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Zitterbewegung of Klein-Gordon particles and its simulation by classical systems
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The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB, trembling motion) of spin-zero
particles in the absence of fields and in the presence of an external magnetic field. Both Hamiltonian and wave
formalisms are employed to describe ZB and their results are compared. It is demonstrated that if one uses wave
packets to represent particles, then the ZB motion has a decaying behavior. It is also shown that the trembling
motion is caused by an interference of two subpackets composed of positive- and negative-energy states, which
propagate with different velocities. In the presence of a magnetic field, the quantization of the energy spectrum
results in many interband frequencies contributing to ZB oscillations and the motion follows a collapse-revival
pattern. In the limit of nonrelativistic velocities, the interband ZB components vanish and the motion is reduced
to cyclotron oscillations. The exact dynamics of a charged Klein-Gordon (KG) particle in the presence of a
magnetic field is described on an operator level. The trembling motion of a KG particle in the absence of fields
is simulated using a classical model proposed by Morse and Feshbach—it is shown that a variance of a Gaussian
wave packet exhibits ZB oscillations.
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I. INTRODUCTION

The phenomenon of Zitterbewegung (ZB, trembling mo-
tion) goes back to Schrödinger, who proposed it in 1930 for free
relativistic electrons in a vacuum [1]. Schrödinger observed
that due to noncommutativity of the velocity operators with
the Dirac Hamiltonian, relativistic electrons experience a
trembling motion in the absence of external fields. It was
later recognized that ZB is due to an interference of electron
states with positive and negative electron energies. A very high
frequency of ZB in a vacuum, corresponding to h̄ωZ = 2mec

2,
and its very small amplitude on the order of the Compton
wavelength λc = h̄/mec � 3.86 × 10−3 Å made it impossible
to observe this effect in its original form with the currently
available experimental methods. However, in a recent work,
Gerritsma et al. [2] simulated the 1 + 1 Dirac equation and the
resulting Zitterbewegung with the use of trapped ions excited
by laser beams. The important advantage of this method is
that one can simulate also the basic parameters of the Dirac
equation and tailor their desired values. The result of Gerritsma
et al. allows one to expect that observable effects for relativistic
particles in a vacuum can be convincingly reproduced with
more “user-friendly” parameters. In general, there has recently
been a revival of interest in the relativistic-type equations
related to “the rise of graphene” [3], topological insulators,
and similar systems in narrow-gap semiconductors [4].

The purpose of our paper is to describe the phenomenon
of Zitterbewegung for charged Klein-Gordon (KG) spin-zero
particles in the absence of fields and in the presence of a
magnetic field [5–7]. The Zitterbewegung of KG particles
in the absence of fields was described before; see [8–12].
However, in our treatment, we introduce a number of additional
elements. First, we describe the particles by wave packets and
show that this feature leads to a transient character of the
resulting ZB motion. Second, we use both the Hamiltonian and
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wave forms of the Klein-Gordon equation (KGE) and show the
equivalence of the two approaches as far as average physical
quantities are concerned. Third, we point out that ZB is a
result of interference between positive- and negative-energy
subpackets propagating with different velocities. Fourth, we
simulate classically the ZB motion using a simple mechanical
system proposed by Morse and Feshbach [13]. Still, our main
objective is to consider in detail the dynamics of a charged KG
particle in the presence of an external uniform magnetic field
and describe the phenomenon of ZB in this situation.

In the beginning, the meson theory was done by means of
a field theory. Pauli and Weisskopf showed that there is no
difficulty of interpretation if the KG equation is regarded as
the equation of motion of a field and quantized in the usual
fashion [14]. However, if one is interested in the problems
of interaction between mesons and the electromagnetic field,
then it is useful to describe mesons by a one-particle wave
equation, similar to other particles: electrons, positrons, and
photons. The first efforts in this direction were carried out by
Petiau [15], Duffin [16], and Kemmer [17]. The Hamiltonian
formulation of the equation of motion for the spinless mesons,
as it is currently used today, was given by Sakata and Taketani
(ST, Ref. [18]). In the ST theory for spinless particles, a set of
2 × 2 operators called the τ̂i matrices plays a role similar to that
of the ρ̂i matrices in the Dirac theory; see below. Symmetry
properties of ST equations were discussed by Krajcik and
Nieto [19]. It is known that the one-particle Klein-Gordon
equation for spin-zero particles leads to some difficulties [12,
20]: the KG equation involves a second time derivative, the
probability density is not positively definite, and there are
problems with the position operator or vanishing square of
the velocity operator. For this reason, in the present work,
we calculate the ZB of average current, which has a well-
defined meaning in the theory of the KG equation. For charged
particles, the average current is proportional to the average
particle velocity, so, in our work, we calculate one of these
two quantities. In previous treatments of ZB for the Dirac
equation, as well as simulations by trapped ions and solid state
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systems, the authors usually calculated the ZB of the position
operator.

In our considerations, we encounter another interesting
anomaly of the KG equation in the Sakata-Taketani version,
namely, that particle velocities can exceed the speed of light
for sufficiently large momenta. In other words, in contrast to
the Dirac equation for electrons, the KGE does not possess an
automatic “safety brake” for velocities to keep them below c. It
is known, since the works of Velo and Zwanziger [21], that the
two-component ST theory can lead to noncausal results (wave
propagation with velocities higher than c) in the presence of
even very weak electromagnetic potentials [22].

Our paper is organized as follows. In Sec. II, we calculate
the ZB of a wave packet using the Hamiltonian formalism. In
Sec. III, we obtain similar results with the use of KG waves
and discuss explicitly the physical background for the transient
behavior of ZB motion. Section IV contains a description of
ZB for a charged KG particle in a magnetic field. In Sec. V,
we simulate classically the ZB phenomenon using a system
proposed by Morse and Feshbach. In Sec. VI, we discuss our
results; the paper is concluded by a summary. Appendix A
contains a derivation of particle dynamics in the presence of
a magnetic field, Appendix B discusses the problem of high
particle velocities, and in Appendices C and D, we give some
mathematical details.

II. ZITTERBEWEGUNG IN VACUUM

We begin by considering a Klein-Gordon particle in the
absence of external fields. The Klein-Gordon equation in the
Hamiltonian form is [18,23]

ih̄
∂�

∂t
= Ĥ�. (1)

Here the Hamiltonian is

Ĥ = τ3 + iτ2

2m
p̂2 + τ3mc2, (2)

where m is particle mass, p̂ is particle momentum, and τj

(j = 1,2,3) are the Pauli matrices σj , respectively. The wave
function � is a two-component vector

� =
(

ϕ

χ

)
. (3)

In the Hamiltonian form, one can introduce the Heisenberg
picture [23]. The zth component of the time-dependent
velocity operator is

v̂z(t) = eiĤ t/h̄v̂z(0)e−iĤ t/h̄, (4)

where v̂z(0) = ∂Ĥ/∂p̂z. In this representation, v̂z(t) is a 2 ×
2 matrix operator. Expanding eiĤ t/h̄ = 1 + Ĥ t + (1/2!)Ĥ 2 +
· · · , and noting that Ĥ 2 = E2, where the energy is E = ±cp0

with

p0 = +
√

m2c2 + p2, (5)

we obtain

eiĤ t/h̄ = cos(Et/h̄) + iĤ

E
sin(Et/h̄). (6)

The velocity operator in Eq. (4) is a product of three matrices.
Its (1,1) component is

(v̂z)11(t) = p̂z

m
+ p̂2p̂z

2mp̂2
0

[cos(2Et/h̄) − 1]. (7)

The remaining elements of v̂z(t) are calculated similarly. The
v̂x and v̂y components of the velocity operator are obtained
from v̂z(t) by the replacement p̂z → p̂x,p̂y , respectively. In
the nonrelativistic limit p � mc, we obtain in Eq. (7) the
classical motion (v̂z)11(t) � p̂z/m. In the absence of external
fields, pi are good quantum numbers. We introduce p = h̄k
and q = λck, where the effective Compton wavelength is λc =
h̄/mc. Also, we introduce a useful frequency ω0 = (mc2)/h̄.
Both λc and ω0 refer to particles of mass m. In the above
notation, Eq. (7) becomes

(v̂z)11(t) = cqz + c

2

q2qz

(1 + q2)
[cos(2ω0t

√
1 + q2) − 1]. (8)

The first term in Eq. (8) corresponds to the classical motion
of a particle, while the second term describes rapid oscillations
of the velocity. The velocity oscillates from vmax = cqz to
vmin = cqz/(1 + q2). Since the maximum velocity of the
particle is c, there must be |q| � 1. We notice that, in principle,
Eq. (8) admits velocities above the speed of light. We discuss
this issue in more detail in Appendix B. The frequency of
oscillations varies from ω = 2ω0 for low q to ω = 2

√
2ω0 for

|q| = 1. The velocity oscillations taking place in the absence
of external fields are called Zitterbewegung.

By integrating (v̂z)11(t) in Eq. (8) over time, we have

ẑ11(t) = z11(0) + cqzt − c

2

q2qz

1 + q2
t

+ λc

4

q2qz

(1 + q2)3/2
sin(2ω0t

√
1 + q2). (9)

The amplitude of ZB oscillations of the position operator is on
the order of λc. The operator ẑ11(t) is obtained in a formal way;
physical limitations to the position operator will be discussed
below.

