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Detection of the Abraham force with a succession of short optical pulses
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For over a century, two rival descriptions of electromagnetic field momentum in matter have coexisted, due
to Abraham and Minkowski, respectively. We propose a setup for measuring the difference between Abraham’s
and Minkowski’s predictions in optics. To wit, a setup is proposed in which the transient “Abraham force,”
a consequence of the Abraham energy-momentum tensor of 1909, may be measured directly. We show that
when a train of short laser pulses is sent through a fiber wound up on a cylindrical drum, the Abraham theory
predicts a torque, which, by inserting realistic parameters, is found to be detectable. Indeed, the same torque
when calculated with the Minkowski tensor takes the opposite sign. Numerical estimates show that with a typical
torsion pendulum setup and standard laser parameters, the angular deflection is in the order of 10−3 rad, which is
easily measurable and even visible to the naked eye. Although its prediction is a century old, the Abraham force
has proven experimentally elusive, and to our knowledge no macroscopic experimental demonstration of the
difference between the predictions of the two mentioned energy-momentum tensors exists at optical frequencies.
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I. INTRODUCTION

It is remarkable—and to the present authors rather
surprising—to see how great an attention is presently given
to the classic energy-momentum problem in electrodynamics.
The problem at hand is often dubbed the Abraham-Minkowski
problem: the rival candidates for an energy-momentum ten-
sor for electromagnetic (EM) fields in media proposed by
Abraham [1] and Minkowski [2], each of which may be
convincingly argued for, do not appear to always predict the
same physics. To wit, Abraham’s tensor predicts an additional
force acting on dielectric bodies subjected to transient EM
fields. This enigma, considered a somewhat old-fashioned
branch of physics back in the 1960s and 1970s, has been
revitalized to become a modern topic again in 2012, as
demonstrated by popular highlights [3], a series of recent
experiments on its quantum photonics analog [4–7], reported
theoretical resolutions [8–12], and reviews [13–16].

For all their virtues, purely theoretical treatments of the
problem cannot be expected to provide a simple answer to the
question of which EM tensor is the more appropriate in general,
since one invariably faces the fact that the electromagnetic
energy-momentum tensor describes only a part (the EM
field) of a coupled system including the material medium
[17,18]. Conservation laws concern the whole system, not its
constituents, and a freedom of choice exists in the bookkeeping
of energy and momentum.

As we recently argued in a different context [19], the
choice of EM energy-momentum tensor is as much a question
of practical convenience as one of correctness, a question
that is most directly settled by asking which formalism can
most easily describe observed effects. Experiments in which
the Abraham force may be detected directly would be the
ideal candidate. Of this category, the Walker-Lahoz-Walker
experiment [20,21] remains the only one to our knowledge,
making use of slowly varying, high-amplitude electric fields.
Analogous macroscopic experiments in the optical regime,
most relevant to real-life applications, are still lacking. The
effect observed in the experiment of She et al. [22] can be
described without reference to photon momentum [23].

The setup we propose herein bears some resemblance to that
used by She’s group, and is an optical analogy of the Walker-
Lahoz-Walker experiment. The Abraham force, as well as the
standard optical gradient force are transferred to a macroscopic
cylinder as a torque, facilitating direct observation of the
Abraham force. In fact, the angular deflection of the torsional
balance has opposite sign whether Abraham’s term is included
in the force balance or not, rendering the observation simpler.
We show that with realistic numbers for a laboratory setup,
the resulting deflections should conservatively be in the order
of 10−3 radians, which is readily measurable. The system thus
has several advantages over a previous suggestion involving
whispering gallery modes in an optical resonator [24].

