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Localization length of nearly periodic layered metamaterials
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We have analyzed numerically the localization length of light ξ for nearly periodic arrangements of
homogeneous stacks (formed exclusively by right-handed materials) and mixed stacks (with alternating right- and
left-handed metamaterials). Layers with index of refraction n1 and thickness L1 alternate with layers of index of
refraction n2 and thickness L2. Positional disorder has been considered by shifting randomly the positions of the
layer boundaries with respect to periodic values. For homogeneous stacks, we have shown that the localization
length is modulated by the corresponding bands and that ξ is enhanced at the center of each allowed band. In the
limit of long wavelengths λ, the parabolic behavior previously found in purely disordered systems is recovered,
whereas for λ � L1 + L2 a saturation is reached. In the case of nearly periodic mixed stacks with the condition
|n1L1| = |n2L2|, instead of bands there is a periodic arrangement of Lorenztian resonances, which again is
reflected in the behavior of the localization length. For wavelengths of several orders of magnitude greater than
L1 + L2, the localization length ξ depends linearly on λ with a slope inversely proportional to the modulus of
the reflection amplitude between alternating layers. When the condition |n1L1| = |n2L2| is no longer satisfied,
the transmission spectrum is very irregular and this considerably affects the localization length.
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I. INTRODUCTION

During recent decades, a new type of artificial material, so-
called left-handed (LH) metamaterials, have attracted a great
deal of attention. They present negative indices of refraction
for some wavelengths [1], with considerable applications
in modern optics and microelectronics [2–5]. Metamaterials
can resolve images beyond the diffraction limit [6,7], act as an
electromagnetic cloak [8–10], enhance quantum interference
[11], or yield to slow light propagation [12].

Regarding the localization length in disordered systems,
the presence of negative refraction in one-dimensional (1D)
disordered metamaterials strongly suppresses Anderson lo-
calization [13]. As a consequence, an unusual behavior of
the localization length ξ at long wavelengths λ has been
observed. Asatryan et al. reported a sixth power dependence of
ξ with λ under refractive-index disorder [14,15] instead of the
well-known quadratic asymptotic behavior ξ ∼ λ2 [16–19].
Recently, Mogilevtsev et al. [20] also found a suppression of
Anderson localization of light in 1D disordered metamaterials
combining oblique incidence and dispersion, while Torres-
Herrera et al. [21] have developed a fourth-order perturbation
theory to resolve the problem of nonconventional Anderson
localization in bilayered periodic-on-average structures. The
effects of polarization and oblique incidence on light propaga-
tion in disordered metamaterials were also studied in Ref. [22].

In this paper, we calculate numerically the localization
length of light ξ for a 1D arrangement of layers with index
of refraction n1 and thickness L1 alternating with layers of
index of refraction n2 and thickness L2. In order to introduce
disorder in our system, we change the position of the layer
boundaries with respect to the periodic values, maintaining the
same values of the refraction indices n1 and n2. This is the case
of positional disorder, in contrast to the compositional disorder,
where there exist fluctuations of the index of refraction [23].

Two structures are analyzed in detail: homogeneous (H)
stacks, composed entirely of the traditional right-handed
(RH) materials with positive indices of refraction, and mixed

(M) stacks, with alternating layers of left- and right-handed
materials. For the sake of simplicity, the optical path in both
layers is the same; that is, the condition |n1L1| = |n2L2| is
satisfied in most of the work. These periodic-on-average bilay-
ered photonic systems have already been studied analytically
by Izrailev et al. [24,25]. These authors have developed a
perturbative theory up to second order in the disorder to derive
an analytical expression for the localization length for both H
and M stacks. In our case, we have obtained two equations for
the localization length ξ as a function of the wavelength λ from
our numerical results. For H stacks, a quadratic dependence of
ξ for long wavelengths is found, as previously reported in the
literature. On the other hand, the localization length saturates
for lower values of λ. An exhaustive study of ξ in the allowed
and forbidden bands (gaps) of weakly disordered systems is
carried out. We show that the localization length is modulated
by the corresponding bands and that this modulation decreases
as the disorder increases. For low-disordered M stacks and
wavelengths of several orders of magnitude greater than the
grating period � = L1 + L2, the localization length ξ depends
linearly on λ with a slope inversely proportional to the modulus
of the reflection amplitude between alternating layers.

