the constant rates

κ(t) = 1
2J (ε+)[1 − f (ε+)],

(24)
κ̃(t) = 1

2J (ε+)f (ε+).

Here f (ε+) is the fermion distribution function of the electron
reservoir at the frequency ε+, that is,

f (ε+) = 1

e(ε+−μ)/KBT + 1
. (25)

Thus the exact master equation is reduced to the BM master
equation, where the decoherence rates are time independent.
This gives the standard Lindblad form for the Markovian
dynamics. Based on the general DFS criterion of Eq. (4), we
see that there is in general no DFS for this system in the BM
limit.

However, if we apply a large positive bias μ = eV such that
(μ − ε+)/kBT  1, then f (ε+) → 1, which leads to κ → 0.
H̃S leaves the states |+〉 and |d〉 invariant during the time
evolution. The relation A

†
+|+〉 = 0 (or A

†
+|d〉 = 0) guarantees

L[ρ(t)] = 0 for these states. The states {|+〉,|d〉} are therefore
DF states in the BM limit under large positive bias. Likewise,
applying a large negative bias to the electron reservoir such
that (ε+ − μ)/KBT  1, then f (ε+) → 0 and κ̃(t) → 0. In
this case, the states {|v〉,|−〉} are the DF states in the BM
limit.

In conclusion, the states {|+〉,|d〉} and {|v〉,|−〉} are also DF
in the BM limit if one of the decoherence rates is switched off
by properly tuning the bias voltage on the electron reservoir.
This result is consistent with the result in the non-Markovian
case discussed above. The apparent difference is that the DF
states in the BM limit seem to exist without the dynamical
stabilization processes. However, this difference is not crucial
in reality. It is well known [64,65] that the BM master equation
with the constant decoherence rates, Eq. (24), is derived under
the condition t  τr , where τr is the characteristic time of
the reservoir [64]. In other words, a stabilization time scale ts
has implicitly been used in deriving the BM master equation,
such that the decoherence rates become time independent
for t > ts  τr . Therefore, the concept of the dynamically
stabilized DF states, based on the exact non-Markovian master
equation, gives the generalized picture of DFSs. It contains the
Markovian DFSs as a special case.

VII. CONCLUSION

In summary, we have investigated the DFS of a non-
Markovian fermionic open system, based on an exact non-
Markovian master equation developed recently. The master
equation has a nonunitary term of the standard Lindblad
form, but the corresponding decoherence rates are time
dependent and local in time. They are determined micro-
scopically and nonperturbatively from the Schwinger-Keldysh
nonequilibrium Green’s functions and fully account for the
non-Markovian memory effect.

As a concrete example, we have studied a fermionic system
with two degenerate energy levels coupled identically to a
fermionic reservoir. We find that the whole Hilbert space is
split into two closed subspaces. For any initial state in one
of the subspaces, the system will remain in this subspace
forever. By diagonalizing the full Lindblad operator, we found
that physical DF states exist if and only if one of the two
relevant decoherence rates switches itself off dynamically.
Such a situation can be achieved under practical conditions. It
should be pointed out that two of the DF states are coherent
superpositions with an arbitrary relative phase between the two
original energy levels, which may be of physical interest for
quantum computation.

In addition, which DF state is reached as a result of the
dissipative dynamics depends both on the initial state and the
details of the dynamics, as expressed by the time-dependent
nonequilibrium Green’s function. We show this explicitly by
solving exactly the non-Markovian master equation. Interest-
ingly, we find that the strongly non-Markovian memory can
help to stabilize the DF states compared to the Markovian case.
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