In order to obtain physical observables, one needs to
average operator quantities over the wave packet. The average
velocity 〈v̂z(t)〉 of the wave packet |W 〉 is

〈v̂z(t)〉 = 〈W |τ3v̂z(t)|W 〉 =
∑
p p′

〈W | p〉〈 p|τ3v̂z(t)| p′〉〈 p′|W 〉.

(10)

For the KGE in the Hamiltonian form, the matrix elements
of operators include the additional τ3 factor [23]. We take the
wave packet in the form of a two-component vector 〈r|W 〉 =
(1,0)T 〈r|w〉 with one nonvanishing component. Here 〈r|w〉 ≡
w(r) is a Gaussian function with the nonzero momentum h̄k0,

w(r) = 1

(d
√

π )3/2
exp[−r2/(2d2) + ik0 · r]. (11)

There is w(k) = ∫
e−ik·r/h̄w(r)d3r and we have

〈k|w〉 = (2d
√

π )3/2 exp[−d2(k − k0)2/2]. (12)
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The wave packet |W 〉 selects (1,1) component of the velocity
matrix v̂z(t). From Eqs. (10) and (12), we obtain

〈v̂z(t)〉 = c
d3

c

π3/2

∫
exp

[ − d2
c (q − q0)2

]
×

{
qz+1

2

q2qz

1+q2
[cos(ω0t

√
1+q2)−1]

}
d3q, (13)

where dc = d/λc. This integral is nonzero only if q0 has a
nonzero zth component, so we take q0 = (0,0,q0z)T . Selecting
the z axis to be parallel to q0 and using the spherical coordi-
nates, we calculate the integrals over the two angular variables.
The remaining integral over q is computed numerically.

In Fig. 1, we plot the average packet velocity 〈v̂z(t)〉
calculated from Eq. (13) for three different packet widths d.
The time on the horizontal axis is expressed in tc = h̄/mc2

units, where tc = (me/m) × 1.29 × 10−21 s, and me is the
electron mass. In all cases, the motion has a transient character.
Physically, the decay of ZB oscillations is due to different
propagation velocities of subpackets corresponding to the
positive- and negative-energy states. We analyze this effect
below. It is seen that the final packet velocity differs from
the initial value h̄k0z/m. In the limit of d → ∞, the velocity
oscillations do not decay in time.

Now we calculate the average velocity by splitting the
initial wave packet into two subpackets corresponding to the
positive- and negative-energy states. First we introduce the
unity operator [10]

1̂ =
∑

ks

|ks〉〈ks|τ3s, (14)
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FIG. 1. Calculated velocity of wave packet in the absence of
external fields for three packet widths d . The phenomenon of
transient Zitterbewegung is seen. The initial packet wave vector is
k0 = (0,0,k0z) with k0z = 0.8λ−1

c . Time is expressed in tc = h̄/mc2

units. The initial packet velocity is v0z = h̄k0z/m = 0.8c; its final
velocity depends on packet parameters.

where s = ±1, and

〈r|ks〉 = eik·r

2
√

mcp0

(
mc + sp0

mc − sp0

)
(15)

are the two eigenstates of Ĥ corresponding to the positive
and negative energies Es = scp0. These states are normalized
according to 〈ks|τ3|k′s ′〉/(2π )3/2 = sδkk′δss ′ . Then,

|W 〉 =
∑

ks

s|ks〉〈ks|τ3|W 〉 =
∑

ks

s|ks〉Wks , (16)

where Wks = 〈ks|τ3|W 〉. The subpacket of positive-energy
states is |W+〉 = ∑

k |k+〉Wk+, while the subpacket of
negative-energy states is |W−〉 = ∑

k |k−〉Wk−. Using
Eqs. (15) and (16), we find

Wks = (2d
√

π)3/2 (mc + sp0)

2
√

mcp0
e−d2(k−k0)2/2. (17)

The average packet velocity is

〈v̂z(t)〉 =
∑
kk′ss ′

ss ′W ∗
ksWk′s ′ 〈ks|τ3v̂z(t)|k′s ′〉

=
∑
kk′ss ′

ss ′W ∗
ksWk′s ′ei(ωs−ωs′ )t 〈ks|τ3

∂Ĥ

∂p̂z

|k′s ′〉. (18)

We define ωs = sω0

√
1 + (kλc)2 and use the equality

〈ks|τ3e
iĤ t/h̄ = 〈ks|eiĤ †t/h̄τ3 = eiωs t 〈ks|τ3, (19)

which follows from the properties Ĥ = τ3Ĥ
†τ3 and 〈ks|Ĥ † =

(Ĥ |ks〉)† = Es〈ks|. Another proof of the identity (19) is given
in Appendix C. There is also

〈ks|τ3
∂Ĥ

∂pz

|k′s ′〉 = (2π )3 cpz

p0
δkk′ , (20)

which does not depend on s and s ′. By combining Eqs. (18)–
(20), we obtain

〈v̂z(t)〉 = 2d3π3/2

(2π )3m

∫
pz

p2
0

e−d2(k−k0)2
d3k

×
∑
s,s ′

ss ′(mc + sp0)(mc + s ′p0)ei(ωs−ωs′ )t . (21)

The average velocity in Eq. (21) is a sum of four terms.
The term with s = s ′ = +1 describes the motion of the
positive-energy subpacket, while the term with s = s ′ = −1
corresponds to the negative-energy subpacket,

〈v̂z〉± = d3

4mπ3/2

∫ (
1 ± mc

p0

)2

pze
−d2(k−k0)2

d3k. (22)

Thus the two subpackets move with different velocities. Their
relative velocity is

〈v̂z〉rel = cd3

π3/2

∫
pz

p0
e−d2(k−k0)2

d3k. (23)

The two terms in Eq. (21) with s �= s ′, corresponding to an
interference of the two packets, give rise to an oscillatory term

〈v̂z(t)〉osc = d3

4mπ3/2

∫ (
1 − m2c2

p2
0

)
pz

× cos(2ωkt)e
−d2(k−k0)2

d3k, (24)
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where ωk =
√

1 + (kλc)2. According to the Riemann-
Lebesgue theorem, this term has a transient character [24].
Performing the integrations in Eqs. (22) and (24), we obtain
again Eq. (13). Thus we showed that the ZB oscillations arise
from the interference of positive- and negative-energy states.
After a certain time, the two subpackets are sufficiently far
away from each other and the overlap between them vanishes,
which results in the disappearance of ZB oscillations. This
explains the behavior of velocity shown in Fig. 1.

To evaluate the decay time of ZB oscillations, we estimate
the time after which the two subpackets will be separated
from each other by the distance 2d. Assuming that k0λc � 1,
the relative velocity between the two subpackets is 〈v̂z〉rel �
c(k0λc). The time interval after which the distance between the
subpackets exceeds 2d is

td � 2d

ck0λc

. (25)

It is seen in Fig. 1 that the ZB oscillations nearly disappear
after td . For example, there is td = 5tc for d = 2λc. Since the
ZB frequency is 2ω0 = 2mc2/h̄, a number of nonvanishing
oscillations is approximately

Nosc � 2ω0td

2π
= 2

π

(
d

λc

)(
1

k0λc

)
. (26)

The above estimation correctly evaluates the number of ZB
oscillations seen in Fig. 1. The optimal conditions for an
appearance of ZB are wide packets and small values of |k0|.
On the other hand, for too small values of |k0|, one of the
two subpackets disappears [see Eq. (22)], which reduces the
amplitude of the ZB oscillations.

III. WAVE FORM OF THE KGE

Now we intend to demonstrate a relation between the ZB
oscillations of the average packet velocity calculated above
with the use of the Hamiltonian form of the KGE and an
average current obtained from the wave form of the KGE. In
the absence of external fields, the Klein-Gordon equation has
the wave equation form

1

c2

∂2

∂t2
φ(x) − ∇2φ(x) + m2c2

h̄2 φ(x) = 0, (27)

where x = (ct,r) is the position four vector [12]. The solution
of this equation is

φ(x) = 1

(2π )3

∫ √
mc

p0
[a(k)e−ik·x + b∗(k)eik·x]d3k, (28)

where k = (ωk/c,k), ωk = ω0

√
1 + (kλc)2, and a(k), b∗(k)

are complex coefficients. Function φ is normalized to

ih̄

2mc2

∫ [
φ∗ ∂ψ

∂t
−

(
∂φ∗

∂t

)
ψ

]
d3r = Q, (29)

where Q = ±1 for charged particles and Q = 0 for neutral
particles. In the following, we select Q = +1, which leads to∫

d3k[a∗(k)a(k) − b∗(k)b(k)] = 1. (30)

To determine the coefficients a(k) and b∗(k), we need two
boundary conditions for φ and ∂φ/∂t at x = (0,r). Having

specified a(k) and b∗(k), one can calculate the current density
j (x) as

j (x) = h̄

2im
[φ∗(∇φ) − (∇φ∗)φ], (31)

and the average current 〈 j (t)〉 = ∫
j (x)d3r .

