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Direct observation of the Fermi surface in an ultracold atomic gas
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The ideal (i.e., noninteracting), homogeneous Fermi gas, with its characteristic sharp Fermi surface in the
momentum distribution, is a fundamental concept relevant to the behavior of many systems. With trapped Fermi
gases of ultracold atoms, one can realize and probe a nearly ideal Fermi gas; however, these systems have a
nonuniform density due to the confining potential. We show that the effect of the density variation, which typically
washes out any semblance of a Fermi surface step in the momentum distribution, can be mitigated by selectively
probing atoms near the center of a trapped gas. With this approach, we have directly measured a Fermi surface
in momentum space for a nearly ideal gas, where the average density and temperature of the probed portion of
the gas can be determined from the location and sharpness of the Fermi surface.
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Homogeneous Fermi gas is a widely used model in quantum
many-body physics and is the starting point for theoretical
treatment of interacting Fermi systems. The momentum
distribution for an ideal Fermi gas is given by the Fermi-Dirac
distribution:

n(k) = 1

e( h̄2k2
2m

−μ)/kBT + 1
, (1)

where the n(k) is the average occupation of a state with
momentum h̄k, m is the fermion mass, μ is the chemical
potential, kB is Boltzmann’s constant, and T is the temperature.
Surprisingly, to our knowledge, the momentum distribution of
an ideal Fermi gas, with its sharp step at the Fermi momentum,
h̄kF , has not been directly observed in experiments. For the
vast majority of Fermi systems, such as electrons in materials,
valence electrons in atoms, and protons and/or neutrons in
nuclear matter, one always has an interacting system. A dilute
Fermi gas of atoms opens new possibilities with its low density,
access to the momentum distribution through time-of-flight
imaging, and controllable interparticle interactions. However,
these trapped gases have nonuniform density, which has
prevented the observation of a sharp step in their momentum
distribution and, more generally, can complicate comparisons
with theory.

If the change in the trapped gas density is small on the
length scale of the relevant physics, one can apply a local
density approximation. Measurements can then be compared
to theory by integrating the prediction for a homogeneous
gas over the density distribution of the trapped gas. While
the agreement between experiment and theory can be quite
good, characteristic features such as a sharp Fermi surface in
k space can be lost in trap-averaged data. For rf spectroscopy
and for thermodynamic measurements, recent work has used
in situ imaging of trapped gases combined with knowledge
of the trapping potential to yield results that can be directly
compared to homogeneous Fermi gas theory [1–4]. However,
this technique cannot probe the momentum distribution, which
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requires a sudden release of the gas from the trap followed by
ballistic expansion and imaging. In this paper, we introduce
a method to measure the momentum distribution locally in a
trapped Fermi gas and present a direct observation of the Fermi
surface in k space.

Previous ultracold gas work has explored boxlike confining
potentials with relatively sharp “walls” to create a more homo-
geneous gas [5,6]; however, achieving a quantum degenerate
gas in these larger volume traps has proven to be challenging.
Alternatively, within the local density approximation, one
could probe a gas with a more uniform density simply by
probing a small fraction of the atoms within the trapped
gas. To obtain spatial selectivity in addition to momentum
information, we use optical pumping by shaped light beams [7]
to select atoms at the center of the cloud (see Fig. 1) as we
release the trapped gas for ballistic expansion and imaging. We
observe the emergence of a steplike momentum distribution
as the fraction of atoms probed decreases. We find that when
probing 40% or less of the atoms, the observed momentum
distribution is consistent with that of a homogenous gas, where
the width and position of the Fermi surface reflect the average
temperature and density of the probed portion of the gas.

We begin with a quantum degenerate gas of N = 9 ×
104 40K atoms in an equal mixture of the |f,mf 〉 = |9/2,

−9/2〉 and |9/2, −7/2〉 spin states, where f is the quantum
number denoting the total atomic spin and mf is its projection.
The atoms are confined in an approximately cylindrically
symmetric trap, created by two orthogonal 1075-nm beams
with 30- and 200-μm waists. We measure a radial trap
frequency νr of 214 Hz and an axial trap frequency νz of
16 Hz. To facilitate future application of this technique
to probing strongly interacting Fermi gases, we work at a
magnetic field that is near a Feshbach resonance between the
initial two spin states. We take data at B = 208.2 G where
the scattering length a between atoms in the |9/2, −9/2〉 and
|9/2, −7/2〉 states is approximately −30a0 [8], where a0 is
the Bohr radius. Here, the gas is very weakly interacting, with
a dimensionless interaction strength of kF a = 0.011.

