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Solitary propagation effect of a well-defined chirped femtosecond laser pulse
in a resonance-absorbing medium
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We investigate the solitary propagation effect of a well-defined chirped femtosecond laser pulse in a resonance-
absorbing medium which is modeled by a two-level quantum dot ensemble. Employing full time-dependent and
space-dependent Maxwell-Bloch equations, the evolution of the pulse and the population inversion as well as the
spectrum are obtained. The results reveal that the special chirped pulse can retain its shape and resist breakup
while propagating through the absorbing medium. Besides, the spectrum does not exhibit obvious broadening
but the central and near-central frequency components tend to vanish. Moreover, the stable soliton formed by the
special chirped-pulse design based on stimulated Raman adiabatic passage does not obey the area theorem.
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I. INTRODUCTION

Self-induced transparency (SIT) is an effective method
of obtaining a solitary pulse induced by strong nonlinear
interaction between an optical pulse and an absorbing medium.
It has been widely proved in theory and experiment that an
incident optical field with an even number times of π can
propagate transparently without suffering absorption, but a
pulse with an initial pulse area of more than 3π will split into
several 2π pulses [1–5]. The potential mechanism of SIT is the
area theorem controlled by the Rabi frequency, which governs
the population inversion between energy levels. During past
years, a robust method called stimulated Raman adiabatic pas-
sage (STIRAP), which can manage the population inversion
transferred to any selected quantum state, has attracted a lot of
attention and gotten fast development in theory and experiment
[6–12]. In general, two sequential pulses are used in STIRAP to
obtain complete population inversion by building dark states.
However, this amazing process can even be accomplished
by various specially designed chirped pulses [13–15]. Wang
et al. have deduced the efficient and stable coherent population
transfer in a three-level atomic medium using a superposition
of two chirped Gaussian pulses with the same size but opposite
sign of the chirp coefficient [16]. Torosov and co-workers
also presented the imperfect population inversion to any
desired state by composite sequences of frequency-chirped
pulses with well-defined relative phases [17]. It is worth
noticing that the effective population transfer caused by a
single frequency-chirped pulse has been proved by Zhdanovich
and co-workers theoretically and experimentally [18]. They
achieved complete and robust population transfer to the target
state by properly adjusting the amplitudes and phases of the
pulses in the single-pulse train. Recently, a type of optical
pulse, called the hyperbolic-square-hyperbolic pulse, was
designed by Tian et al. for efficient uniform transparency and
inversion of inhomogeneously broadened atomic ensembles
[19]. These schemes expedite this method to obtain a solitary
pulse in an absorbing medium, such as adiabatic self-induced
transparency (ASIT) which has been offered by Loiko et al.
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to achieve a transparent pulse in a near-resonant medium [20].
The essence of ASIT is the formation of a double STIRAP by
designing a special chirped pulse based on STIRAP theory, if
the optical field envelope and the temporal frequency detuning
of the chirped pulse can be regarded as two quasipulses. Thus,
the ASIT process can avoid the adverse effect of damping
from the upper state in times shorter than the relaxation time.
However, although many studies pay attention to population
transfer caused by several kinds of chirped pulse via STIRAP
or the solitarylike ultrashort pulse propagation [21–23], there
are few studies on the solitary propagation effect of this
well-defined chirped pulse in an absorbing medium.

In this paper, we investigate the propagation effect of
a well-defined chirped femtosecond laser pulse designed in
Ref. [20] in a resonance-absorbing medium which is modeled
by a two-level quantum dot ensemble. Employing full time-
dependent and space-dependent Maxwell-Bloch equations, the
propagation characteristics of the special chirped Gaussian
pulse are explored, such as pulse profile, population inversion,
and frequency spectrum, as well as pulse area. It has been found
that the solitary propagation characteristics of this well-defined
chirped pulse are different from the standard Gaussian pulse
and also different from other kinds of chirped pulses.

