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Controlled manipulation of light by cooperative response of atoms in an optical lattice
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We show that atoms in an optical lattice can respond cooperatively to resonant incident light and that such
a response can be employed for precise control and manipulation of light on a subwavelength scale. Specific
collective excitation modes of the system that result from strong light-mediated dipole-dipole interactions can be
addressed by tailoring the spatial phase profile of the incident light. We demonstrate how the collective response
can be used to produce optical excitations at well-isolated sites on the lattice.
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Accurate control of ultracold atomic gases in periodic
optical lattices, in which interactions are well understood,
opens the door to unique and intriguing opportunities to
study many-particle phenomena and their applications. Exper-
imental progress has lead to observations of novel strongly
interacting states, e.g., in quantum phase transitions [1–5]
and fermionic pair condensation [6]. Many-body quantum
entanglement has been generated via controlled atom colli-
sions [7], lattice systems have been used for preparation of
spin-squeezed states for sub-shot-noise interferometry [8],
and the atoms can now even be manipulated in a single-
spin level at a specific lattice site [9]. On the other hand,
recent developments in nanofabrication of arrays of circuit
elements acting as plasmonic resonators has stimulated interest
in photonic metamaterials. A metamaterial is an artificially
tailored crystal consisting of subwavelength-scale structures
that can manipulate light on a nanoscale. Here we show that a
basic Mott-insulator state of a neutral gas of ultracold atoms
confined in an optical lattice, or artificial light crystal, exhibits
strongly interacting electric-dipole transitions leading to a
cooperative response. Such collective behavior can influence
resonant imaging and may also be employed to form a
metamaterial for precise control and manipulation of optical
fields on a subwavelength scale, providing an interesting
nanophotonic tool.

Here we consider an ultracold gas of atoms confined in
a two-dimensional (2D) optical lattice with precisely one
atom per site [9]. Resonant, coherent light whose spatial
phase-profile is adjusted, e.g., by a hologram or spacial light
modulator, illuminates the lattice. The scattered light mediates
strong many-particle dipole-dipole (DD) interactions between
atoms, leading to a cooperative atom response. The optical
excitations of the atoms exhibit collective modes with reso-
nance frequencies and radiative linewidths that dramatically
differ from those of an isolated atom. We demonstrate the
idea of subwavelength-scale light manipulation by engineering
the spatial phase profile of an incident monochromatic plane
wave. The tailored incident field produces localized dipolar
subwavelength-scale excitations of the atoms in desired loca-
tions in the lattice even though the atoms are not addressed
individually. By dynamically adjusting the phase pattern of
the field, the excitations can be controlled and moved around
in the lattice.

The particular example of subwavelength-scale localization
of optical excitations we study here has attracted considerable

interest in nanophotonics with possibilities for microscopy and
data storage applications. Spatial and temporal modulation of
ultrashort laser pulses leads to excitation of energy hot spots
in nanostructures [10,11]. Also interactions between induced
currents and plasmonic waves on nanostructures permit the
excitation of subwavelength hot spots by amplitude- or phase-
modulated monochromatic fields [12–14].

Nontrivial collective optical properties result from a coop-
erative response of the strongly interacting, closely spaced
atoms: Recurrent scattering events, in which a photon is
repeatedly scattered by the same atom, lead to collective modes
with strongly modified spatial configurations and radiation
rates [15–19]. Such scattering processes can result in light
localization that is analogous to Anderson localization of
electrons [20–22]. The resonant response is very different
from the studies of off-resonant optical diagnostics of atomic
correlations in optical lattices [23–29]. Photonic band gaps for
atomic lattices have previously been calculated in Ref. [30].

For our lattice system we numerically calculate the optical
response by stochastically sampling the atomic positions
according to their spatial distributions, then solving the
recurrent scattering events to all orders for each stochastic
realization. We find a strong resonant response in the case
of closely spaced atoms with the near-field emission pattern
from the atoms forming sharp, narrow spatially localized
amplitude peaks. The response is sensitive to detuning of the
incident light from the atomic resonance and to the spatial
separation between the atoms. Tuning light off resonant or
increasing the lattice spacing rapidly leads to suppressed
interactions. If the atoms are not confined strongly enough
to the individual lattice sites, the resulting increased disorder
in the atomic positions due to quantum fluctuations also sup-
presses the strong collective effects in the ensemble-averaged
response.