Our measurements probe only the |9/2, −7/2〉 spin com-
ponent. To selectively probe atoms near the center of the
cloud, we take advantage of the many spin states of 40K
and use two intersecting hollow light beams to optically
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FIG. 1. (Color online) Spatially selective optical pumping with
hollow light beams. (a) An image of the horizontal hollow light
beam. (b) Illustration of the two intersecting hollow light beams used
to optically pump atoms at the edges of the trapped atom cloud.
(c) Schematic level diagram showing the optical pumping and
imaging transitions. The relevant states at B = 208.2 G are labeled
with the hyperfine quantum numbers of the B = 0 states to which
they adiabatically connect.

pump atoms into a spin state that is dark to our imaging
[see Fig. 1(b)]. The hollow light beams are resonant with
the transition from the |9/2, −7/2〉 state to the electronically
excited |5/2, −5/2〉 state [see Fig. 1(c)]. Atoms in this excited
state decay by spontaneous emission with a branching ratio of
0.955 to the |7/2, −7/2〉 ground state and 0.044 to the original
|9/2, −7/2〉 state.

The beams have a Laguerre-Gaussian spatial mode with an
angular index of 2 [see Fig. 1(a)] and are formed using an
absorption mask patterned with a forked diffraction grating
with two dislocations [9]. At the focus, the light intensity is
given by

I (r) = P

πw2

(
2r2

w2

)2

e
− 2r2

w2 , (2)

where P is the total optical power, r is the radial coordinate
transverse to the direction of beam propagation, and w is
the waist. The first beam propagates along the vertical (y)
direction, is linearly polarized, and has a waist of 186 μm.
Given the elongated shape of the trapped gas, this beam is
primarily spatially selective along the long axis (z) of the cloud.
The second beam propagates along the axial (z) direction of
the cylindrically symmetric trap, parallel to B, and is circularly
polarized. This beam has a waist of 16.8 μm and selectively
optically pumps atoms based on their location along x and y.
The beams are independently aligned onto the atom cloud by
looking at the fraction of atoms probed and minimizing shifts
in the position and center-of-mass momentum of the probed
atoms after 10 ms of expansion.

To probe the momentum distribution of the central part
of the trapped gas, we first turn off the trap suddenly and
illuminate the atoms with the vertical hollow light beam,
followed immediately by pulsing on the horizontal beam. The
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FIG. 2. Measured momentum distribution for a weakly interact-
ing Fermi gas. The momentum distribution of the central 16% of
a harmonically trapped gas is obtained from the average of twelve
images. The solid line shows a fit to a homogeneous momentum
distribution, where T is fixed to the value obtained from the
trap-averaged distribution and kF is the only fit parameter. (Inset)
For comparison, we show the trap-averaged distribution, taken from
an average of six images, with fits to the expected momentum
distribution for an ideal gas in a harmonic trap (dashed line) and
to the homogeneous momentum distribution (solid line).

power in the beams is on the order of tens to hundreds of
nanowatts and is varied to control the fraction of atoms that
are optically pumped out of the |9/2, −7/2〉 state. Each beam
is pulsed on for 10 to 40 μs, with the pulse durations chosen
such that the fraction of atoms optically pumped by each of the
two beams is roughly equal (within a factor of two). We then
image the remaining atoms in the |9/2, −7/2〉 state after 10 or
12 ms time of flight [10]. The imaging light propagates along
the z direction and we apply an inverse Abel transform to the
two-dimensional (2D) image (assuming spherical symmetry
in k space) to obtain the three-dimensional (3D) momentum
distribution, n(k).