II. THEORY

The model we considered is an x-polarized optical pulse
propagated along the z direction from free-space into a
two-level quantum dot (QD) ensemble. The one-dimensional
Maxwell’s equations can be written as

∂tHy = − 1

μ
∂zEx, (1)

∂tEx = −1

ε
∂zHy − 1

ε
∂tPx, (2)

where Ex and Hy are the x-polarized electric field and
y-polarized magnetic field, respectively. μ and ε are the
permeability and permittivity of the host material. The
macroscopic nonlinear polarization is represented by Px =
Nμx0 (ρx0 + ρ0x), where N is the density of quantum dots,
and μx0 the transition dipole moment coupling two quantum
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states. ρx0 and ρ0x are the off-diagonal elements of the
density matrix. In this work, we choose the exciton state
|x〉 and vacuum state |0〉 of GaN-AlN quantum dot as
the two-level system. The eigenstate and associated wave
function as well as the transition dipole moment, which
relate to the size of the QDs, are obtained through the
matrix diagonalization method [24,25]. While considering an
inhomogeneously broadened system, e.g., a self-assembled
quantum dot ensemble, the eigenfrequency and the transition
dipole moment are broadened to different extents with the size
fluctuation. Therefore the macroscopic nonlinear polarization
can be denoted as a summation of all the fractional polarization
resulting from diverse detuning simultaneously [26]. That
is, Px = ∑

m Pm,x = ∑
m Nmμm,x0(ρm,x0 + ρm,0x). Nm is the

density of quantum dots at the mth eigenfrequency and
N = ∑

m Nm.
Beyond the rotation wave approximation and the slowly

varying envelope approximation, the optical Bloch equations
can be written as [26]

∂tu = − 1

T2
u + ωx0v, (3)

∂tv = −ωx0u − 1

T2
v + 2�w, (4)

∂tw = −2�v − 1

T1
(w − w0) , (5)

where u = ρx0 + ρ0x , v = i(ρx0 − ρ0x), and w = ρxx − ρ00,
with ρxx and ρ00 being the diagonal elements of the density
matrix. ωx0 is the eigenfrequency of the two-level system,
and � = Exμx0/h̄ the Rabi frequency. T1 and T2 are the
longitudinal relaxation time and transverse relaxation time,
respectively. The three components u, v, and w of the
Bloch equations also relate to the dispersion properties of
the transition process, the absorption of input pulse by the
medium, and the population transfer of the two-level system,
respectively.

If there is a source field in the space at any moment, the
distribution of the electric field and magnetic field as well as
the response of the medium at any time later can be obtained by
solving the Maxwell-Bloch equations (1)–(5). We assume the
resonant two-level system is at the ground state (w0 = −1) and
u = v = 0 initially. The input pulse exhibits a Gaussian profile,

Ex (z = 0,t) =E0 exp

[
− (t − t0)2

T 2
�

]
cos {[ωx0 + ω (t − t0)] t} ,

(6)

where E0 is the maximum amplitude of the electric field,
T� the pulse duration, and t0 is chosen for keeping the
pulse outside the computational domain at t = 0. The pulse
area of the Gaussian profile is defined as A = √

π�T�. To
manifest the dissimilar performance of the special chirped
pulse designed in Ref. [20], two cases are considered
in this paper. One is ω(t) = 0, where the input pulse is
a standard Gaussian pulse with carrier frequency ωx0.
The other one is the well-defined chirped pulse with
ω(t) = �{exp[−(t − �T )2/T 2

�] + exp[−(t + �T )2/T 2
�]},

which is built according to the ASIT theory based on a
double-STIRAP process. Then, the Maxwell-Bloch equations
can be solved effectively by an iterative predictor-corrector
finite-difference time-domain method [23,27]. In this paper,

FIG. 1. (Color online) The snap of the electric field with 4π area
propagating in an absorbing medium with εr = 9.5 at t = 0.15, 0.3,
and 0.45 ps. The population inversion at 0.3 ps. (a) Standard field;
(b) special chirped field.

the radius of the core-shell GaN-AlN QD is considered
as 4.3 nm (the core) and the thickness of the shell is
1.5 nm. We obtain the eigenfrequency and transition dipole
moment related to this size as ωx0 = 5.1 × 1015 rad/s and
μx0 = 1.1 × 10−27 C m, respectively. The other parameters
involved are the following unless there is a special statement:
N = 8 × 1021 m−3, T1 = 120 ps, T2 = 80 ps, the relative
index εr = 9.5, �T = 1.5T�, t0 = 10T�, and the full width at
half maxima (FWHM) of the pulse tp = 12 fs.