The plan of the work is as follows. In Sec. II we carry out
an exhaustive description of our one-dimensional disordered
system and the numerical method used in our localization
length calculations. A detailed analysis of ξ in the allowed
bands and gaps of homogeneous stacks is performed in Sec. III,
where a practical expression for the localization length as
a function of λ and the disorder is derived. In Sec. IV
we calculate ξ for mixed stacks of alternating LH and RH
layers. A linear dependence of the localization length at long
wavelengths is found for low-disordered M stacks. Finally, we
summarize our results in Sec. V.

II. SYSTEM DESCRIPTION AND NUMERICAL MODEL

Let us consider a one-dimensional arrangement of layers
with index of refraction n1 alternating with layers of index of
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FIG. 1. A periodic arrangement of layers with index of refraction
n1 and thickness L1 alternating with layers of index of refraction n2

and thickness L2. The grating period is � = L1 + L2.

refraction n2. The width of each one is the sum of a fixed length
Li for i = 1,2 and a random contribution of zero mean and
a given amplitude. The wave numbers in layers of both types
are ki = ωni/c, where ω is the frequency and c is the vacuum
speed of light. As previously mentioned, the grating period of
our system � is defined as the sum of the average thicknesses
L1 and L2 of the two types of layers, that is, � = L1 + L2. We
have introduced the optical path condition |n1L1| = |n2L2|
for simplicity (in the case of left-handed layers ni < 0, so
the absolute value has been written to consider these type of
materials). Without disorder, each layer would be limited by
two boundaries x

(0)
j and x

(0)
j+1, where N is the total number

of boundaries. The periodic part of the system considered is
schematically represented in Fig. 1.

In the presence of disorder, the position of the correspond-
ing boundaries are

xj = x
(0)
j + ξj δ, j = 2, . . . ,N − 1, (1)

except for the first and the last boundary, so as to maintain
the same total length L. The parameters ξj are zero-mean
independent random numbers within the interval [−0.5,0.5].
Throughout all our calculations, we have chosen values of the
disorder parameter δ less than L1 and L2.

For each L, we calculate the transmission coefficient of our
structure T and average its logarithm, ln T , over 800 disorder
configurations. Then, we obtain numerically the localization
length ξ via a linear regression of ln T [23]:

lim
L→∞

−〈ln T 〉
2L

= 1

ξ
. (2)

Here, the angular brackets 〈· · ·〉 stand for averaging over the
disorder. We choose six values of the total length L to perform
the linear regression of Eq. (2). The localization length ξ is
evaluated as a function of the disorder parameter δ and the
frequency of the incident photon ω.

We calculate the transmission coefficient of our system
via the characteristic determinant method, first introduced by
Aronov et al. [26]. This is an exact and nonperturbative method
that provides the information contained in the Green’s function
of the whole system. In our case, the characteristic determinant
Dj can be written as [26]

Dj = AjDj−1 − BjDj−2, (3)

where the index j runs from 1 to N and the coefficients Aj

and Bj can be written as

Aj = 1 + λj−1,j

rj−1,j

rj−2,j−1
(4)

and

Bj = λj−1,j

rj−1,j

rj−2,j−1

(
1 − r2

j−2,j−1

)
. (5)

The parameters rj−1,j , which are the reflection amplitudes
between media j − 1 and j , are given by

rj−1,j = −rj,j−1 = Zj−1 − Zj

Zj−1 + Zj

, (6)

where Zj corresponds to the impedance of layer j and can
be be expressed for normal incidence in terms of its dielectric
permittivity εj and magnetic permeability μj as

Zj =
√

μj

εj

. (7)

The quantity λj−1,j entering Eqs. (4) and (5) is a phase
term [26],

λj−1,j = λj,j−1 = exp[2ikj−1|xj − xj+1|]. (8)

