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Effect of losses on the performance of an SU(1,1) interferometer
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We study the effect of losses on the phase sensitivity of the SU(1,1) interferometer for different configurations.
We find that this type of interferometer is robust against losses that result from an inefficient detection system.
This type of loss only introduces an overall prefactor to the sensitivity but does not change the 1/n scaling,
where n is the average number of particles inside the interferometer, characteristic of the Heisenberg limit. In
addition, we show that under some conditions the SU(1,1) interferometer with coherent state inputs is also robust
against internal losses. These results show that the SU(1,1) interferometer is a viable candidate for experimentally
reaching the Heisenberg limit with current technology. Possible implementations of this interferometer using
four-wave mixing in atomic vapors or an atom interferometer in a spinor Bose-Einstein condensate are compared.
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I. INTRODUCTION

The field of quantum metrology [1] explores the possibility
of using quantum resources to enhance the sensitivity of
measurements beyond what can be achieved with only classical
resources. In particular, interferometers have been the device
of choice to pursue this goal. These devices offer an invaluable
tool in the field of precision measurement because they make it
possible to estimate very small phase changes. With the
use of only classical resources, the phase sensitivity of an
interferometer is limited by shot noise and is bounded by
1/

√
n, where n is the average number of particles inside the

interferometer. This limit is known as the classical limit, the
shot noise limit, or the standard quantum limit (SQL). The use
of quantum resources offers the possibility of beating the SQL
and reaching the Heisenberg limit (HL), characterized by a
phase sensitivity that scales as 1/n. The possibility of beating
the classical limit was first realized by Caves [2] and has been
an intense field of research since then.

A number of different interferometer configurations have
been proposed to beat the classical limit. The most studied
configuration has been the Mach-Zehnder interferometer. For
this interferometer a number of theoretical proposals have
shown that it is possible to go below the SQL using nonclassical
states of light, such as squeezed states [2,3], Fock states [4],
two-mode squeezed states [5], NOON states [6], etc. The
main constraint in implementing these proposals has been the
sensitivity of this interferometer to losses, both internal and
external. It has been shown, in general, that the effect of losses
can be detrimental in beating the SQL [7–12]. Only recently
has it been shown that the use of more complicated detection
strategies based on Bayesian parameter estimation makes it
possible to beat the SQL even in the presence of losses for the
Mach-Zehnder interferometer [13–15].

Another possibility for beating the SQL is to use an
interferometer in which the mixing of the optical beams is
done through a nonlinear transformation, such as the SU(1,1)
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interferometer (see Fig. 1). This type of interferometer is
configured like a Mach-Zehnder interferometer except that
the beam splitters are replaced with parametric processes
that can generate correlated pairs. It has been shown that
this type of interferometer can reach the HL in the absence
of losses [16]. Recently, theoretical analysis has shown that
having coherent states as inputs into the interferometer can
provide an improvement in the sensitivity [17]. In addition,
an experimental implementation of this interferometer in the
classical domain has been recently realized [18]. The possi-
bility of extending such an implementation to the quantum
domain and beat the SQL requires an analysis of the effect
of losses. Such an analysis has only recently been done [19],
but it was limited to the study of the impact of losses on the
signal-to-noise ratio for homodyne detection of one of the
outputs of the interferometer. A full analysis of the effect of
losses on the phase sensitivity (or uncertainty in the phase
estimate) that can be achieved with the SU(1,1) interferometer
is still missing. In this paper we take a closer look at this
problem when direct detection of both outputs is considered
and analyze both the effect of internal losses and losses after
the interferometer (external losses) that would model the use
of inefficient detectors. We show that even though external
losses reduce the sensitivity of the interferometer, they do not
prevent it from beating the SQL and, in fact, do not change
the scaling characteristic of the HL. In addition, we show that
in general the phase sensitivity of the SU(1,1) interferometer
is extremely sensitive to internal losses, making it impossible
to reach the HL and typically even perform below the SQL.
We show, however, that this interferometer can be made robust
against internal losses under the condition that both input ports
are seeded with coherent states. In this configuration internal
losses still degrade the phase sensitivity; however, it is still
possible to beat the SQL even with a significant amount of
loss.