III. RESULTS AND DISCUSSIONS

We suppose the GaN-AlN QD ensemble is placed in the
vacuum and the left side is at z = 24 μm. The pulse source
is located at z = 0 μm. To begin with, we investigate the
propagation characteristics of a 4π standard and the well-
defined chirped Gaussian pulse from vacuum space injected
into the two-level absorption system. Figures 1(a) and 1(b)
each exhibit the snapshot of the standard pulse and the tailored
pulse at 0.15, 0.3, and 0.45 ps. It is obvious that both of
the pulses have not been injected into the medium when
t = 0.15 ps, therefore they exhibit the initial complete pulses
at that time. Later on, the pulses enter into the absorption
medium and almost half reflection happens at the incident
face. The amplitude of the pulses drops to half of the initial
amplitude and propagates more slowly than in vacuum. A
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detailed description follows: we first analyze the propagation
of the standard pulse in Fig. 1(a). Comparing the shape of
the pulse at the three considered time, it is obvious to find that
the pulse suffers serious distortion at the front side of the pulse
and slight distortion at the end. The strong distortion of the
front side is ascribed to the beginning of the pulse splitting,
while the slight distortion of the end side is confirmed due to
the reshaping of the pulse caused by the combined effect of
self-phase modulation and group velocity dispersion [28]. The
same effect also appears in Fig. 1(b), the evolution of the well-
defined chirped pulse, but conversely, large distortion presents
at the end side of the chirped pulse and there is no distortion
at the front. This means there will be no pulse splitting along
the propagation of the well-defined chirped pulse. Then, the
population inversions in the absorption medium, each aroused
by the two different pulses, are explored. The thick lines
in Figs. 1(a) and 1(b) depict the population inversions at
0.3 ps. For the case of the standard pulse, population inversion
happens at the front half of the pulse and the complete
inversion emerges at the peak of the pulse and subsequently
declines rapidly at the second half of the pulse. The process is
typically the traditional self-induced transparency, expressed
as an energy absorption during the front half of pulse and a
stimulated emission during the second half (i.e., the slow light
effect). But in the case of the special chirped pulse, the behavior
of population inversion related to the pulse is tremendously
different. As shown in Fig. 1(b), a slight inversion appears at
the front of pulse and then forms a series of oscillations and
at last locates in the range from − 0.9 to − 1. This is because
as the single STIRAP can stimulate the complete inversion
powerfully, the double STIRAP caused by the well-defined
chirped pulse can create the second inversion before the first
complete inversion. Therefore, the whole effect of the double
STIRAP is the strong restraint of the population inversion.
It means that the pulse can propagate through the absorbing
medium without absorption and thus avoids the damping
effects, such as the unexpected spontaneous emission from the
upper state during the time that is shorter than the relaxation
time. Additionally, unlike the slow light effect of the standard
pulse, the velocity of the special chirped pulse is a little faster
owing to the fact that its propagating process almost does not
involve the energy transfer between the pulse and the medium.

Due to the fact that dot-size fluctuation always appears in
a self-assembled QD ensemble, we consider that the special
chirped pulse transmits in an inhomogeneously broadened
medium with the full width at half maxima (σFWHM) of
25 meV. The eigenfrequency ωx0 of the medium is not a
uniform constant anymore but is center spread into a Gaussian
distribution G(ωm,x0) = 1/

√
2πσ exp[−(ωm,x0 − ωx0)2/2σ 2]

[5], where σFWHM = 2σ
√

2 ln 2. These broadened frequencies
form various detunings from the central frequency δ =
ωm,x0 − ωx0. We gain the different eigenfrequencies ωm,x0

and transition dipole moments μm,x0 in the same way as ωx0

and μx0 within different radius sizes. Then, each fractional
polarization Pm,x can be obtained through Eqs. (3)–(5) by
replacing ωx0 and μx0 with ωm,x0 and μm,x0, respectively. In
our calculation, we define m = 1,2, . . . ,500. As depicted in
Fig. 2(a), the shape of the pulse at 0.3 ps is similar to the initial
input pulse, but a sharp gradient appears at the end of the

FIG. 2. (Color online) (a) The snap of the special chirped
pulse with 4π area propagating in an inhomogeneously broadened
absorbing medium with εr = 9.5 at t = 0.15, 0.3, and 0.45 ps.
(b) The population inversion of the three detunings at 0.49 ps.