Our aim is to find a correspondence between the average
packet velocity calculated in Eq. (13) and the average current
〈 j (t)〉 given in Eq. (31). To this end, we select the coefficients
a(k) and b∗(k) in such a way that the function φ in the wave
form of the KGE corresponds to the wave packet (w(r),0)T

in the Hamiltonian form of the KGE. Relations between φ,
∂φ/∂t , and the two-component wave function � = (ϕ,χ )T in
the Hamiltonian form of the KGE are [12]

φ = ϕ + χ, (32)

i∂φ/∂t = mc2(ϕ − χ )/h̄. (33)

Since (ϕ,χ )T = (w(r),0)T , we find the coefficients a(k) and
b∗(k) from Eqs. (32) and (33) by setting ϕ(t = 0,r) = w(r)
and χ = 0. From Eq. (32), we have∫ √

mc

p0
[a(k)e+ik·r + b∗(k)e−ik·r ]d3k

= (2d
√

π )3/2
∫

e−(k−k0)2d2/2+ik·rd3k, (34)

while from Eq. (33), we have∫ √
mc

p0
[a(k)e+ik·r − b∗(k)e−ik·r ]p0d

3k

= (2d
√

π )3/2mc

∫
e−(k−k0)2d2/2+ik·rd3k. (35)

In the terms including b∗(k), we replace k → −k, solve
Eqs. (34) and (35) for a(k) and b∗(−k), and obtain

φ(r,t) = (2d
√

π )3/2

2(2π )3

∫
d3ke−d2(k−k0)2/2+ik·r

×
[(

1 + mc

p0

)
e−iωkt +

(
1 − mc

p0

)
e+iωkt

]
. (36)

The above function φ includes both positive- and negative-
energy amplitudes. For p → 0, there is 1 + mc/p0 � 2 and
1 − (mc/p0) � p2/2(mc)2. Thus the second term in Eq. (36)
is much smaller than the first. In this limit, the packet consists
of the positive-energy states alone.

In Fig. 2, we plot the time evolution of the wave packet φ

in one dimension. The packet propagates according to a one-
dimensional version of Eq. (36). The initial packet is assumed
in a Gaussian form

φ(x,0) = d√
π

e−x2/(2d2)+ik0x. (37)

Its absolute value is indicated in Fig. 2 by the thick line. Each
thin line describes |φ(x,t)| in successive time intervals, 2tc =
2h̄/(mc2). It is seen that the packet splits into two subpackets
moving with different velocities. The subpacket at the right
corresponds to positive energies, while the subpacket at the
left corresponds to negative energies. The difference in the
amplitudes of subpackets results from different contributions
of the positive- and negative-energy states in the initial packet
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FIG. 2. Time evolution of the wave packet (absolute value)
according to the one-dimensional version of Eq. (36). The initial wave
packet (thick line) splits into two subpackets moving with different
velocities. The thin lines show shapes of subpackets in successive
time intervals, 2tc = 2h̄/(mc2).

at t = 0; see Eqs. (34) and (35). The Zitterbewegung occurs
only when the subpackets overlap. Each of the subpackets
slowly spreads in time, but the spreading time is much larger
than the overlapping time, so the ZB vanishes much faster than
the spreading of subpackets.

Now we continue the calculation of average current given in
Eq. (31) using the function φ of Eq. (36). This function has the
form of an integral over k. To calculate the spatial derivative
∇φ, we change the order of integration and differentiation,
which can be done for any function decaying exponentially
for k → ∞. Using the identity 1 + (mc/p0)2 = 2 − (p/p0)2,
we obtain for the first term of the average current,

h̄

2im

∫
φ∗ ∂φ

∂z
d3r

= d3h̄

8imπ3/2

∫
d3ke−d2(k−k0)2

(ikz)

×
∣∣∣∣
(

1 + mc

p0

)
e−iωkt +

(
1 − mc

p0

)
e+iωkt

∣∣∣∣
2

= d3

2π3/2

∫
d3ke−d2(k−k0)2

{
pz

m
+ pzp

2

2mp0
[cos(2ωkt)−1]

}
.

(38)

The calculation of the second term in the current,
h̄/(2im)

∫
(∂φ∗/∂z)φd3r , gives the same result but with the

opposite sign, so that both terms in Eq. (31) add together.
By comparing Eq. (38) with Eqs. (31) and (13), we conclude
that the current density 〈jz(t)〉 averaged over the packet φ(x)
in Eq. (28) is equal to the average velocity 〈vz(t)〉 of the
packet in the Hamiltonian form of the KGE multiplied by
the particle charge. In this way, we establish an equivalence

of Zitterbewegung in the Hamiltonian and wave equation
formalisms.

The above equivalence is valid for the average values only.
In the Hamiltonian form of the KGE, one can define the time-
dependent velocity operator v̂(t) = eiĤ t/h̄v̂(0)e−iĤ t/h̄, which
can be expressed in a closed form without specifying the wave
packet; see Eq. (7). But an analogous current operator in the
wave form of the KGE can be defined as a current density
j (x), which strongly depends on the form of function φ.

Even more significant differences between the Hamiltonian
and wave descriptions of the ZB appear in the analysis of
the position operator r̂(t). In the Hamiltonian form of the
KGE, the position operator written in the Heisenberg picture
is r̂(t) = eiĤ t/h̄ r̂(0)e−iĤ t/h̄ and, for the field-free KGE, it can
be calculated in a compact form; see Eq. (9) and Ref. [10]. On
the other hand, there is no well-defined position operator r̂ for
the wave form of the KGE since this operator is not Hermitian;
see Ref. [20]. However, one can calculate an average position
operator for the wave form of the KGE by integrating the
average current over time,

〈r(t)〉 = 〈r(0)〉 + 1

Q

∫
〈 j (t)〉dt, (39)

where the charge Q �= 0. This example indicates that the
equivalence between the Zitterbewegung for the Hamiltonian
and wave equation formalisms holds for the average values
only.

IV. ZITTERBEWEGUNG IN A MAGNETIC FIELD

In the presence of a magnetic field, the KG Hamiltonian for
a charged particle reads [12]

Ĥ = τ3 + iτ2

2m
( p̂ − q A)2 + τ3mc2, (40)

where q is the particle charge and A is the vector potential
of a magnetic field. We assume the magnetic field B to be
parallel to the z axis and describe it by the asymmetric gauge
A = B(−y,0,0). The eigenstates of the Hamiltonian are of the
form

�(r) = eikxx+ikzz�(y), (41)

and the resulting eigenenergy equation is Ĥ� = E�, with

Ĥ = (τ3 + iτ2)
1

2m

[
(h̄kx + qBy)2 + h̄2k2

y + h̄2k2
z

] + τ3mc2.

(42)

We introduce the magnetic radius L = √
h̄/|q|B and define

ξ = kxL + ηqy/L, where ηq = ±1 is the sign of q. Then, there
is ηqy = ξL − kxL

2 and ∂/∂y = (1/L)∂/∂ξ . The eigenener-
gies are En = sEn,kz

, where [25]

En,kz
=

√
m2c4 + 2mc2h̄ωc(n + 1/2) + (ch̄kz)2. (43)

The corresponding eigenstates |n〉 are characterized by four
quantum numbers: |n〉 = |n,kx,kz,s〉, where n labels the
Landau levels, kx and kz are wave-vector components, and
s = ±1 label positive- and negative-energy branches. The
wave functions are [26]

�n(r) ≡ 〈r|n〉 = eikxx+ikzz

4π
φn(ξ )

(
μ+

n,kx ,s

μ−
n,kx ,s

)
, (44)
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where φn(ξ ) are the harmonic-oscillator functions

φn(ξ ) = 1√
LCn

Hn(ξ )e−1/2ξ 2
, (45)

in which Hn(ξ ) are the Hermite polynomials, and Cn =√
2nn!

√
π . We defined μ±

n,kx ,s = νn,kx
± s/νn,kx

, where νn,kx
=√

mc2/En,kz
.