We take the atoms to occupy the lowest-energy band in a
2D square optical lattice of periodicity a in the xy plane [31].
We assume that the atoms are tightly confined to the lowest vi-
brational state in the z direction of an oblate external potential
and that they reside in the Mott-insulator state with precisely
one atom per site. In a combined harmonic trap and the lattice
the single-occupancy state of bosonic atoms can exist in a
weak harmonic trap or can be engineered from the typical
“wedding-cake” Mott-insulator ground state by manipulating
the multioccupancy states, e.g., by single-site addressing or by
inducing atom parity-dependent losses [9]. In a deep lattice, the
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vibrational ground-state (Wannier) wave function in each site
is approximately that of a harmonic oscillator with frequency
ω = 2

√
sER/h̄ [resulting in a Gaussian density profile ρj (r)

with the 1/e width � = as−1/4/π in the xy plane], where
s denotes the lattice depth in the units of the lattice-photon
recoil energy ER = π2h̄2/(2ma2) [32].

We illuminate the lattice with a monochromatic incident
field Ein(r,t) whose frequency � is nearly resonant on an
electric-dipole transition. This impinging field excites the
dipole transition of the atoms, producing scattered light that,
in turn, impact the driving of neighboring atoms and alter
their scattered light. The scattered photons can mediate strong
interactions between closely spaced atoms, so that the atomic
system responds to light cooperatively, exhibiting collective
excitation eigenmodes. Here, we show how to exploit these
interactions for controlling and manipulating light on a
subwavelength scale. As a specific example, we prepare
subwavelength-scale spatially localized collective excitations
of the atoms in isolated regions of the lattice by considering
an incident plane-wave illumination of the atoms with an
approximately sinusoidal phase profile. Such a response is
distinct from that which would be seen if the atoms did not
interact.

In order to model the cooperative atom response to light, we
assume the incident field is sufficiently weak that saturation
of the excited state can be neglected. For simplicity, we
consider the atomic internal states as an effective two-level
system consisting of a single electronic ground and excited
state. A desired two-level configuration could be realized
with a cycling transition by shifting all other transitions out
of resonance or with a J = 0 → J = 1 transition with all
except one excited state shifted out of resonance [31]. On
impact, light drives atomic transitions inducing a polarization
density P+(r,t) = ∑

j P+
j (r,t), where the polarization within

each site j , P+
j (r,t) = dj δ(r − rj ), and dj is the electric-dipole

moment of an atom at site j with fixed orientation d̂. To
facilitate numerical evaluation of the lattice response, we
express the polarization in terms of stochastic amplitudes ej ,
representing the coherence of atoms j realized for a stochastic
sampling of atomic positions from the atomic density dis-
tributions ρj (rj ), such that P+

j (r,t) = e−i�t℘d̂ δ(r − rj )ej (t),
where ℘ is the atomic dipole matrix element. When the
atomic dynamics evolve on time scales much longer than
the light propagation time across the optical lattice [17],
the induced polarization produces the scattered electric field
E+

S,j (r) = k3/(4π )
∫

d3r ′G(r − r′) · P+
j (r′), where G(r − r′)

is the monochromatic dipole radiation kernel representing the
radiated field at r from a dipole residing at r′ [33]. Thus,
the atom at site j experiences driving by the sum of fields
ES,j ′ scattered from all other atoms in the lattice and the
incident field Ein; these scattered fields are proportional to
the amplitudes ej ′ of their atoms of origin. These multiple-
scattering processes therefore produce collective dynamics
described by

ėj = (iδ − 	/2)ej +
∑

j ′ �=j

Cj,j ′ej ′ + Fj , (1)

Cj,j ′ ≡ 3	

2i
d̂∗ · G(rj − rj ′ ) · d̂, (2)

where Fj ≡ ei�t℘d̂∗ · E+
in(rj )/(ih̄) is the direct driving of the

atom in site j by the incident field, δ ≡ � − ωe,g is the
detuning of the field from resonance, and 	 is the spontaneous
emission rate. For each stochastic realization of atomic
positions, interactions between N atoms in an optical lattice
lead to the formation of N collective atomic excitations, each
with its own resonance frequency and spontaneous emission
rate, which could have either superradiant or subradiant
characteristics.