pulse when the time comes to 0.45 ps. Comparing to Fig. 1(b),
it is easy to draw the conclusion that the influence of pulse
reshape is weak while considering the effect of inhomogeneous
broadening. In addition, the population inversions related to
the special chirped pulse at 0.49 ps are shown in Fig. 2(b).
For convenience, only the evolution of population inversions
of three representative detunings are shown. It is clear to see
that while the frequency of the pulse first drops, the population
inversions of various detunings rise to different values and then
oscillate strongly when the frequency of the pulse increases.
Finally, they form a stable location which is monotonous
related to the detuning. For the case of δ < 0, i.e., in those QDs
that have radii larger than the average radius, the population
inversions stabilize at a range from − 0.45 to 0.35, and at a
range from − 0.45 to − 0.65 for the case of δ > 0, meaning in
those smaller QDs. To explain this marvelous phenomenon,
we can quote the STIRAP theory by denoting the special
chirped pulse as two quasipulses: One is the � quasipulse
formed from the detuning between transient frequencies of the
chirped pulse and the different eigenfrequencies of the QDs,
i.e., �(δ,t) = ωx0 + ω(t) − ωm,x0 = ω(t) − δ; the other is the
� quasipulse formed from transient Rabi frequencies, i.e.,
�(δ,t) = �m exp[−(t − t0)2/T 2

�], where �m = Exμm,x0/h̄.
As known, smaller QDs have a higher eigenenergy and slightly
lower transition dipole moment than the average value [29].
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Therefore even the � quasipulse is slightly weak; the
increasing of the � quasipulse also enhances the formation of
adiabatic passage. On the other hand, larger QDs possess lower
eigenenergies and slightly higher transition dipole moments.
Thus, the decrease of the � quasipulse causes the dramatically
decreasing � pulse area, and the difference in the area of
the two transient quasipulses is notably increased under this
case. According to STIRAP theory, the formation of an
adiabatic passage will be conspicuously destroyed. Hence, the
propagation of the special chirped pulse in large QDs tends
slightly toward SIT. Due to the fact that the sizes of most

FIG. 3. (Color online) (a) The propagation of the standard pulse
with 4π area propagating in an absorbing medium with εr = 1, tp =
2.4 fs at five different times. (b) The population inversion at t = 0.15,
0.3, and 0.45 ps. (c) The frequency spectrum of the pulse at Z = 24,
144, and 264 μm.

QDs are nearly identical with the average size, therefore, the
well-defined chirped pulse also can propagate solitarily in an
inhomogeneously broadened medium losing less energy.

As follows, the propagation characters such as the splitting
effect and the spectral character of the standard pulse and
the special chirped pulse are investigated. Obviously, the
parameters we used in Figs. 1 and 2 cannot provide such long
research time and distance. For exploring the long transmission
effect with less amount of calculation, we study a short
4π pulse (tp = 2.4 fs) propagating in a two-level absorption
system with nonrealistic relative index εr = 1. The changing
of the two parameters causes no loss of effectiveness of the
propagation properties such as the shape of the pulse and the
spectrum in which we are interested [30,31]. The propagation
characters of the two different pulses are shown in Figs. 3
and 4, respectively. As shown in Fig. 3(a), the standard pulse
injects into the medium before 0.15 ps and gradually splits
into two nonidentical pulses with different amplitude and
velocity. The fast one is more intense and a little shorter
than the other. Figure 3(b) clearly depicts the evolution of
population inversion caused by the standard pulse. As the pulse
splits, the population transfer makes two complete inversions
so it is easy to draw the conclusion that the pulse areas of
the two nonidentical pulses are 2π . Moreover, the spectrum
characteristic of the propagating pulse is an important factor to
measure the solitary propagation effect [21]. Figure 3(c) shows
the frequency spectrum at 24, 144, and 264 μm. At the left
side of the medium, the spectrum exhibits a narrow range from
0.6ωx0 to 1.4ωx0. With the long propagation, the spectrum
extended dramatically, especially at the higher spectral side.
Evidently, strong oscillation of the spectrum appears near
the central frequency and becomes stronger as the pulse
propagates. The inset in Fig. 3(c) exhibits the detailed part of
the oscillation and a nonmonotonous change is demonstrated
at the central frequency. However, the width of the spectrum
does not vary notably and presents a nonmonotonous change
with propagation distance. This abnormal feature of a standard
Gaussian pulse is consistent with the property of a hyperbolic
secant pulse, which is discussed in detail in Ref. [30].