We want to calculate an average packet velocity in a
magnetic field. We can, as before, introduce the Heisenberg
picture for the time-dependent velocity operator. Then, the j th
component of the average velocity is [see Eq. (18)]

〈v̂j (t)〉 = 〈W |τ3e
iĤ t/h̄v̂j e

−iĤ t/h̄|W 〉, (46)

where v̂j = ∂Ĥ/∂p̂j . For the Hamiltonian (40) in the asym-
metric gauge, we find

v̂x = (τ3 + iτ2)

(
p̂x − qBy

m

)
, (47)

v̂y = (τ3 + iτ2)
p̂y

m
, (48)

v̂z = (τ3 + iτ2)
p̂z

m
. (49)

The unity operator is now

1̂ =
∑

n

|n〉〈n|snτ3, (50)

where the states 〈r|n〉 are given in Eq. (44), and sn = ±1 are
the quantum numbers associated with the states |n〉. The proof
of the above identity is given in Appendix C. Using the unity
operator, we expand the packet |W 〉 in terms of the eigenstates
of Ĥ [see Eq. (16)],

|W 〉 =
∑

n

sn|n〉〈n|τ3|W 〉 ≡
∑

n

sn|n〉Wn, (51)

where Wn = 〈n|τ3|W 〉. By inserting |W 〉 into Eq. (46), one
obtains [see Eq. (18)]

〈v̂j (t)〉 =
∑
nm

snsmW ∗
n Wm〈n|τ3e

iĤ t/h̄v̂j e
−iĤ t/h̄|m〉. (52)

There is e−iĤ t/h̄|n〉 = e−iωnt |n〉, where ωn = snEn,kx
/h̄. Pro-

ceeding the same way as in Sec. II, we have

〈n|τ3e
iĤ t/h̄ = 〈n|eiĤ †t/h̄τ3 = eiωnt 〈n|τ3, (53)

which finally gives

〈v̂j (t)〉 =
∑
nm

snsmW ∗
n Wmei(ωn−ωm)t 〈n|τ3v̂j |m〉. (54)

The matrix elements of velocity operators calculated between
the states |n〉, |m〉 are

〈n|τ3v̂y |m〉 = c
λc

i
√

2L
νn,kz

νm,kz
δkx ,k′

x
δkz,k′

z

× (
√

n + 1δm,n+1 − √
nδm,n−1), (55)

〈n|τ3v̂x |m〉 = c
λc√
2L

νn,kz
νm,kz

δkx ,k′
x
δkz,k′

z

×(
√

n + 1δm,n+1 + √
nδm,n−1), (56)

〈n|τ3v̂z|m〉 = pz

m
νn,kz

νm,kz
δkx ,k′

x
δkz,k′

z
δm,n. (57)

The matrix elements of v̂y and v̂x are nonzero for the states
with m = n ± 1 and arbitrary indexes sn and sm. The matrix
elements of v̂z are nonzero for m = n and arbitrary indexes sn

and sm. To simplify further analysis, we assume the initial wave
packet W (r) to be in a separable form w(r) = wxy(x,y)wz(z)
[cf. Eq. (11)], which gives

W (r) = Wxy(x,y)Wz(z). (58)

Then, there is

Wn = 〈n|τ3|W 〉 = μ+
n,kz

gz(kz)Fn(kz), (59)

where

Fn(kx) = 1√
2LCn

∫ ∞

−∞
gxy(kx,y)e− 1

2 ξ 2
Hn(ξ )dy, (60)

in which

gxy(kx,y) = 1√
2π

∫ ∞

−∞
wxy(x,y)eikxxdx (61)

and

gz(kz) = 1√
2π

∫ ∞

−∞
wz(z)eikzzdz. (62)

For 〈v̂y(t)〉, we obtain

〈v̂y(t)〉 = c
λc

2
√

2iL

∞∑
n,m=0

∫ ∞

−∞
dkz|gz(kz)|2(

√
n + 1δm,n+1

−√
nδm,n−1)Un,m

{(
1 + ν2

mν2
n

)
cos(ωmt − ωnt)

+ (
ν2

mν2
n − 1

)
cos(ωmt + ωnt)

+ i
(
ν2

m + ν2
n

)
sin(ωmt − ωnt)

+ i
(
ν2

m − ν2
n

)
sin(ωmt + ωnt)

}
.

In the above expressions, we use the notation νn ≡ νn,kz
and

ωn = En,kz
/h̄, and

Un,m =
∫ ∞

−∞
F ∗

n (kx)Fm(kx)dkx. (63)

For the Gaussian packet of Eq. (11), one can obtain analytical
expressions for Un,m; see Appendix D. After performing the
summation over m and changing n → n + 1 in δm,n−1 terms,
we finally obtain

〈v̂y(t)〉 = −c
λc

2
√

2L

∞∑
n=0

√
n + 1(Un+1,n + Un,n+1)

×
∫ ∞

−∞
|gz(kz)|2

{(
ν2

n+1 + ν2
n

)
sin(ωn+1t − ωnt)

+ (
ν2

n+1 − ν2
n

)
sin(ωn+1t + ωnt)

}
dkz, (64)

〈v̂x(t)〉 = −c
λc

2
√

2L

∞∑
n=0

√
n + 1(Un+1,n + Un,n+1)

×
∫ ∞

−∞
|gz(kz)|2

{(
1 + ν2

n+1ν
2
n

)
cos(ωn+1t − ωnt)

+ (
1 − ν2

n+1ν
2
n

)
cos(ωn+1t + ωnt)

}
dkz, (65)
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〈v̂z(t)〉 = cλc

2

∞∑
n=0

Un,n

∫ ∞

−∞
kz|gz(kz)|2

×{(
1 + ν4

n

) + (
1 − ν4

n

)
cos(2ωnt)

}
dkz. (66)

Equations (64)–(66) are our final results for the average
velocity of the wave packet in a magnetic field. Both the
arguments of sine and cosine functions as well as coefficients
νn and νn+1 depend on kz, so all of the integrals vanish in the
limit t → ∞, as a consequence of the Riemann-Lebesgue the-
orem, and the resulting oscillations have a transient character.
The velocity of the packet oscillates with many frequencies,
ωn+1 ± ωn (or 2ωn for v̂z), but in practice the spectrum is
limited to a few frequencies related to the largest coefficients
Un+1,n and Un,n. The frequencies ωn+1 − ωn correspond to
the intraband transitions and they can be interpreted as the
cyclotron resonances. These frequencies do not appear in v̂z

velocity. On the other hand, the frequencies ωn+1 + ωn and
2ωn (for v̂z) correspond to the interband transitions and they
can be interpreted as the Zittebewegung components of the
motion, in analogy to the situation at zero field. The motion
in the x-y directions requires that k0x �= 0 because for k0x = 0
all of the coefficients Un+1,n and Un,n+1 vanish [27]. For the
motion in the z direction, one needs only that k0z �= 0 because
the coefficients Un,n are nonzero for any k0x value [27].

Considering the nonrelativistic limit in Eqs. (64)–(66), there
is h̄ωc � mc2 and h̄kz � mc, so that ωn+1 − ωn � h̄ωc and
ωn+1 + ωn � 2mc2/h̄. In this limit, there is νn+1 � νn � 1,
and the ZB part of the velocity is nearly zero. In this case,
we may decouple in Eqs. (64)–(66) the summation over n and
integration over kz. This gives [27]

∞∑
n=0

√
n + 1Un+1,n = −k0xL√

2
, (67)

∞∑
n=0

Un,n = 1. (68)

By integrating over kz, one gets

〈v̂y(t)〉 � h̄k0x

m
sin(ωct), (69)

〈v̂x(t)〉 � h̄k0x

m
cos(ωct), (70)

〈v̂z(t)〉 � h̄k0z

m
. (71)

Thus, in the nonrelativistic limit, the particle moves on a
circular orbit with the cyclotron frequency in the x-y plane
and a constant velocity in the z direction. Let us introduce a
measure of intensity of a magnetic field by its relation to an
effective Schwinger field, h̄eBs/m = mc2, or, equivalently, by
Ls = h̄/mc. There is Bs = 4.41 × 109(m/me)2 T, where me

is the electron mass. Below we perform calculations for pions
π+ having the mass m � 273.1 me, so the effective Schwinger
field is Bs = 3.29 × 1014 T.

In Fig. 3, we plot the average packet velocity for three
values of the magnetic field. The ellipsoidal packet is selected
with a nonzero initial momentum k0x . We assume that the
five parameters dx , dy , dz, L, and k−1

0x have similar orders
of the magnitude, which are the optimal conditions for the
appearance of the Zitterbewegung phenomenon. In Fig. 3, we
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FIG. 3. Time-dependent velocity components for an ellipsoidal
wave packet at various magnetic fields. For (a) low fields, cyclotron
motion is obtained; for (b), (c) higher fields, packet velocity includes
both cyclotron and Zitterbewegung frequencies. In all cases, the
motion decays in time.

selected parameters dx = 0.91(Bs/B)λc, dy = 0.82(Bs/B)λc,
dz = 0.68(Bs/B)λc, k0x = 0.7(B/Bs)λ−1

c , and k0z = 0, where
Bs is the effective Schwinger field. For B = 4.5Bs , we set
k0x = λ−1

c . For low fields (B = 0.0045Bs), the packet moves
on a circular orbit; see Eqs. (69) and (70). For such fields, the
ZB components of the motion are negligible. For higher fields,
the packet motion includes both the intraband and interband
(ZB) components so that several frequencies give significant
contributions to the motion. In all cases, the motion has a
transient character, but for low fields its decay time is very
long. In Fig. 4, we plot components of the average velocity
of a spherical packet in a longer time scale. The collapse-and-
revival patterns occur for both velocity components. After a
sufficiently long time, the oscillations disappear. In Fig. 5,
we show the average velocity 〈v̂z(t)〉 of an ellipsoidal packet
having the same parameters as those used in Fig. 3. For
large magnetic fields, the motion in the z direction is similar
to that in the field-free case exhibiting ZB oscillations; see
Fig. 1. For smaller fields, the ZB oscillations disappear and
only the classical motion remains; see Eq. (71). Finally, it
should be mentioned that in the two-dimensional case, the ZB
oscillations do not disappear in time [27].