Here kj−1 is the wave number in a layer with boundaries xj

and xj+1. This recurrence relation facilitates the numerical
computation of the determinant. The initial conditions are the
following:

A1 = 1; D0 = 1; D−1 = 0. (9)

The transmission coefficient of our structure T is given in
terms of the determinant DN by

T = |DN |−2. (10)

III. LOCALIZATION LENGTH FOR
HOMOGENEOUS STACKS

Before dealing with mixed stacks, we present results
for low-disordered homogeneous systems with underlying
periodicity, which has not been previously studied. In this
section we perform a detailed analysis of the localization
length ξ in the allowed bands and in the forbidden gaps
of disordered H stacks as a function of the disorder δ, the
incident wavelength λ, and the reflection coefficient between
alternating layers |rj−1,j |2.

As is well known, in the absence of disorder the trans-
mission spectrum of right-handed systems presents allowed
and forbidden bands whose position can be easily determined
via the following dispersion relation obtained from the Bloch-
Floquet theorem [27]:

cos(β�) = cos(k1L1) cos(k2L2)

− 1

2

(
Z2

Z1
+ Z1

Z2

)
sin(k1L1) sin(k2L2), (11)

where β is the Block wave vector. When the modulus of the
right-hand side of Eq. (11) is greater than 1, β has to be taken
as imaginary. This situation corresponds to a forbidden band.
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FIG. 2. (Color online) (a) The transmission coefficient T and (b)
the parameter cos(β�) versus the frequency ω for the homogeneous
periodic system described in the text (99 layers).

Taking into account the condition |n1L1| = |n2L2|, Eq. (11)
reduces to

cos(β�) = cos2(k1L1) − 1

2

(
Z2

Z1
+ Z1

Z2

)
sin2(k1L1). (12)

On the other hand, when cos(β�) is equal to unity, the incident
frequency ω is located at the center of the mth allowed band,
ω(m)

c . After some algebra, we obtain from Eq. (12)

ω(m)
c = mπ

(
c

n1L1

)
= mπ

(
c

n2L2

)
. (13)

Let us first consider a periodic H stack formed by 50
layers of length L1 = 52.92 nm and index of refraction n1 =
1.58 alternating with 49 layers of length L2 = 39.38 nm and
n2 = 2.12. The total size of our structure is 4.57 μm and the
reflection coefficient between alternating layers is 0.05259.
Figure 2(a) represents the transmission coefficient T as a
function of the frequency ω to illustrate its behavior. Also
shown are the centers of each allowed band calculated via
Eq. (13). There are 99 peaks in each band, so they can hardly
been resolved on the scale used. Moreover, in Fig. 2(b) the
parameter cos(β�) is plotted versus the frequency ω for this
periodic system. The first gap and the first allowed band have
been shown for better comprehension.

A systematic numerical simulation of a realistic system
with 50 000 layers has been carried out. The parameters are
the same as in the previous example. In Fig. 3 we represent
the localization length ξ versus the wavelength λ for different
values of the disorder parameter δ (shown in the legend of
the figure). The dashed line corresponds to “total disorder,”
that is, an arrangement of layers with random boundaries and
alternating indices of refraction n1 and n2. Several features
are evident in the figure. For long wavelengths, one observes
quadratic asymptotic behavior, as can be compared with the

FIG. 3. (Color online) Localization length ξ vs the wavelength λ

for different values of the disorder parameter δ. The H stack corre-
sponds to the arrangement represented in Fig. 2 but now 50 000 layers
have been considered. The dashed line stands for the “total disorder”
case. All lengths are expressed in units of the grating period �.

dotted line [16–19]. An in-depth numerical analysis of the
coefficient characterizing this dependence has been performed.
To this aim, 20 different H stacks were considered and the
following expression for the localization length was found:

ξ � 0.063
λ2

�2
opr

2δ2
, for λ → ∞ (14)

where �op = n1L1 + n2L2 is the optical path across one
grating period �. All the lengths in Eq. (14) are expressed
in units of �. In the opposite limit of short λ, the localization
length ξ saturates to a constant value [15,28]. Our numerical
results have shown that this constant is proportional to the
inverse of the reflection coefficient between alternating layers
|r|2, that is,

ξ � 1

r2
, for λ → 0. (15)

Izrailev et al. [24,25] have developed a perturbative theory
up to second order in the disorder to calculate analytically
the localization length in both homogeneous and mixed
stacks. This model is quite general and is valid for both
quarter stack medium (that is, arrangements of two types of
layers with the same optical path) and systems with different
optical widths. Assuming uncorrelated disorder and random
perturbations with the same amplitude in both layers (the
main considerations in our numerical calculations), one can
easily derive the following analytical expression for ξ at long
wavelengths from Izrailev’s formulation:

ξ = Z1Z2

(Z1 − Z2)2

2λ2

π2
(
n2

1 + n2
2

)
δ2

. (16)

For similar values of the layer impedances Z1 � Z2, the first
term in Eq. (16) can be approximated by 1/4r2 and n2

1 + n2
2 �

2�2
op, so Eq. (16) reduces to

ξ =
(

1

4π2

)
λ2

�2
opr

2δ2
� 0.025

λ2

�2
opr

2δ2
, for λ → ∞,

(17)

which is similar to our numerical expression, Eq. (14).
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FIG. 4. (Color online) Localization length ξ vs the wavelength λ for (a) the first and (b) the second gaps depicted in Fig. 3.

The randomness only partially affects the periodicity of the
system, which manifests in the existence of bands and gaps.
The localization length depends on the position in the band
and on the disorder. The modulation of ξ by the bands can
be clearly appreciated in Fig. 3. These results are consistent
with other published works on this topic [29,30]. Recently,
Mogilevtsev et al. [29] reported that the photonic gaps of the
corresponding periodic structure are not completely destroyed
by the presence of disorder, while Luna-Acosta et al. [30]
showed that the resonance bands survive even for relatively
strong disorder and large number of cells.

Having a close look into the first gap in Fig. 3, one observes
that the localization length is practically independent of the
disorder δ. In order to visualize this effect, Fig. 4 represents
(a) the first and (b) the second gaps depicted in Fig. 3. As
mentioned, the dependence of ξ with the disorder is almost
negligible in the first gap. When the wavelength is similar
to the grating period �, the influence of the disorder is
greater, as can be easily deduced from simple inspection of
Fig. 4(b).

Let us now focus on the allowed bands and study in detail
the behavior of the localization length in these regions. To this
aim, three-dimensional (3D) graphs of ξ versus the wavelength
λ and the disorder δ have been plotted in Fig. 5 for (a) the
first and (b) the third allowed bands (see again Fig. 2). All
magnitudes have been normalized to the grating period �.
The localization length ξ is enhanced in a small region around
the center of each allowed band. A similar result was found
by Hernández-Herrejón et al. [31], who obtained a resonant
effect of ξ close to the band center in the Kronig-Penney
model with weak compositional and positional disorder. This
increase in the localization length is due to emergence of the
Fabry-Perot resonances associated with multiple reflections
inside the layers from the interfaces [24,25,32]. In particular,
for homogeneous quarter stack systems, the Fabry-Perot
resonances arise exactly in the middle of each allowed band
where β vanishes [24,25]. The saturation of ξ for short
wavelengths is also appreciated in these 3D images.

Up to now, H stacks with the same optical path in layers
of both types have been considered, that is, arrangements

FIG. 5. (Color online) Three-dimensional graphs of the localization length ξ vs the wavelength λ and the disorder δ for (a) the first and (b)
the third allowed bands. The H stack is the same as in Fig. 2. All lengths are expressed in units of the grating period �.
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(a)

(b)
(c)

FIG. 6. (Color online) (a) The transmission coefficient T and (b) the parameter cos(β�) vs the frequency ω for the asymmetric periodic H
stack described in the main text (99 layers) and (c) the corresponding localization length ξ vs the wavelength λ for different disorder parameters
δ (50 000 layers).