II. MODEL: A LONG OPTICAL FIBER

Consider first the following model: a long dielectric
circularly cylindrical rod (fiber) of length L and radius a is
oriented along the x axis. The refractive index in the material
is the constant n, assumed to be real. The rod is illuminated by
a short laser pulse of total energy H0, duration τ , frequency ω,
and original vacuum length l0 = cτ ; subscript zero henceforth
referring to vacuum quantities. We assume for simplicity that
l0 � L (this is easily generalized, but we endeavor here to
keep the formalism simple). If the wave is just broad enough
to fill out the cross section A = πa2 of the rod, we have
H0 = ε0E

2
0Al0, where E0 is the rms value of the incident

electric field. For simplicity we assume that the ends are
coated with antireflection films of refractive index

√
n, so that

there is no reflected wave. Thus the energy in the medium,
H = ε0n

2E2Al, is the same as the incident energy H0. (Note
that l0 = nl, and that the continuity of Poynting’s vector across
the entrance region leads to the relationship E2

0 = nE2.)
The general electromagnetic force density f in an isotropic

nonmagnetic medium can be written as a sum of three phys-
ically distinct contributions (cf., for instance, Refs. [25,26]),

f = fAM + fES + fA. (1)
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FIG. 1. (Color online) The proposed geometry: an optical fiber
wound around a cylinder made of a light material. A train of optical
pulses produces a torque, different for Abraham and Minkowski
theory.

We will use SI units in the following.
The middle term in this expression, fES, is the electrostric-

tion term (ρ denotes the material density). It is of importance
in cases where knowledge about the distribution of pressure
in a dielectric medium is needed (this point has recently been
discussed, for instance, in Refs. [27,28]). However, as far as
the total force on a body is concerned, the electrostriction term
does not contribute. We will therefore omit it in the following.

The first term in Eq. (1) is the force that acts in regions
where n varies, typically at the surfaces. It is common for the
Abraham and Minkowski energy-momentum tensors, and may
be called the Abraham-Minkowski force,

fAM = − 1
2ε0E

2∇n2. (2)

Its action on the left surface of the rod, at x = 0, is to produce a
surface pressure σx , directed to the left, from the medium side
of the interface towards vacuum. It can be found by integrating
the diagonal component of Maxwell’s stress tensor across the
front surface,

σx =
∫ 0+

0−
Txxdx = −ε0n(n − 1)E2, (3)

E being the field in the medium. The surface impulse GAM
surf

imparted to the front surface is thus

GAM
surf = σxAτ = −(n − 1)

H
c

. (4)

The transit time through the medium can with sufficient
accuracy be put equal to nL/c. The impulse given to the exit
surface is equal and opposite to the expression (4), and the net
momentum after the pulse has left is zero.

Consider next the last term in Eq. (1), the Abraham term,

fA = n2 − 1

c2

∂

∂t
(E × H). (5)

It gives rise to an accompanying mechanical momentum GA
mech

in the medium, equal to

GA
mech = n2 − 1

n

H
c

. (6)

In the period when the pulse is contained in the medium, the
pulse-induced total momentum is thus

GAM
surf + GA

mech = n − 1

n

H
c

. (7)

Note already that the net impulse imparted including and
excluding the Abraham term takes opposite signs.

Assume for simplicity that the rod is rigid, with mass is
M = ρAL. As the expression (7) must equal MvA where vA is
the rod’s velocity, the Abraham displacement 	xA = vALn/c

is

	xA = n − 1

ρA

H
c2

. (8)

This displacement is formally independent of L (although the
above restriction l � L has to be observed).

The expression (5) is a small force on a macroscopic scale.
In order to maximize its magnitude one would want high
laser energy, high refractive index, and low mass per unit
length M/L. Let us assume that a power of P = 1 kW can
be transmitted through the fiber (absorption and heat effects
neglected). For illustration, take the duration of the pulse to be
τ = 10−8 s. With n = 3 the length of the pulse is thus l0 = 3 m
in vacuum and l = 1 m in the medium. The pulse energy is
H = Pτ = 10−5 J. Taking the radius to be a = 10μm, and
taking ρ = 2000 kg/m3, we get

	xA = 3.5 × 10−16 m. (9)

This is in practice unmeasurable. However—and this is our
main point—one can make the effect much stronger by using
a high-frequency repetition of pulses.