V. SIMULATION OF ZB

The phenomenon of Zitterbewegung for relativistic par-
ticles in a vacuum has an unfavorable high frequency cor-
responding to the energy gap between the positive- and
negative-energy branches, h̄ω0 � 2mc2, and a very small
amplitude on the order of the effective Compton wavelength,
�r � h̄/(mc); see Eq. (9). Thus, similarly to the case of
relativistic electrons, one cannot hope at present to observe
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FIG. 4. Average velocity of the spherical wave packet in a
longer time scale. The collapse-revival patterns are seen in the ZB
oscillations. The motion has a transient character.

directly the ZB in a vacuum. However, it was recently
demonstrated by Gerritsma et al. that one can simulate the ZB
of electrons in a vacuum using trapped ions interacting with
laser beams [2]. In this experiment, the authors simulated the
linear momentum p̂i appearing in the Dirac equation with the
use of Jaynes-Cumminngs interaction between the electrons
on trapped ion levels and the electromagnetic radiation. The
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FIG. 5. Average packet velocity 〈v̂z(t)〉 in the direction parallel
to the magnetic field vs time for four values of B. The transition to
the nonrelativistic limit is visible. Parameters are the same as those
used for Fig. 3.

decisive advantage of such a simulation is that one can tailor
the frequency and amplitude of ZB, making them considerably
more favorable than the values for a vacuum. Clearly, it would
be of interest to simulate the ZB of a Klein-Gordon particle
using similar methods. The problem is that in the KGE,
one deals with squares of momentum components p̂2, which
are more difficult to simulate with the Jaynes-Cumminngs
interaction. For this reason, we choose a different route.

The Klein-Gordon equation appears in several classical
systems, usually as a modification of the wave equation
�φ = 0. Under some conditions, the KGE is used to describe
sound waves in ducts [28,29], electromagnetic waves in the
ionosphere [30,31], transverse modes of wave guides [32],
and oceanic waves [33]. Below we examine in more detail
a model proposed by Morse and Feshbach in which one can
simulate the KGE with the use of a piano string and a thin
rubber sheet [13]. By employing this example, we demonstrate
similarities and differences between ZB in the relativistic KGE
and its classical analogues.

Let us consider flexible one-dimensional string in the x

direction; see Fig. 6. We assume that the string is uniform with
a linear density ρ. A uniform tension T is applied to each
element dx of the string. We neglect all other forces acting
on the string (e.g., gravity) and the stiffness of the string.
Let y(x,t) be a displacement of the element dx of the string
from its equilibrium position at an instant t . We assume that
y(x,t) is small compared to the length of the string and to the
distances to each end of the string. The restoring force acting on
each element dx of the string is FT = T dx(∂2y/∂x2) and the
displacement y(x,t) of the released string changes according
to the wave equation [13]

1

u2

∂2y

∂t2
= ∂2y

∂x2
, (72)

y(x,t)

element dx

y

xstring's equilibrium position

string at
instant t

rubber  sheet

TT

FT + FK

FIG. 6. Classical simulation of the KGE according to Morse and
Feshbach [13]. A flexible string is anchored at two points and tension
T is applied to each end. The string is also attached to a thin rubber
sheet. At instant t , the shape of the string is given by y(x,t). There
are two forces acting on each element dx of the string: restoring force
FT due to applied tension and elastic force FK of stretched rubber.
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where u2 = T/ρ. Now we attach the string to an elastic
substrate, e.g., to a thin sheet of rubber which can shrink or
expand in the y direction. Then, in addition to the restoring
force due to the tension, there will be another restoring force
due to the elastic rubber acting on each element of the string.
If the element dx is displaced to y(x,t) and the rubber sheet
obeys the Hook law, then the restoring force acting on the
element dx of the string is FK (x,t) = −Ky(x,t)dx, where K

is the elastic constant of the rubber sheet. The second Newton
law for the element dx of the string having mass dm = dxρ

is dxρ(∂2y/∂t2) = FT + FK , so the equation of motion of the
released string is

1

u2

∂2y

∂t2
= ∂2y

∂x2
− ν2y, (73)

where ν2 = K/T . Equation (73) has the form of the wave
KGE with the light speed replaced by u and the mass term
m2c2/h̄2 replaced by ν2. By comparing Eq. (73) with Eq. (27),
we find the following correspondence between parameters of
the two systems:

T

ρ
↔ c2, (74)

K

T
↔ m2c2

h̄2 = λ−2
c . (75)

Thus, one can simulate values of c and λc by changing material
parameters ρ, K , and T .

However, there exist also limitations of such a simulation
and they affect a possibility of observation of ZB motion in
classical analogues of the KGE. The first difference between
the relativistic KGE and its classical counterpart is that the
wave function φ in the relativistic KGE is not an observable.
On the other hand, all classical analogues of φ (such as
a displacement of the string, the pressure of sound or the
oceanic waves, the intensity of the electromagnetic field, etc.)
are observable quantities. The second difference is that the
relativistic function φ is a function of a complex variable,
while its classical counterpart is a function of a real variable.
A direct consequence of these limitations for observation of
ZB in classical systems is that for any real function ξ (r,t)
being the solution of the KGE, the current density associated
with this function is always zero: j ∝ [ξ ∗∇ξ − (∇ξ ∗)ξ ] = 0.
Therefore, we are not able to simulate directly the current or
velocity oscillations calculated in the previous sections.

To overcome this problem, let us consider the motion of a
neutral particle described by a real field ξ . For simplicity, we
assume a one-dimensional KGE that can be simulated by a
flexible string attached to an elastic substrate described above.
In our calculations, we use the relativistic form of the KGE, but
the final results will be presented for parameters corresponding
to the flexible string model. We assume the initial wave packet
to be a real Gaussian function without an initial momentum,

w0(x) = 1

(d
√

π )1/2
exp[−x2/(2d2)]. (76)

Its Fourier transform is

w0(k) = (2d
√

π )1/2 exp[−d2k2/2]. (77)

A real solution ξ (x,t) of the KGE is

ξ (x,t) = 1

2π

∫ ∞

−∞
w0(k) cos(kx − ωkt)dk, (78)

where ωk = ω0

√
1 + (kλc)2. The average current for the real

wave packet of Eq. (76) is zero and no ZB occurs. Thus, we
turn to other physical operators which do not commute with
the KG Hamiltonian (1). Namely, we calculate a variance of
the position operator for the above real function ξ (x,t),

V = 〈ξ |x̂2|ξ 〉 − 〈φ|x̂|φ〉2 = 〈ξ |x̂2|ξ 〉, (79)

since 〈φ|x̂|φ〉 = 0. Assuming ξ (x,t) in the form (78), we have

V =
∫∫∫ ∞

∞
w0(k)w0(k′) cos(kx − ωkt)

× cos(k′x − ωk′ t)x2dxdkdk′

=
∫∫∫ ∞

∞
[BkBk′eix(k+k) + BkB

∗
k′e

ix(k−k′)

×B∗
k Bk′e−ix(k−k′) + B∗

k B∗
k′e

−ix(k+k′)]x2dxdkdk′, (80)

where Bk = w0(k)e−iωkt /(4π ). Consider the first of the four
terms given above. Because w0(k) and Bk decay exponentially
for k → ±∞, one can change the order of integration over x, k,
and k′, and replace x2 → (∂/∂ik)(∂/∂ik′). Then we integrate
by parts over k and k′, and obtain∫∫∫ ∞

∞
BkBk′eix(k+k)x2dxdkdk′

= −
∫∫∫ ∞

∞

∂Bk

∂k

∂Bk′

∂k′ eix(k+k)dxdkdk′

= 2π

∫ ∞

∞

∂Bk

∂k

∂Bk′

∂k′

∣∣∣∣
k′=k

dk. (81)

The other three terms in Eq. (80) are calculated similarly. After
some manipulations, we find

V = V c
1 + V osc

1 + V c
2 + V osc

2 + V3, (82)

where

V c
1 = d3

2
√

π

∫ ∞

∞
e−d2k2

(kd)2dk, (83)

V osc
1 = d3

2
√

π

∫ ∞

∞
e−d2k2

(kd)2 cos(2ωkt)dk, (84)

V c
2 = d(ct)2

2
√

π

∫ ∞

∞

e−d2k2
(kλc)2

1 + (kλc)2
dk, (85)

V osc
2 = −d(ct)2

2
√

π

∫ ∞

∞

e−d2k2
(kλc)2

1 + (kλc)2
cos(2ωkt)dk, (86)

V3 = d2(ct)√
π

∫ ∞

∞

e−d2k2
(kλc)√

1 + (kλc)2
sin(2ωkt)dk. (87)

The term V3 is odd in k and it vanishes upon the integration.
For t = 0, the variance in Eq. (82) is equal to the variance
V0 = d2/2 of the initial packet w0(x). The variance given
in Eq. (82) consists of oscillating and nonoscillating terms.
For large times, the nonoscillating terms grow in time as
d2/2 + Ct2, where C is a constant depending on d. The
quadratic dependence of the variance on time is similar to
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FIG. 7. Calculated classical variance of the position of the wave
packet propagating according to the KGE: nonoscillating part of
variance (dashed line) and total variance (solid line). For string
oscillations analyzed in the text, there is λs

c = 4.47 mm and t s
c =

2.37 × 10−5 s.

that of a Gaussian wave packet in the nonrelativistic quantum
mechanics. The oscillations in Eqs. (84) and (86) have the
same interband frequency 2ωk as the velocity oscillation given
in Eq. (8). Therefore, the oscillations of variance of the position
operator can be interpreted as a signature of Zitterbewegung
in classical systems. The term V osc