verifying the condition |n1L1| = |n2L2| in the absence of
disorder. As a consequence, the transmission spectrum T of the
corresponding periodic system presented a symmetric distribu-
tion of allowed bands and gaps (as previously shown in Fig. 2).
What happens in the case of a nonsymmetric band distribution,
that is, when the condition |n1L1| = |n2L2| is not satisfied?
To answer this question, we have plotted the transmission
coefficient T [Fig. 6(a)] and the parameter cos(β�) [Fig. 6(b)]
versus the frequency ω for a periodic H stack formed by
50 layers of length L1 = 52.92 nm and index of refraction n1 =
1.58 alternating with 49 layers of length L2 = 28.80 nm and
n2 = 2.12. Note that the condition |n1L1| = |n2L2| is no longer
held, so the band structure is asymmetric. Accordingly, the
localization length ξ shown in Fig. 6(c) presents an irregular

FIG. 7. (Color online) (a) The transmission coefficient T and (b)
the parameter cos(β�) vs the frequency ω for the mixed periodic
system described in the text (99 layers).

form in the allowed and forbidden bands. As in the symmetric
case, no band modulation exists for high disorders and the
quadratic asymptotic behavior for long wavelengths is also
verified. Moreover, the peaks in the localization length due
to Fabry-Perot resonances still can be appreciated, although
they are no longer in the center of the bands [24,25]. A total
number of 50 000 layers was considered in our localization
length calculations.

IV. LOCALIZATION LENGTH FOR MIXED STACKS

Now that we have analyzed in detail the behavior of the
localization length ξ for homogeneous systems, let us deal
with M stacks composed of alternating LH and RH layers.

In our numerical calculations we have considered a periodic
M stack formed by 50 layers of length L1 = 52.92 nm and
index of refraction n1 = −1.58 alternating with 49 layers of
length L2 = 39.38 nm and n2 = 2.12. Again, the condition
|n1L1| = |n2L2| has been imposed. Note that this arrangement
has similar parameters to the one depicted in Sec. III, but now

FIG. 8. (Color online) Localization length ξ vs the wavelength λ

for different disorder parameters δ. The M stack corresponds to the
one represented in Fig. 7 but here 50 000 layers have been considered.
The dashed line stands for the “total disorder” case.
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FIG. 9. (Color online) Numerical calculations of the slope a vs
|r| for several values of �op (expressed in units of the grating period
�). The solid lines correspond to the results obtained via Eq. (18).

n1 is negative. This change of sign results in a severe modifi-
cation of the transmission coefficient T . For this the periodic
system, Fig. 7 represents (a) the transmission coefficient T

and (b) the parameter cos(β�) versus the frequency ω of the
incident light. Unlike the H stack case, no allowed bands exist
and practically the entire transmission spectrum is formed by
gaps. A set of periodically distributed Lorentzian resonances
is found instead. The position of the center of each resonance
is given by Eq. (13), that is, the center of the allowed bands in
homogeneous systems.

In respect to the localization length, positional disorder was
introduced as explained in Sec. II. As previously considered,
the total number of layers in our numerical calculations was
50 000 and the number of disordered configurations to average
the logarithm of the transmission coefficient was 800. The
result is shown in Fig. 8, where the localization length ξ is
represented versus the wavelength λ for different values of
the disorder parameter δ. The dashed line corresponds to the
“total disorder” case. Again, for long wavelengths a quadratic

asymptotic behavior of ξ is found, but now a region where
the localization length is proportional to λ exists. We turn
to this point in the next figure to quantify the slope of this
linear dependence. The Lorentzian resonances associated with
multiple reflections in the layers modulate the shape of ξ and
this modulation decreases as the disorder increases. Moreover,
the saturation of the localization length for low wavelengths
can also be appreciated. As in the H stack case, the constant
where ξ saturates is proportional to the inverse of the reflection
coefficient between alternating layers |r|2.