Finally, we discuss two possible physical implementations
of the SU(1,1) interferometer. The first would use a four-wave
mixing (4WM) interaction in Rb vapor and closely mirrors
the original proposals for this sort of interferometer [16]. We
discuss real-world limitations on this particular technology,
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FIG. 1. (Color online) Schematic drawing of an ideal SU(1,1)
interferometer. An SU(1,1) interferometer is similar to a Mach-
Zehnder interferometer except that the input and output beam splitters
are replaced by parametric processes. The interferometer is typically
studied in a balanced configuration, in which the parametric process
in the second region is set to undo the interaction in the first region.

including losses and mode-matching, that would likely be
encountered. We also discuss an atom interferometer version of
this idea, implemented with spinor Bose-Einstein condensates
confined in a relatively tight laser dipole trap, which could
avoid many of the concerns brought up in the context of the
optical 4WM version.

II. IDEAL SU(1,1) INTERFEROMETER

We start with a study of the ideal lossless SU(1,1)
optical interferometer. In its basic configuration this type of
interferometer is like a Mach-Zehnder interferometer with the
beam splitters replaced by parametric processes, as shown in
Fig. 1, such as parametric down-conversion or 4WM. The
parametric process requires the use of one or two strong pump
beams (depending on the process used) in addition to two
beams, labeled a and b in Fig. 1, that travel the two paths
of the interferometer. This process is characterized by two
parameters: s, which is proportional to the strength of the
process, and θ , which describes the phase shift introduced by
the process. In the parametric process photons are transferred
between the pump beam and beams a and b with the direction
of the transfer dictated by the phases of the fields involved
in the process. Thus, it is possible to have amplification
or deamplification of beams a and b. Since energy can be
transferred from the pump to beams a and b, this interferometer
can be used without any input fields into paths a and b.

The SU(1,1) interferometer is typically studied in a bal-
anced configuration in which the second parametric process
is set to “undo” what the first parametric process did.
In this configuration the first parametric process generates
entangled pairs of photons, with one photon from each pair
going into each of the arms of the interferometer. Then, the
second parametric process undoes what the first one did by
transferring the pair of photons back to the pump beam. This
is accomplished by introducing a π phase shift between the
pump (or π/2 for 4WM where two pump photons are needed)
and beams a and b after the first parametric process. If there is
no phase difference between the two paths of the interferometer
(φ = 0) then the output beams of the interferometer are equal
to the input beams. How well this is accomplished depends
on the efficiency of the second process, that is, how many of
the generated photons are transferred back to the pump, which
depends on the relative phases of the pump and beams a and
b. Thus, any change in the relative phase φ between the arms
of the interferometer will lead to an incomplete transfer of

the entangled photons generated in the first parametric region
back to the pump in the second region, and thus to a change in
the output optical power and noise properties. These changes
can then be used to infer the internal phase difference φ.

In general, to study how well an interferometer can be used
to estimate the internal phase difference we need a measure
of its sensitivity. Such a measure can be obtained through
measurements of the optical fields that exit through the two
output ports. If one were to measure variable N , consisting of
some combination of measurements of the output fields, then
the uncertainty in the estimation of the internal phase of the
interferometer can be obtained through an error propagation
analysis, such that

�φ2 = 〈(�N̂)2〉
|∂〈N̂〉/∂φ|2 . (1)

The sensitivity in the measurement is given by the square root
of the variance or uncertainty. Note that a smaller value of
�φ2 indicates a reduction in the uncertainty of the estimation
and thus an increase in the sensitivity. As can be seen from
Eq. (1), the phase sensitivity of the interferometer depends on
the noise of the measured variable and on its rate of change
with respect to the phase of the interferometer and is dependent
on the measurement strategy that is used.

The quantity that is typically measured for an interferometer
is the difference in the intensities of the two output ports. For
the ideal SU(1,1) interferometer, however, the difference in the
intensities of the two output ports is a conserved quantity [20],
since photons are always created or eliminated in pairs by
the parametric processes, and thus this measure provides no
information about φ. One can consider instead the total number
of photons at the output of the interferometer, that is,

N̂ = n̂a + n̂b = â
†
2â2 + b̂

†
2b̂2, (2)

as the variable to be measured to estimate the phase.
The quantities that are needed to calculate �φ2 can

be obtained by using the transformation performed by a
parametric process on the field operators for the input modes
of the interferometer, â0 and b̂0. In this way we find that the
two output fields of the SU(1,1) interferometer are given by

â2 = aâ0 − bb̂
†
0, (3)

b̂2 = eiφ(ab̂0 − bâ
†
0), (4)

where a = cosh s1 cosh s2 + e−iφei(θ2−θ1) sinh s1 sinh s2 and
b = eiθ1 sinh s1 cosh s2 + e−iφeiθ2 cosh s1 sinh s2, such that
|a|2 − |b|2 = 1. The balanced configuration corresponds to
having s1 = s2 and θ2 = θ1 + π , such that with φ = 0 we have
a = 1 and b = 0 and thus â2 = â0 and b̂2 = b̂0.