1 has a decaying character
and it vanishes after a few oscillations. The V osc

2 term gives
persistent oscillations because of the presence of the t2 factor
in front of the integral. To estimate the time dependence of
these oscillations, we consider the limit of large packet widths
d � λc. In this case, the Gaussian function in Eq. (86) restricts
the integration to small values of k. Then we may disregard the
(kλc)2 term in the denominator of the integrand and expand ωk

under the cosine function. This gives approximately

V osc
2 � −d(ct)2

2
√

π

∫ ∞

∞
e−d2k2

(kλc)2 cos
[
ω0t

(
2 + k2λ2

c

)]
dk

= −d(ct)2

4

∑
η=±1

e2iηω0t

(d2 + iηω0t)3/2
. (88)

For large time, we may approximate, in Eq. (88),

V osc
2 � −Cdt

1/2 cos(2ω0t), (89)

where Cd is a constant depending on d. Thus, the oscillations of
variance are persistent, their amplitude increases with time as
t1/2, and their frequency is 2ω0. Since nonoscillating terms V c

2
increase as t2, the total variance of the packet has a quadratic
time dependence with superimposed oscillations. This behav-
ior is illustrated in Fig. 7. In our classical considerations, we
do not face the problem of negative variances that can occur
for some quantum systems; see Refs. [34,35]. For t < 5tc,
the oscillations have an irregular character because of the
contribution of the V osc

1 term.

Estimating the characteristic frequency 2ω0 for the flexible
string attached to the elastic substrate, we have

ω2
0 = m2c4

h̄2 = c2 × 1

λ2
c

←→
(

T

ρ

)(
K

T

)
= K

ρ
, (90)

so that the analog of the relativistic frequency ω0 does not
depend on the applied tension. Taking a piano copper string of
the bulk density ρ3D = 8940 kg/m3 and having a cross section
of radius r = 1 mm, one gets a linear density ρ = πr2ρ3D =
2.81 × 10−2 kg/m. We identify the rubber elastic constant
K with the Young modulus K = 0.05 × 109 N/m2. Then the
analog of the ZB frequency given in Eq. (90) is 2ωs

0 = 8.44 ×
104 s−1, i.e., the corresponding frequency is f0 = 13.43 kHz,
which can be heard by the human ear. The characteristic time of
the ZB oscillations is t sc = 1/ωs

0 = 2.37 × 10−5 s. Assuming
the tension of the string T = 1000 N, we find from Eq. (75)
that the simulated Compton wavelength is λs

c = 4.47 mm. The
initial wave packet should have widths d on the order of a few
λs

c, i.e., of a few centimeters, and it will move with the velocity
u = 188.7 m/s; see Eq. (74). Thus, it is really possible to
simulate and observe the Zitterbewegungphenomenon in this
system. Finally, we observe that in classical simulations, all
of the involved quantities are well-defined observables. Since
the classical KGE does not reproduce but only simulates the
quantum KGE, we are allowed to consider quantities which
are not well defined in the quantum world.

VI. DISCUSSION

Our main results for the ZB of KG particles in the absence
of fields are shown in Fig. 1 and in the presence of a magnetic
field in Figs. 3–5. It is not our purpose here to consider the
difficulties of the one-particle Klein-Gordon equation, but we
keep them in mind. In particular, we do not consider particle
trajectories as they are believed to not be well defined; see [20].
On the other hand, we describe average particle velocities and
currents both in the Hamiltonian and wave formalisms. The
results can be compared to those for relativistic electrons in a
vacuum described by the Dirac equation as well as for electrons
in solids.

Similarly to the Dirac electrons, the ZB phenomenon of KG
particles is due to the interference of positive- and negative-
energy states. In the nonrelativistic limit, one of the two
components progressively vanishes and the ZB contribution
to the motion disappears. This can be clearly seen in Figs. 3
and 5, as well as in Fig. 3 of Ref. [27] for the Dirac electrons.
If particles are described by wave packets, then the ZB
motion decays in time; see our Fig. 1 for KE particles and
Fig. 2 of Ref. [36] for the Dirac electrons. This is a general
consequence of the Riemann-Lebesgue theorem, as indicated
by Lock [24], calculated by the present authors [40], and
experimentally confirmed by Gerritsma et al. [2]. In all cases,
the basic frequency of the ZB oscillations is given by the
energy difference between the positive- and negative-energy
branches, h̄ωZ � 2mc2, with the corresponding particle mass.
The main difference with the Dirac electrons is the spin. For
KG particles, the interband ZB frequencies in a magnetic field
do not include the spin energies, and one does not deal with
the Fermi sea for the negative-energy branches, etc. The KG
Hamiltonian is quadratic in momenta, which does not allow
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a direct simulation with the use of the Jaynes-Cummings
interaction. In our calculations, we assume the KG particle
to be represented by Gaussian wave packets; cf. Eq. (11). It
is not at present possible to prepare in a vacuum a mesonlike
particle in this form. However, one can produce Gaussian wave
packets in simulations by trapped ions, as well as in the case
of solid-state electrons [37].

It should be mentioned that similarly to the case of the Dirac
equation, one can define for a KG particle a mean position
operator [10,12,23]

X̂ = x̂ − ih̄
τ1 p

2p2
0

, (91)

where p0 =
√

m2c2 + p2. The time derivative of X̂ satisfies
the relation

d X̂
dt

= c pτ3

p0
, (92)

so that the mean velocity (92) does not exhibit the Zitterbewe-
gung phenomenon, but has a strictly classical behavior. The
eigenfunctions of X̂ are not localized in configuration space,
but rather extend over a radius on the order of λc = h̄/mc [23].
The operator X̂ can be obtained by means of a transformation
similar to that of Foldy-Wouthuysen [10,23], or by using a set
of physically reasonable requirements [38].

One could ask whether the noncausality aspects of the
Klein-Gordon equation in the ST form mentioned in Sec. I
do not interfere with the viability of the Zitterbewegung of
spin-zero particles. Guertin and coworkers considered both
the ZB [9] and noncausal features of the KG equation [22]
and did not find inconsistency between the two. We believe
that the additional factors we introduced into the problem,
namely, the wave packet and a constant magnetic field, should
not interfere with the above consistency. In Appendix B, we
explicitly indicate how to eliminate nonphysical components
of the wave packet.

As to the Zitterbewegung of electrons in narrow-gap semi-
conductors and, in particular, in zero-gap monolayer graphene,
one should emphasize that although it is also described using
a two-band model of band structure [4], its physical nature
is completely different from the ZB of particles in a vacuum.
The ZB in semiconductors or in graphene results from the
electron motion in a periodic potential [39]. In a zero-gap
situation in graphene, the ZB frequency is given by the
difference of energies between positive- and negative-energy
bands corresponding to the average value of quasimomentum
h̄k0 for the wave packet [40]. A one-dimensional system which
strongly resembles the KG particle in a vacuum is presented
by electrons in carbon nanotubes: one can neglect the electron
spin and have an energy gap controlled by the tube’s diameter
[41]. The resulting ZB frequency and amplitude have values
easily accessible experimentally. On the other hand, it is at
present unclear how to follow the dynamics of a single electron
in a solid. As to KG particles in a vacuum, one is bound to
recourse to simulations since the ZB frequency and amplitude
as well as field intensities necessary to see ZB effects in the
presence of a magnetic field exceed the present experimental
possibilities.

We present a classical simulation of ZB by using a
mechanical system and calculate the oscillating variance of

the position of the wave packet. The variance of the position
operator for the Dirac Hamiltonian was calculated by Barut and
Malin [42], who found it to be sensitive to the ZB of electrons
in a vacuum. The present authors analyzed in Ref. [40] the
variance of the position operator in bilayer graphene and found
its oscillating character with the frequency equal to that of ZB.
Our present simulation of variance (the second moment of the
position operator) uses a real wave function and the variance
is always positive. It was shown by Lev et al. [34] that when
the wave function is complex, the variance can be positive or
negative. In this case, one may be forced to calculate the first
or third moment of the position operator.

One should finally remark that attempts are constantly
made in the literature to overcome the above-mentioned
difficulties in the interpretation of the position operator in
the KG equation. In particular, Mostafazadeh [43] proposed
a redefinition of the scalar product of solutions to the KGE,
which allows one to obtain a positively defined probability
distribution of the position. Semenov et al. [35] proposed to
limit the allowed solutions of the KG equation to those having
positive-definite probability distributions. They showed that
the physical solutions of the KGE fulfill this criterion. If the
above attempts are accepted, then one could analyze the ZB of
the position operator for KG particles; see Eq. (9).