III. REALISTIC MANIFESTATION AND
NUMERICAL RESULTS

The idealized picture of a rod as sketched above, microm-
eters thick and meters long, is not practically useful. Let us
instead assume that the fiber is flexible, and wound up on
a low-mass cylindrical drum of radius R � a and height H ,
see Fig. 1. The system is hanging vertically in the gravitational
field, suspended by a thin wire of known, small torsion constant
κ . Let us assume for definiteness

R = 10 cm, H = 10 cm. (10)

If the cylinder is made of a dilute material, such as polystyrene
whose density is about 100 kg/m3, the cylinder mass Mcyl and
its moment of inertia Icyl = 1

2McylR
2 about the z axis become

approximately

Mcyl = 31 g, Icyl = 1.6 × 10−3 kg m2. (11)

The cylinder could of course be made hollow to further
decrease its mass and moment of inertia.
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A. Abraham theory

Winding a fiber of diameter 2a = 20 μm around the
cylinder, there is room for H/2a circuits in a single layer
of windings. Without multiple layers of windings, this already
corresponds to 5000 turns of circumference 2πR (i.e., L ≈
3 km). The single-pulse momentum (7), when multiplied with
R and with the pulse repetition frequency frep, is the angular
momentum supplied to the cylinder per second. This is the
same as the torque NA

z about the z axis. The cylinder will
slowly turn abound the z axis, until mechanical equilibrium
is restored. The maximum angular deflection, called φA

max,
follows as

φA
max = 1

κ
NA

z =
(

n − 1

n

H
c

)
R

κ
frep. (12)

This expression is independent of L. The usefulness of having
a large value of L is that this easily ensures the pulses to be
spatially separated in the medium. The main parameter in the
above expression, in order to obtain a large value of φmax, is
seen to be the product Hfrep.

In order to make clear the main idea behind our model let
us assume again that the medium is rigid (thus ignoring its
real elasticity properties), and let us take it to be long and
straight. During the time the first pulse is in the fiber, the fiber
undergoes a displacement 	xA, given by Eq. (8). A subsequent
pulse, sufficiently delayed by a time interval 	t not to overlap
with the first, provides another displacement 	xA. Assume
for definiteness that the pulse train contains N pulses in all,
and that they are all contained in the fiber at the same time.
Once the first pulse exits the fiber, the impulse from this pulse is
canceled out, however, the action from the other (N − 1) pulses
remains. The subsequent pulses act in the same way. The total
displacement effect is additive, so that the total displacement
is equal to the one-pulse displacement 	xA multiplied by N .
When the pulse train has left, the position of the fiber is thus
changed, but its residual momentum (assuming no absorption)
is zero. It is possible to interpret the force as a transient effect,
as any pulse when contained in the fiber contains a separate
momentum of its own. The force accumulates the momenta of
the pulses contained in the fiber at any time.

Returning to the cylinder geometry, when the number
of repeated pulses is high the deflection can be enhanced
considerably. Repetition rates in the multigigahertz regime
have been experimentally achieved for a long time [29–31]. In
these experiments the average optical power is typically in the
range of a few tens of mW, although high output power is not
the objective. Let us assume the same value for τ as above, but
moderate the input value of P to make it more realistic:

P = 1 W, τ = 10−8 s, H = 10−8 J. (13)

To calculate φmax we have moreover to estimate a value for the
torsion constant κ . In extreme cases, such as when dealing with
torsion experiments testing the equivalence principle [32,33],
the torsion constant has been reported as low as about
10−9 Nm/rad. Let us adopt a somewhat larger value here,

κ ∼ 10−8 Nm/rad. (14)

Insertion into Eq. (12) now gives

φA
max = 2.2 × 10−10frep. (15)

Let us for definiteness assume that the separation between the
centers of each pulse (each of length l = 1 m) is 10 m. Then
there are L/10 = 300 pulses in the fiber at the same time. To
propagate 10 m in the fiber, light needs 10−7 s (the entrance
time τ , as mentioned, is only one tenth of this). It thus seems
reasonable to adopt as repetition frequency

frep = 10 MHz. (16)

Then Eq. (15) leads to the estimate

φA
max = 2.2 × 10−3 rad. (17)

A deflection of this magnitude should be easily measurable.
The expression is positive, meaning that the cylinder turns in
the direction of light propagation.

It should be emphasized that the above argument rests upon
the assumption of additivity: the effective force on the fiber is
found by multiplying the impulse transferred from one single
pulse by the number of pulses transmitted through the fiber
per second. It is not necessary that each pulse enters and exits
the fiber before the next pulse enters. The important point is
merely that the pulses are separated from each other in the
fiber.