Figure 4(a) shows the propagation effect of the special
chirped pulse transmissions under the same circumstance.
Unlike the propagation of a standard pulse, no split appears
when this well-defined chirped pulse propagates, and the pulse
shape can be retained along the propagation. This result is
also radically different from that of Ref. [28]; the authors of
that work adopt a combined general chirped pulse which is
different from our method. The reason is that the propagation
of the well-defined chirped pulse based on STIRAP does not
suffer absorption and stimulated emission governed by the
Rabi flopping. The evolution of population inversion shown in
Fig. 4(b) also supports the explanation. As discussed above,
the maximum inversion is achieved to a low value and the
line exhibits no intention to split. It is essential to note that
the value of the maximum inversion is largely higher and the
amplitude of residual fluctuation is obviously weaker than
that in Fig. 1(b). This phenomenon reveals that increasing
the amplitude of the pulse can enhance the role of STIRAP
and form a stronger transparent signal. Different from the
spectrum of a standard pulse in Fig. 3(c), the spectrum of
the special chirped pulse depicted in Fig. 4(c) exhibits a
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FIG. 4. (Color online) (a) The propagation of the special chirped
pulse with 4π area propagating in an absorbing medium with εr = 1,
tp = 2.4 fs at five different times. (b) The population inversion at
t = 0.15, 0.3, and 0.45 ps. (c) The frequency spectrum of the pulse
at Z = 24, 144, and 264 μm.

quite broad width in the range from 0 to 9ωx0 due to the
designed chirp described in Sec. II. Obviously, there are more
higher-frequency components than lower and all of them form
relaxed fluctuations. As the pulse propagates, the width of the
spectrum does not show notable extension and the distribution
changes slightly at higher frequencies from 4ωx0 to 9ωx0.
Moreover, the spectral components among 0 to 4ωx0 shift to
the central frequency a little, and the components at and near
the central frequency diminish quickly and even vanish at last.
All in all, the tailored pulse can propagate in a pulse-preserving
way and scarcely spur population inversion in a resonant
medium. Besides, the almost unchanged spectrum (except the

FIG. 5. (Color online) (a) The propagation of the special chirped
pulse with 7π area propagating in an absorbing medium with εr = 9.5
at t = 0.15, 0.3, and 0.45 ps. (b) The population inversion at 0.15,
0.3, and 0.45 ps.

components of central and near-central frequency) further
demonstrates that solitary behavior can be retained over a long
distance.

Finally, we investigate the effect of an odd number of
pulse areas on the propagation of the special chirped pulse.
Generally speaking, a particular trait of SIT is the breakup of
a pulse with an area above 3π into 2π pulses with different
amplitudes and different group velocities. Therefore the extra
pulse area less than π will be absorbed while it propagates,
which is named as self-induced absorption. However, as seen
in Fig. 5(a), the pulse with 7π and tp = 12 fs also propagates
like a soliton without losing energy in the absorbing medium
with εr = 9.5. That means that the propagation of this special
chirped pulse design based on STIRAP does not obey the
area theorem, as discussed in Ref. [20]. Nevertheless, it must
depend on the adiabatic condition. According to the theory
of STIRAP, the two sequential quasipulses derived from the
special chirped pulse can form dark states in the medium. One
of them is �−(t) = |0〉 cos �(t) − |x〉 sin �(t), with �(t) =
arctan [�(t)/�(t)] being the mixing angle and the adiabatic
condition can be described as

√
�2(t) + �2(t) � |�̇(t)| [10].

Therefore, the well-defined chirped pulse will make a better
performance with a larger pulse area. Generally speaking, the
low threshold is 4π [20]. The related population inversion
depicted in Fig. 5(b) appears less different from the inversion
aroused by a 4π pulse in Fig. 1(b), except for a little high
value of the maximum inversion and the smaller amplitude
of the residual fluctuation. This result supports the STIRAP
theory that the larger the pulse area, the better the transparent
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signal. The investigations related to pulse area reveal that the
solitary behavior of the tailored pulse does not depend on
the area theorem, but is dominated by adiabatic conditions. So
the solitary propagation effect of the well-defined pulse cannot
happen, and the area theorem also governs the interaction
process of the pulse and medium if the pulse area is quite
small.

IV. CONCLUSION

We have investigated the propagation of a standard pulse
and a well-defined chirped pulse in a two-level system by
solving the full Maxwell-Bloch equations using an iterative
predictor-corrector finite-difference time-domain method. The
results demonstrate that the special chirped pulse design based
on STIRAP can retain its shape and resist breakup as it does
not experience absorption or refraction while propagating

through the absorbing medium. Besides, unlike the spectral
broadening of the standard pulse, the frequency spectrum
width of the special chirped pulse does not exhibit obvious
changing. However, the central frequency and near-central
frequency components of the special chirped pulse diminish
quickly and even vanish as they are propagating. Furthermore,
these characteristics also can be sustained while for the
special chirped pulse with an odd number of pulse areas,
which demonstrate the disagreement with area theorem of the
pulse. To sum up, the well-defined chirped pulse possesses
outstanding capability to form stable solitons without strictly
following the area theorem.
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