VII. SUMMARY

We considered the trembling motion (Zitterbewegung) of
relativistic spin-zero particles in the absence of fields and
in the presence of a magnetic field using the Klein-Gordon
equation. We aimed to describe physical observables (currents
and velocities), calculating quantities averaged with the use of
Gaussian wave packets. Surprisingly, the calculated particle
velocities can exceed the velocity of light for sufficiently
large momenta, indicating that the KGE does not possess
the automatic restriction of relativity. We showed that the
trembling motion has a decaying character resulting from
an interference of positive- and negative-energy subpackets
moving with different velocities. In the presence of a magnetic
field, there exist many interband frequencies that contribute
to the Zitterbewegung. On the other hand, in the limit of
nonrelativistic energies, the interband ZB components vanish,
while the intraband components reduce to the cyclotron
motion with a single frequency. The trembling motion was
simulated using the classical system obeying the Klein-Gordon
equation—a stretched string attached to a rubber sheet. The
calculated variance of the position of the string shaped initially
as a Gaussian packet exhibits oscillations corresponding to the
Zitterbewegungwith the correct frequency.

APPENDIX A

In this appendix, we calculate an exact time dependence
of current operators for a KG particle in a magnetic field. We
define the creation and annihilation operators

â = (ξ + ∂/∂ξ )/
√

2,

â† = (ξ − ∂/∂ξ )/
√

2,
(A1)
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and rewrite Eq. (40) in the form

Ĥ = T̂
[
h̄ωc

(
â†â + 1

2

)
+ h̄2k2

z

2m

]
+ τ3mc2, (A2)

where ωc = qB/m is the cyclotron frequency and T̂ = (τ3 +
iτ2). The current density is

j = h̄

2im
[ψ†τ3T̂ ∇ψ − (∇ψ†)τ3T̂ ψ] − e

mc
Aψ†τ3T̂ ψ,

(A3)

and the average current is 〈 j〉 = ∫
jd3r . We introduce a

current operator Ĵ in such a way that for j given in Eq. (A3),
there is

〈ψ |τ3 Ĵ |ψ〉 =
∫

jd3r. (A4)

Note the presence of τ3 in the matrix element. In the
asymmetric gauge, one has

〈jx〉 = − ih̄

2m

∫ (
ψ†τ3T̂

∂ψ

∂x
− ∂ψ†

∂x
τ3T̂ ψ

)
d3r

− qB

mc

∫
(ψ†τ3T̂ yψ)d3r, (A5)

〈jy〉 = − ih̄

2m

∫ (
ψ†τ3T̂

∂ψ

∂y
− ∂ψ†

∂y
τ3T̂ ψ

)
d3r. (A6)

Below we assume the function ψ to be Gaussian-like. In that
case, we may simplify the above expressions for the average
current by integrating by parts the terms including derivatives
of ψ†,

〈jx〉 = − ih̄

m

∫ (
ψ†τ3T̂

∂ψ

∂x

)
d3r−qB

mc

∫
(ψ†τ3T̂ yψ)d3r,

(A7)

〈jy〉 = − ih̄

m

∫ (
ψ†τ3T̂

∂ψ

∂y

)
d3r, (A8)

so that the components of the current operator are

Ĵx = − ih̄

m
T̂ ∂

∂x
− qB

mc
T̂ ŷ, (A9)

Ĵy = − ih̄

m
T̂ ∂

∂y
. (A10)

In the Heisenberg picture, the time-dependent current
operator is

Ĵ(t) = eiĤ t/h̄ Ĵ(0)e−iĤ t/h̄, (A11)

where Ĥ is given in Eq. (A2). Our task is to calculate the time
evolution of the current operators Ĵx(t) and Ĵy(t). By averaging
these operators over the state ψ , as shown in Eq. (A4),
one obtains the time-dependent charge current corresponding
to ψ .

It is convenient to rewrite current operators in Eqs. (A9)
and (A10) in the form

Ĵx = − ih̄

m
P̂ − qB√

2mc
(Ĵ + Ĵ †), (A12)

Ĵy = − ih̄√
2m

(Ĵ − Ĵ †), (A13)

where we introduce three auxiliary operators:

P̂ = (τ3 + iτ2)
∂

∂x
≡ T̂ ∂

∂x
, (A14)

Ĵ = (τ3 + iτ2)â ≡ T̂ â, (A15)

Ĵ † = (τ3 + iτ2)â† ≡ T̂ â†. (A16)

We calculate the time dependence of Ĵ , Ĵ †, and P̂ in a way
similar to that described in Ref. [27]. Consider first the operator
P̂ . From the equation of motion P̂t = (i/h̄)[Ĥ ,P̂], one has

P̂t = imc2

h̄
[τ3,P̂] = 2iω0τ1

∂

∂x
, (A17)

where we used T̂ 2 = 0. Since {Ĥ ,P̂t } = 0, there is [Ĥ ,P̂t ] =
2Ĥ P̂t − {Ĥ ,P̂t } = 2Ĥ P̂t , and one obtains

P̂t t = 2i

h̄
Ĥ P̂t . (A18)

We solve this equation for P̂t and then integrate the solution
over time,

P̂(t) = h̄

2iĤ
e2iĤ t/h̄P̂t (0) + Ĉ, (A19)

where Ĉ is a constant of integration. Applying the initial condi-
tions P̂(0) = T̂ (∂/∂x), P̂t (0) = 2iω0τ1(∂/∂x), and using the
identity Ĥ−1 = Ĥ /E2, we have

P̂(t) = T̂ ∂

∂x
+ h̄ω0Ĥ

E2
(e2iĤ t/h̄ − 1)τ1

∂

∂x
. (A20)

It is seen that P̂(t) in Eq. (A20) satisfies the initial conditions
for P̂(0) and P̂t (0). The form of P̂(t) given above resembles
results obtained for the position operator in the field-free case
by Fuda and Furlani [10].

Now we turn to the operators Ĵ and Ĵ †. From Eqs. (A15)
and (A16), one has

Ĵt = 2iω0τ1â, (A21)

Ĵ †
t = 2iω0τ1â

†, (A22)

where ω0 = mc2/h̄. Using [â,â†] = 1, one obtains

{Ĥ ,Ĵt } = −2iω0h̄ωcĴ , (A23)

{Ĥ ,Ĵ †
t } = +2iω0h̄ωcĴ †. (A24)

Upon applying the identities

[Ĥ ,Ĵt ] = +2Ĥ Ĵt − {Ĥ ,Ĵt }, (A25)

[Ĥ ,Ĵ †
t ] = −2Ĵ †

t Ĥ + {Ĥ ,Ĵ †
t }, (A26)

we get
Ĵt t = +(2i/h̄)Ĥ Ĵt − 2ω0ωcĴ , (A27)

Ĵ †
t t = −(2i/h̄)Ĵ †

t Ĥ − 2ω0ωcĴ †. (A28)

In Eqs. (A27) and (A28), we eliminate terms with the first
derivatives using the substitutions Ĵ = exp(+iĤ t/h̄)B̂ and
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Ĵ † = B̂† exp(−iĤ t/h̄), respectively. This gives

B̂t t = −(�̂2 + 2ωcω0)B̂, (A29)

B̂†
t t = −B̂†(�̂2 + 2ωcω0), (A30)

where �̂ = Ĥ /h̄. In the above equations, the operator

M̂2 = �̂2 + 2ωcω0 (A31)

stands on the left-hand side of B̂, but on the right-hand side of
B̂†. The solutions to Eqs. (A29) and (A30) are

B̂ = e−iM̂t Ĉ1 + eiM̂t Ĉ2, (A32)

B̂† = Ĉ†
1e

−iM̂t + Ĉ†
2e

iM̂t , (A33)

whereM̂ = +
√
M̂2 is the positive root ofM̂2. Both Ĉ1 and Ĉ2

and their complex conjugates are time-independent operators.
Using the initial conditions B̂(0) = Ĵ (0) = T̂ â and

B̂t (0) = Ĵt (0) = +2iω0τ1â [see Eq. (A21)] and similar ex-
pressions for B̂†(0) and B̂†

t (0), we find that Ĵ (t) = Ĵ1(t) +
Ĵ2(t), where

Ĵ1(t) = 1
2ei�̂t e−iM̂t [Ĵ (0) + M̂−1Ĵ (0)�̂], (A34)

Ĵ2(t) = 1
2ei�̂t e+iM̂t [Ĵ (0) − M̂−1Ĵ (0)�̂]. (A35)

Similarly, one can express Ĵ †(t) = Ĵ †
1 (t) + Ĵ †

2 (t), where

Ĵ †
1 (t) = 1

2 [Ĵ †(0) + �̂Ĵ †(0)M̂−1]e+iM̂t e−i�̂t , (A36)

Ĵ †
2 (t) = 1

2 [Ĵ †(0) − �̂Ĵ †(0)M̂−1]e−iM̂t e−i�̂t . (A37)

The results are given in terms of operators �̂ and M̂. To
finalize the description, one needs to specify the physical sense
of functions appearing in Eqs. (A34)–(A37).