The linear dependence of ξ with the wavelength λ has been
exhaustively studied by our group to find a simple analytical
expression for the localization length in this region. More than
30 different M stacks have been simulated and we have arrived
at the following empirical equation:

ξ = λ

6�op|r| = aλ, (18)

where ξ , λ, and �op are expressed in units of the grating period
�. In Fig. 9, our numerical calculations of the slope a versus
|r| have been plotted for several values of �op: triangles (1.25),
squares (3.25), and circles (7.55). The solid lines correspond
to the results obtained via Eq. (18). One notices a good degree
of validity for a wide range of |r| values.

Finally, let us now consider an asymmetrical M stack
where the condition |n1L1| = |n2L2| is no longer satisfied. In
Fig. 10 we have represented (a) the transmission coefficient
T and (b) the parameter cos(β�) versus the frequency ω

for a periodic M stack formed by 50 layers of length of
length L1 = 52.92 nm and index of refraction n1 = −1.58
alternating with 49 layers of length L2 = 28.80 nm and n2 =
2.12. Note the strong difference between this transmission
spectrum and the symmetrical one [see Fig. 7(a)], where a
set of periodically distributed Lorenztian resonances exists.
Despite this fact, the localization length ξ shown in Fig. 10(c)
presents a region of linear dependence with the wavelength,
as in the symmetric case. However, Eq. (18) cannot be used to
evaluate the localization length in this region.

FIG. 10. (Color online) (a) The transmission coefficient T and (b) the parameter cos(β�) vs the frequency ω for the asymmetric periodic M
stack described in the main text (99 layers) and (c) the corresponding localization length ξ vs the wavelength λ for different disorder parameters
δ (50 000 layers).
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V. DISCUSSION AND CONCLUSIONS

We have analyzed numerically the localization length of
light ξ for homogeneous and mixed stacks of layers with index
of refraction ±|n1| and thickness L1 alternating with layers of
index of refraction |n2| and thickness L2. The positions of
the layer boundaries have been randomly shifted with respect
to ordered periodic values. The refraction indices n1 and n2

present no disorder.
For H stacks, the parabolic behavior of the localization

length in the limit of long wavelengths, previously found
in purely disordered systems [16–19], has been recovered.
On the other hand, the localization length ξ saturates for
very low values of λ. The transmission bands modulate
the localization length ξ and this modulation decreases
with increasing disorder. Moreover, the localization length
is practically independent of the disorder δ at the first gap;
that is, it has a very low tendency in this region. We have
also characterized ξ in terms of the reflection coefficient of
alternating layers |r|2 and the optical path across one grating
period �op. Equation (14) has been proved to be valid for
a wide range of |r|2 values, that is, from transparent to
opaque H stacks. It has also been shown (see Fig. 5) that the
localization length ξ is enhanced at the center of each allowed
band.

When left-handed metamaterials are introduced in our
system, the localization length behavior presents some differ-
ences with respect to the traditional stacks, formed exclusively
by right-handed materials. For low-disordered M stacks and
wavelengths of several orders of magnitude greater than the
grating period �, the localization length ξ depends linearly

on λ with a slope inversely proportional to the modulus of
the reflection amplitude between alternating layers |r| [see
Eq. (18)]. As in the H case, ξ saturates for low wavelengths,
with this saturation constant proportional to the inverse of |r|2.

If we take into account losses, there is an absorption term
whose absorption length ξabs is [15]

ξabs = λ

2πσ
, (19)

where σ is an absorption coefficient. The inverse of the total
decay length is the sum of the inverse of the localization length
ξ plus the inverse of the absorption length ξabs. Note that
ξabs is proportional to λ, so for low-disordered M stacks and
weak absorption metamaterials, the final expression for the
localization length ξ in the linear region can be written as

ξ = λ

6�op|r| + 2πσ
. (20)

In the case of both homogeneous and mixed stacks with
nonsymmetric band distribution, that is, when the condition
|n1L1| = |n2L2| is not satisfied, the localization length ξ

presents an irregular form in the transmission spectrum. These
changes in ξ are more sensitive in mixed stacks than in
homogeneous structures.
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