By exploiting the strong DD interactions, one can tailor the
incident field so that it excites specific linear combinations
of collective modes, providing a desired response. Here
we consider a linearly polarized (êy chosen to be in the
lattice plane), phase-modulated field whose positive frequency
component reads

E+
in(r,t) � êyE0e

iϕ(x,y)ei(kz−�t), (3a)

ϕ(x,y) = π

2
sin(κx) sin(κy). (3b)

A field profile of this form, however, contains evanescent
plane-wave components whose transverse wave vectors exceed
the carrier wave number k = 2π/λ = �/c. We therefore
approximate it through the truncated Fourier expansion [31].
One can produce such a field, e.g., by a hologram or a spatial
light modulator. Figure 1 illustrates how the field Eq. (3) can
excite a checkerboard pattern of localized excitations of atoms
in a lattice. In these calculations, we neglect the width of the
atomic wave functions in the z direction, as a width on the order
of � in the z direction has a negligible effect on the calculated
response. We fully incorporate, however, quantum fluctuations
of the atomic positions on the lattice plane in the vibrational
ground state of each site. The many-atom correlations of
the specific one-atom Mott state are also included. As we
discuss below, interactions between the atoms are vital to
the realization of this pattern. The atoms are arranged in an
18 × 18 square lattice with the spacing a = 0.55λ, and a site
residing at (x0,y0) = (a/2,a/2). The incident field [Eq. (3)]
has a modulation period 2π/κ = 6a, indicating the periodicity
of Ein(r,t) of six sites. We choose the dipole orientation
d̂ ≈ êz + 0.1êy to be slightly rotated from the normal to the
lattice plane so that the atoms scatter fields largely within the
plane while allowing them to be driven by the incident field.
The collective mode spontaneous emission rates range from a
very subradiant 3 × 10−3	 to the superradiant 5	, while their
frequency shifts from the single-atom resonance range from
−2	 to 0.9	.

We first consider an infinitely deep lattice in which the
atoms are perfectly confined at the center in their respective
sites, i.e., with � = 0. In this case, the atomic positions are
deterministic and Eq. (1) reduces to a coupled set of linear
equations whose steady-state solutions for |ej |2 are shown in
Fig. 1(a). A subset of atoms residing at the local minima of
ϕ(x,y) are more strongly excited than those in the surrounding
lattice sites, while those at the local maxima of ϕ(x,y) are
roughly as weakly excited as their surroundings. The peaks sit
on a background with excitations roughly 0.2 times those of
the most excited atoms. We find a subwavelength excitation
full width at half maximum (FWHM) width of the peak to
be less than 0.9λ. This results in a checkerboard pattern with
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FIG. 1. (Color online) The atomic excitation intensities |ej |2/ maxj ′ |ej ′ |2 resulting from the cooperative response of an optical lattice
system to a phase-modulated incident field [Eq. (3)] with modulation period of six sites. The black dots indicate the positions of the populated
sites. In (a), the atoms are perfectly confined at the center of each site and their wave functions have width � = 0. (b) represents the response of
a single stochastic realization of atomic positions sampled from a 2D Gaussian variables of width 0.12a centered on the lattice sites. Ensemble
average responses over several thousand realizations of atomic positions are shown for (c), (e), (f) � = 0.12a and (d) � = 0.21a. In (e), the
incident field is detuned from the resonance of an isolated atom by 10	, while the detuning is zero in all other cases. In (f), atoms were removed
from 8/9 of the sites, resulting in an effective spacing of a′ = 3a, thus suppressing the role of the other sites from the response and destroying
the excitation pattern.

the localized excitations separated by 3
√

2 sites (three sites in
the both directions) sitting on a background of weakly excited
atoms. The regularity of the response can be broken by slightly
altering the period or the orientation of the phase modulation.
Note that the periodicity of the incident field is significantly
larger than the width of the localized excitations.

In a more realistic scenario, the width of the lattice site
atomic wave function due to zero-point fluctuations cannot
be neglected and the scattered light sources are essentially
distributed over the atomic densities. To obtain the average
atomic excitations |e|2j that dominate the near-field emission,
we solve Eq. (1) through Monte Carlo integration [34]. We
obtain a large number of realizations of atomic positions rj in
each site j sampled from a probability distribution matching
the single-atom density function. Then for each realization,
we solve Eq. (1) as if the atoms were localized at the sample
points. We then compute |ej |2 for each sample, and perform
an ensemble average over all realizations of atomic positions.
Each stochastic realization represents a possible outcome of a
single experimental run in which atomic positions are localized
due to the measurement of scattered photons.