For a reasonable function f (D̂) of an operator D̂ having
eigenvalues λd and eigenstates |d〉, there exists the following
relationship: f (D̂)|d〉 = f (λd)|d〉, provided that f (λd) exists.
To find the meanings of the operators M̂−1 and e±iM̂t , we
express them as functions of the operator M̂2 = Ĥ 2/h̄2 +
2ω0ωc; see Eq. (A31). From the definition of M̂2, it follows
that its eigenstates are equal to the eigenstates |n〉 of Ĥ . The
eigenvalues λ2

n of the operator M̂2 are λ2
n,kz

= E2
n+1,kz

, and we
obtain

M̂±1|n〉 = (M̂2)±1/2|n〉 = ηE±1
n+1,kz

|n〉, (A38)

e±iM̂t |n〉 = e±i(M̂2)1/2t |n〉 = e±iηEn+1,kz |n〉, (A39)

where η = +1 or η = −1. As seen from Eqs. (A34)–(A37),
the sums Ĵ1(t) + Ĵ2(t) and Ĵ †

1 (t) + Ĵ †
2 (t) do not depend on

the sign of η, so we select η = +1.
Finally, we show that the matrix elements of the operator

Ĵ (t) = Ĵ1(t) + Ĵ2(t) are equal to the matrix elements of the
current operator ĴH (t) = ei�̂t Ĵ (0)e−i�̂t in the Heisenberg
picture. The operator Ĵ is proportional to the annihilation
operator â whose nonvanishing matrix elements are 〈n′|â|n〉 =√

n + 1δn′,n+1. We select two eigenstates of KG Hamiltonian
|n〉 = |n,s〉 and |n′〉 = |n + 1,z〉; see Eq. (44). Here we omitted
quantum numbers kx and kz. For ĴH (t), one has

〈n|τ3ĴH (t)|n′〉 = eisωnt e−izωn+1t Ĵ (0)nn′ , (A40)

where we define Ĵ (0)nn′ = 〈n|τ3Ĵ (0)|n′〉. To calculate the
matrix elements of Ĵ1(t), we use Eqs. (A38) and (A39) and
obtain

〈n|M̂−1Ĵ (0)�̂|n′〉 = h̄

En+1
Ĵ (0)nn′

zEn+1

h̄
= zĴ (0)nn′ ,

(A41)

which finally gives

〈n|Ĵ1(t)|n′〉 = 1 + z

2
Ĵ (0)nn′eisωnt e−iωn+1t , (A42)

〈n|Ĵ2(t)|n′〉 = 1 − z

2
Ĵ (0)nn′eisωnt e+iωn+1t . (A43)

The matrix elements of Ĵ1(t) are nonzero for z = +1 only,
while the matrix elements of Ĵ2(t) are nonzero for z = −1
only. Comparing Eqs. (A42) and (A43) with Eq. (A40), we
see that for each of the four combinations of s = ±1 and
z = ±1, the matrix elements of ĴH (t) are equal to the matrix
elements of Ĵ (t) = Ĵ1(t) + Ĵ2(t), which is what we wanted
to show. The calculations for Ĵ †(t) are similar to those for
Ĵ (t). The compact equations (A34)–(A37) are our final results
for the time dependence of the Ĵ (t) and Ĵ †(t) operators.
These equations are exact and they are quite fundamental
for relativistic spin-zero particles in a magnetic field. If we
calculate the average currents of Eqs. (A12) and (A13) with
the use of expressions (A42) and (A43) and the wave packet
(11), then one obtains results corresponding to the velocities
given in Sec. IV.

APPENDIX B

In this appendix, we analyze in more detail the relation
of the particle velocity to the speed of light. We consider
the (1,1) component of the velocity operator for a KG particle
given in Eq. (7). For the wave packet 〈r|w〉 = w(r)(1,0)T with
one nonzero component, the average velocity is given by the
average of (v̂z)11(t) over the function w(r). The unexpected
feature of operator (v̂z)11(t) is that for large p, this velocity
can exceed the speed of light c.

There are two possible ways to overcome this problem.
We can additionally assume that |p| � mc, which ensures
that the velocity (v̂z)11(t) does not exceed c. This condition
is equivalent to |q| � 1 in the text; see Eq. (7). Alternatively,
one can take the initial wave packet w(r), which does not
contain components with | p| > mc. Then, the Gaussian packet
in Eq. (12) must be replaced by a non-Gaussian packet w′(r)
of the form

〈k|w′〉 = (2d
√

π )3/2 exp[−d2(k − k0)2/2]�(λc − |k|),
(B1)

where �(ξ ) is the step function.
For the Dirac Hamiltonian ĤD = c

∑
j α̂j p̂j + mc2β̂, the

situation is different. By expanding eiĤDt/h̄ in a power series,
one obtains an expression analogous to eiĤ t/h̄ given in Eq. (6).
After some algebra, we find

(v̂z)
D
11(t) = mc2pz

m2c2 + p2
[1 − cos(2Et/h̄)]. (B2)

In contrast to the KG case, the velocity operator given in
Eq. (B2) has correct relativistic behavior for all values of p. In
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Eq. (B2), the expression in square brackets oscillates between
zero and two. The factor vD( p) = mc2pz/(m2c2 + p2) tends
to zero for both large and small values of p. Its maximum is
at pmax = (0,0,mc), for which one obtains

(v̂z)
D
11(t) = c

2
[1 − cos(2

√
2ω0)]. (B3)

The above velocity never exceeds the speed of light. Therefore,
when calculating the average velocity of the wave packet
for the Dirac Hamiltonian, there is no need for an artificial
truncation of the high-momentum components of the wave
packet, as proposed in Eq. (B1) for a KG particle.

APPENDIX C

We prove here some identities appearing in the previous
sections. We begin with the identity in Eq. (50). Closing
Eq. (50) with the use of states 〈r| and |r ′〉, employing Eq. (44),
and writing explicitly the summations and integrations over the
quantum numbers, we obtain

δr,r ′ =
∑

n

〈r|n〉〈n|r ′〉snτ3 = 1

16π2

∞∑
n=0

φn(ξ )φn(ξ ′)

×
∫ ∞

−∞
eikx (x−x ′)dkx

∫ ∞

−∞
eikz(z−z′)dkz

×
∑
s=±1

(
μ+
μ−

)
(μ+,μ−)sτ3, (C1)

where μ± ≡ μ±
n,kz,s

. In the above equation, the summation over
n gives δξ,ξ ′ , and the product of the two integrals is 4π2δx,x ′δz,z′ ,
so the product of the three terms equals 4π2δr,r ′ . By taking
the explicit form of μ± = ν ± s/ν where ν = √

mc2/En,kz
,

we obtain, for the last line of Eq. (C1),∑
s=±1

(
s(ν + s/ν)2 s(ν2 − 1/ν2)
s(ν2 − 1/ν2) s(ν − s/ν)2

) (
1 0
0 −1

)
= 4. (C2)

Collecting all numerical factors, we see that the right-hand
side of Eq. (C1) equals δr,r ′ .

Next we prove the identity used in the derivation of
Eqs. (19) and (53). Let Ô be any operator for which Ô =
τ3Ô

†τ3, where the dagger signifies the Hermitian conjugate.
We want to show that

τ3e
Ô = eÔ†

τ3. (C3)

To this end, we expand the exponents and get

τ3

[
1 + Ô

1!
+ Ô2

2!
+ · · ·

]
=

[
1 + Ô†

1!
+ Ô†2

2!
+ · · ·

]
τ3.

(C4)

Since Ô = τ3Ô
†τ3, there is Ô† = τ3Ôτ3. Then, for n � 0,

there is Ô†n = τ3Ô
nτ3, and we obtain, for the right-hand side

of Eq. (C4),[
1+ Ô†

1!
+ Ô†2

2!
+ · · ·

]
τ3 =

[
1+τ3

Ô

1!
τ3+τ3

Ô2

2!
τ3+ · · ·

]
τ3

= τ3

[
1+ Ô

1!
+ Ô2

2!
+ · · ·

]
= τ3e

Ô,

which is the desired result.

APPENDIX D

In this appendix, we quote for completeness all formulas
necessary for the calculation of coefficients Um,n in Eqs. (64)–
(66). Here we assume the initial wave vector in the form k0 =
(k0x,0,k0z). Using the definitions of gxy(kx,y), Fn(kx), and
Um,n, we obtain (see Ref. [27])

gxy(kx,y) =
√

dx

πdy

e− 1
2 d2

x (kx−k0x )2
e
− y2

2d2
y , (D1)

and

Fn(kx) = An

√
Ldx√

2πdyCn

e− 1
2 d2

x (kx−k0x )2
e− 1

2 k2
xD

2
Hn(−kxc), (D2)

where D = L2/
√

L2 + d2
y , c = L3/

√
L4 − d4

y , and

An =
√

2πdy√
L2 + d2

y

(
L2 − d2

y

L2 + d2
y

)n/2

, (D3)

Um,n = A∗
mAnLQdx

√
π e−W 2

πCmCndy

min{m,n}∑
l=0

2l l!

(
m

l

)(
n

l

)

× [(1 − (cQ)2](m+n−2l)/2Hm+n−2l

[ −cQY√
1 − (cQ)2

]
,

(D4)

in which Q = 1/
√

d2
x + D2, W = dxDQk0x , and Y =

d2
x k0xQ. For the special case of dy = L, the formula for Um,n

is much simpler:

Um,n = 2

√
π (−i)m+n dx

CmCnL

(
L

2P

)m+n+1

× exp

(
−d2

x k2
0xL

2

2P 2

)
Hm+n

(−id2
x k0x

P

)
, (D5)

where P =
√

d2
x + 1

2L2. In the above expressions, the coeffi-
cients Um,n are real numbers and they are symmetric in m,n

indices. For further discussion of Um,n, see Refs. [27,44].
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