In Fig. 2, we show normalized momentum distributions
measured with and without using the hollow light beams.
As was first seen in Ref. [11], the trap-averaged momentum
distribution for the Fermi gas is only modestly distorted
from the Gaussian distribution of a classical gas. The dashed
line in the inset to Fig. 2 shows a fit to the expected
momentum distribution for a harmonically trapped ideal Fermi
gas, from which we determine the temperature of the gas
to be T/TF,trap = 0.12 ± 0.02. Here, the Fermi temperature
for the trapped gas is given by TF,trap = EF,trap/kB , where
EF,trap = h(ν2

r νz)1/3(6N )1/3 is the Fermi energy for the trapped
gas. After optical pumping with the hollow light beams so
that we probe the central 16% of the atoms, the measured
momentum distribution (main part of Fig. 2) has a clear step,
as expected for a homogeneous Fermi gas described by Eq. (1).

For a sufficiently small density inhomogeneity, the mo-
mentum distribution should look like that for a homogeneous
gas at some average density. To characterize this, we fit
the normalized distributions to the prediction for an ideal
homogeneous gas (solid lines). The homogeneous gas dis-
tribution is described by its temperature and density. We fix
T to that measured for the trapped gas, which leaves only a
single fit parameter, kF , that characterizes the density. The
momentum distributions are then plotted as a function of
the usual dimensionless momentum, k/kF . The momentum
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FIG. 3. Fit results as a function of the fraction of atoms probed.
(a) As the fraction of atoms probed is decreased, the reduced χ2

for the fit to a homogeneous gas momentum distribution decreases
dramatically and approaches a value of 1.6 for fractions less than
40%. The minimum χ 2 is limited by systematic noise in the image
(i.e., fringes). (b) The best fit value of kF increases as we increasingly
probe only the atoms in the central (highest density) part of our trap.
A model of the optical pumping by the hollow light beams yields an
average local kF indicated by the solid line. As an indication of the
density inhomogeneity, the shaded region shows the spread (standard
deviation) in kF from the model.

distribution of the central 16% of the trapped gas fits well to the
homogeneous gas result, while the trap-averaged momentum
distribution clearly does not.

In order to quantify how well the measured momentum
distribution is described by that of a homogeneous gas, we
look at the reduced χ2 statistic in Fig. 3(a). The reduced χ2 is
much larger than 1, indicating a poor fit, for the trap-averaged
data due the fact that the density inhomogeneity washes out
the Fermi surface. As we probe a decreasing fraction of atoms
near the center of the trap, χ2 decreases dramatically and
approaches a value of 1.6 for fractions smaller than 40%.

The single fit parameter kF characterizes the density of the
probed gas and should increase as we probe only those atoms
near the center of the trap. Figure 3(b) displays the fit value kF ,
in units of kF,trap = √

2mEF,trap/h̄. As expected, kF increases
as the fraction of atoms probed decreases. We have developed a
model of the spatially selective optical pumping by the hollow
light beam, which we discuss below. The model result for the
average local kF , 〈kF 〉, of the probed gas is shown with the
solid line in Fig. 3(b), and we find that this agrees well with
the fit kF , even when the measured momentum distributions
clearly do not look like those of a homogeneous gas. Using
the model, we calculate the variance δ2 of the local kF , and
the shaded region in Fig. 3(b) shows 〈kF 〉 ± δ. In the region
where the reduced χ2 indicates that the measured n(k) fits
well that for a homogeneous gas (fraction probed is <40%),
δ/〈kF 〉 < 0.08.

Instead of fixing T to the value obtained from fitting the
trapped gas momentum distribution, we can also look at
measuring the temperature by fitting to a homogeneous gas
distribution, where both kF and T/TF are fit parameters. In this
case, a large density inhomogeneity that washes out the Fermi
surface will result in an artificially high fit value for T/TF .
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FIG. 4. Measured T/TF vs the fraction of atoms probed. Here,
we fit the measured momentum distribution to a homogeneous gas
distribution with two free parameters, T/TF and kF . The density
inhomogeneity of the probed gas results in T/TF that is much
larger than expected from the calculated average density of the
probed gas (solid line). A sharp Fermi surface, characterized by a
small fit T/TF , emerges as the fraction of atoms probed decreases.
The dashed line shows the result of fitting to model calculations
of the probed momentum distribution, which agrees well with the
data.