A comment on sources of corrections is warranted. Take
again the model of a long straight rod and assume that the
antireflection films on the ends are not perfect, but that there
is an effective reflectivity coefficient R at each end. Assuming
R � 1 we may assume that the fields in the medium are
practically the same as in the ideal case considered above.
Since a fraction R of the incident energy is reflected at the
front surface we estimate that, during the entrance period of
each pulse, an extra positive impulse equal to R times the
magnitude |GAM

surf | of the surface impulse (4) is imparted to the
rod,

R
∣∣GAM

surf

∣∣ = R(n − 1)
H
c

. (18)

During the exit time of the same pulse the same extra amount is
imparted to the rod, also then in the forward direction. Adding
this to Eq. (7) we have

GAM
surf + GA

mech → (1 + 2nR)
n − 1

n

H
c

, (19)

implying that the relative correction to the total momentum
is simply 2nR. Thus the required accuracy of the reflection
coefficient is not too demanding; with n = 3 as assumed above
we see thatR = 0.005 is sufficient to give an accuracy of about
3% in the momentum. In the same way the small but nonzero
absorption of momentum from the propagating light by the
fiber must be accounted for as a correction.

B. Minkowski theory

The above theory concerns the Abraham theory. Let us
consider Minkowski’s theory in which the Abraham term
is excluded. The Minkowski energy-momentum tensor has
in general several advantages, not least so in optics: it is
divergence free in a homogeneous medium without external
charges implying that the four components of energy and
momentum make up a four-vector [17], and it moreover adjusts
itself very nicely to a canonical treatment [9,34], in spite of its

025801-3



BRIEF REPORTS PHYSICAL REVIEW A 86, 025801 (2012)

spacelike character (the field energy can be negative in some
inertial systems).

In our case, the difference from the Abraham case appears
in the omission of the last term in Eq. (1), and similarly in
the omission of the term GA

mech in Eq. (7). The contribution to
the mechanical momentum in the rod comes entirely from the
surface forces. The linear displacement 	xM predicted in the
Minkowski theory thus becomes

	xM = −n(n − 1)

ρa2

H
c2

, (20)

instead of Eq. (8) (note that the energyH is the same). Similarly
we get

φM
max = −(n − 1)

H
c

R

κ
frep. (21)

That means

φM
max = −nφA

max. (22)

With the numbers employed above, this amounts to

φM
max = −6.6 × 10−3 rad. (23)

The most important difference from Eqs. (12) and (17) is
the difference in sign. The cylinder is predicted to turn in the
opposite direction from the case above. This point obviously
serves to facilitate possible forthcoming experiments.

There is of course ample room for choosing different values
for the input parameters than those used in our numerical

estimates above. However, our main point has been to
demonstrate that the simple trick of using repetitive pulses
should make it possible to measure the difference between the
Abraham and Minkowski predictions in optics in an experi-
ment that is simple, at least conceptually. It would be of definite
interest to see such an experiment carried out in practice.

IV. CONCLUSION

The two main contestants for the energy-momentum tensor
in media are those due to Abraham and Minkowski, both
presented more than a century ago, yet still the question of
which one to choose attracts considerable attention. While
several experiments have been carried out in recent years
probing the question at an atomic and photonic scale, ex-
periments in macroscopic electromagnetics have been scarce
due to the Abraham force’s small magnitude and difficulty of
access.

Here we have proposed a setup that might make such
a measurement possible, by which the difference between
(naı̈ve) Abraham and Minkowski predictions can be observed,
perhaps even with the naked eye. While this certainly would
not prove either tensor right (it is a fallacy to talk of correctness,
rather it is a question of usefulness), it would provide a strong
case for the usefulness of the concept of the Abraham force in
explanation or prediction of optical forces on matter interacting
with transient electromagnetic fields.
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[24] I. Brevik and S. Å. Ellingsen, Phys. Rev. A 81, 063830 (2010).
[25] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New

York, 1941).
[26] I. Brevik, Phys. Rep. 52, 133 (1979).
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