Quantum fluctuations of atomic positions in individual sites
can dramatically affect the response. We demonstrate this in
Fig. 1(b) which shows the excitation intensities for a single
stochastic realization of atomic positions in which a single
atom in each site is independently sampled from the Gaussian
density distribution of width � = 0.12a (corresponding to the
lattice height s � 50). The nonregularity of the lattice alters
the collective modes for the sample realization. Although the
atoms are driven by the same incident field that gives rise
to the pattern in Fig. 1(a), the displacement drastically alters
the collective interaction, and yields an optical response with a
significant stochastic noise and a less regular array of localized

peaks. Such effects can be washed out when one calculates the
ensemble average of the response that corresponds to expec-
tation values obtained over many experimental realizations.
The excitation intensity |ej |2 averaged over 6400 position
realizations for Wannier functions of width � = 0.12a is shown
in Fig. 1(c) for the same parameters as those in Fig. 1(b).
With atomic wave function of this width, the collective
interactions producing the pattern of Fig. 1(a) survive the
averaging process, providing an excitation with subwavelength
FWHM and a background excitation comparable to that
calculated for perfectly localized atoms in an infinitely deep
lattice. Weaker confinement only moderately diminishes the
cooperative interactions. For � = 0.21a, corresponding to
s � 5, Fig. 1(d) shows a weakening contrast of the pattern
with a background excitation approximately 0.3 times that of
the peaks, which themselves have slightly broader FWHM
of 1.2λ.

We can illustrate the essential nature of cooperative interac-
tions in the formation of this excitation pattern by suppressing
the DD interactions with an increased detuning of incident
light from the single-atom resonance [see Fig. 1(e)]; in this
case the probability of a multiple-scattering process for a
two-level atom reduces geometrically with the number of
single-scattering events involved in that process [18]. While
the incident field has the same phase modulation, the excitation
pattern of Figs. 1(a) and 1(c) is not preserved.

The pattern formation in Figs. 1(a) and 1(c) truly represents
a cooperative response where the interactions between all the
atoms in the lattice, including also the weakly excited ones, are
essential. We illustrate this in Fig. 1(f), where all of the atoms
not residing at the maxima or minima of the incident field phase
modulation ϕ have been removed from the lattice. In effect, the
lattice spacing was tripled to a′ = 3a = 1.65λ, with an atom
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residing at (x0,y0) = (a′/2,a′/2). If the removed atoms had not
played an essential role, the response of the lattice would show
a checkerboard pattern of strongly excited and weakly excited
atoms. However, the system response displayed in Fig. 1(f)
shows that the atoms in the interior of the lattice are excited
roughly evenly even though each atom is driven with an oppo-
site phase to that of its nearest neighbor. Atoms at the edge of
the sample are more strongly excited due to finite-size effects.

Sharp localized excitations may be broadened by heating
and losses that can inhibit the cooperative atom response.
Raman transitions to other vibrational center-of-mass states
heat up the atoms, broadening the atomic density distributions
in individual sites and increasing the hopping amplitude of
the atoms between the adjacent sites. Such processes could be
reduced, e.g., due to the orthogonality of the eigenfunctions
in each site, if the electronic ground and excited state atoms
approximately experience the same lattice potential even if the
system is not in the Lamb-Dicke regime. Alternatively, if the
atomic linewidth is much larger than the trapping frequency,
the collective response may reach a steady state before the
heating becomes deleterious.

In conclusion, we have shown that resonant DD interactions
between atoms in an optical lattice lead to a collective
response that can be exploited in manipulation of light on a

subwavelength scale. To illustrate this, we studied an example
of engineering a checkerboard pattern of isolated atomic
excitations. Unlike in nanofabricated metamaterial samples
[10–13], here the effect is not based on interactions between
plasmonic and current excitations but purely electric-DD inter-
actions between neutral atoms without magnetic contributions.
Moreover, the positions of the excitations can be dynamically
altered simply by translating the phase-modulation pattern,
so that the collective excitation pattern adiabatically follows
the change in the phase pattern. By understanding these
interactions, the characteristics of an incident field could be
engineered to produce more complex excitations. Our example
also demonstrates how a cooperative response can have
implications on the resonant absorption imaging of 2D atomic
samples in which case deviations from the column density
results have been experimentally observed [35]. Moreover,
the nontrivial relationship between incident field modes and
the collective excitations to which they couple could be of
importance, e.g., to imaging and to the implementation of
quantum memories in which collective optical excitations
facilitate storage and retrieval.
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