This can be seen in Fig. 4. For comparison to the data, the solid
line shows the average T/〈TF 〉 for the probed gas calculated
using our model. Here, T is fixed and the dependence on the
fraction probed comes from the fact that the average density,
and therefore the average local TF , increases as we probe
a smaller fraction of atoms that were near the center of the
trapped gas. The fit T/TF approaches the average value from
the model as we reduce the fraction of atoms probed, and for
<40% probed, the two are consistent within our measurement
uncertainty. For the smallest fraction probed (data shown in
Fig. 2), the best fit value is T/TF = 0.14 ± 0.02. As a check
of the model, we can also calculate n(k) for the probed gas
and fit this to the homogeneous gas distribution; the results
(dashed line in Fig. 4) agree well with the data.

In modeling the effect of optical pumping with the hollow
light beams, we assume that only atoms that do not scatter
a photon are probed. The probability to scatter zero photons
from each beam is taken to be Pi = exp(−γiτiσ ), where τi is
the pulse duration and the subscripts i = 1,2 denote the two
hollow light beams. The photon flux is given by γi = Iiλ/(hc),
where Ii is the position-dependent intensity, c is the speed of
light, and λ = 766.7 nm is the wavelength. For the optical
absorption cross section, we use σ = 3λ2η/(2π ), where η =
0.044 is the branching ratio back to the initial state. For the
intensities, we use Eq. (2) and make the approximation that w

is constant across the cloud.
Attenuation of the hollow light beam as it propagates

through the atom cloud is observable in the long direction
of the cloud (along z), as seen in the inset of Fig. 5. To
include this effect, we consider the two hollow light beam
pulses sequentially, and we assume that the number of photons
absorbed locally equals the number of optically pumped atoms.
Interestingly, the model predicts that the attenuation results in
a smaller density variance in the probed gas when compared
to a model that ignores attenuation but where we adjust the
beam powers to probe the same fraction of the atoms. This
effect is relatively small and decreases as one probes a smaller
fraction of the gas. This can be seen in Fig. 5 where we show
the measured momentum distribution for the central 38% of
the atoms compared to three different models, each of which is
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FIG. 5. (Color online) Modeling the spatially selective optical
pumping. We compare the normalized momentum distribution of the
central 38% of the atoms to three different models (dotted, solid,
and dashed lines; see text). The data (circles) are obtained from an
average of four images. We find that the attenuation of the hollow light
beams (inset) does not strongly affect the predicted final momentum
distribution when probing a small fraction of the gas. (Inset) We take
images of the cloud after a short (1.3-ms) expansion and compare
data with the horizontal hollow light beam and without any optical
pumping in order to measure the fraction of atoms probed (circles) vs

z/zF , where zF =
√

2EF,trap

m(2πνz)2 . For this data, the fraction probed is 71%.
The prediction of our model (solid line), which includes attenuation
of the hollow light beam as it propagates through the cloud, agrees
well with the data.

adjusted to give the same probed fraction. The solid line is the
model explained above, which includes attenuation, while the
dotted line shows the result when we ignore the depletion of
the hollow light beams. For comparison, the dashed line shows

the expected distribution if one selects atoms in a cylindrical
volume with sharp boundaries.

In conclusion, we have directly observed the Fermi surface
in the momentum distribution of a weakly interacting Fermi
gas. To do this, we probe the central region of a harmonically
trapped gas. A concern with this approach is that one might be
left with very little signal after selecting a sufficiently small
region to approximate a homogeneous gas. However, for a gas
at T/TF,trap = 0.12 and our typical measurement precision,
we find that probing the central 40% (or less) of the gas is
sufficient to approximate a homogeneous gas.

We anticipate that this ability to obtain local momentum dis-
tributions for a trapped gas can be applied to probe interacting
Fermi gases, including strongly interacting gases in the regime
of the BCS-BEC crossover [12]. Examples of probes of these
systems that require momentum resolution and could benefit
from the removal of the effects of density inhomogeneity
include measurements of the condensate fraction [13,14],
determination of the contact parameter [15–17] from the
tail of the momentum distribution [18], and measurements
of the Fermi spectral function using atom photoemission
spectroscopy [8]. Measurements of n(k) for a homogeneous
Fermi gas with interactions could also be used to test
theoretical predictions, such as the quasiparticle weight for
a Fermi liquid [19]. More generally, this technique should
be broadly applicable and could provide access to the lowest
entropy part of a trapped gas of ultracold bosons, fermions,
or mixtures, for a variety of different trapping potentials and
interaction strengths.
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