In general, if the input states are taken to be coherent states
with amplitudes α = |α|eiθa and β = |β|eiθb then we find that

〈N̂〉 = (|a|2 + |b|2)(|α|2 + |β|2) − 2ab∗αβ

− 2a∗bα∗β∗ + 2|b|2, (5)

〈(�N̂)2〉 = (|α|2 + |β|2)[(|a|2 + |b|2)2 + 4|a|2|b|2]

− 4(|a|2 + |b|2)(ab∗αβ + a∗bα∗β∗) + 4|a|2|b|2,
(6)

023844-2



EFFECT OF LOSSES ON THE PERFORMANCE OF AN . . . PHYSICAL REVIEW A 86, 023844 (2012)

∂〈N̂〉
∂φ

= −4(|α|2 + |β|2 + 1) sin(φ + θ1 − θ2)

× sinh s1 cosh s1 sinh s2 cosh s2

+ 4|αβ| sinh s2 cosh s2[sin(φ+θa + θb − θ2) cosh2 s1

+ sin(φ + 2θ1 − θ2 − θa − θb) sinh2 s1]. (7)

The use of these equations gives the most general result for the
phase sensitivity of the ideal lossless SU(1,1) interferometer.
Throughout the rest of the paper we study the balanced
configuration (s1 = s2 ≡ s and θ2 = θ1 + π ) and analyze in
more detail different operational regimes as well as the effect
of losses. The results obtained can be generalized to the
unbalanced case by using the results given above.

We start by analyzing the configuration considered in
[16] with no input fields into the interferometer, that is,
|α| = |β| = 0. For the balanced case and for arbitrary φ we
find that

�φ2 = 1 + 2(1 − cos φ) sinh2 s cosh2 s

2(1 + cos φ) sinh2 s cosh2 s
. (8)

To study the scaling of �φ2 we need to write Eq. (8) in terms
of the total number of photons inside the interferometer. In
general, the total number of photons inside the interferometer
is determined by the strength of the parametric process s and
the phases of the input fields with respect to the phase of the
first parametric process θ1 and can be shown to be of the form

ni = 〈â†
1â1 + b̂

†
1b̂1〉

= (|α|2 + |β|2)(cosh2 s + sinh2 s)

− 4|αβ| cos 	 cosh s sinh s + 2 sinh2 s, (9)

where 	 = θ1 − θa − θb. The first two terms on the right-
hand side correspond to contributions from the stimulated
parametric process, while the last term results from the
spontaneous process. For the particular configuration in which
there is no input into the interferometer (|α| = |β| = 0) the
total number of internal photons is given by the spontaneous
contribution, that is,

ns = 2 sinh2 s. (10)

With Eqs. (8) and (10) we can now write

�φ2 = 1

1 + cos φ

[
2

ns(ns + 2)
+ (1 − cos φ)

]
. (11)

It is clear from this result that for φ = 0 the uncertainty
�φ2 has a 1/n2

s scaling characteristic of the HL, which
corresponds to the result obtained in [16]. In general, however,
the performance of the SU(1,1) is phase dependent. As can be
seen from Eq. (11) the uncertainty in the phase estimation
has two contributions such that for φ �= 0 the second term
will dominate for sufficiently large ns . Figure 2(a) shows the
behavior of �φ2 as a function of φ for a number of different
values of ns . The value of ns for which the constant term will
start to dominate is given by

ns =
√

3 − cos φ

1 − cos φ
− 1. (12)

After this point the sensitivity becomes independent of ns , as
shown in Fig. 2(b). This result shows that a precise control of
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FIG. 2. (Color online) Uncertainty in the phase estimation of
the ideal SU(1,1) interferometer with no input fields, Eq. (11), as
a function of (a) φ for different photon numbers and (b) the number
of spontaneous photons inside the interferometer, ns , for different
values of φ.

φ is required in order to reach the HL even in the ideal lossless
case.

We now look at the configuration in which we have an
input in both ports of the interferometer (|α|,|β| �= 0). As
pointed out in [17], the general expression for this case is rather
complicated. We thus consider only the special case where
φ = 0 and find that the uncertainty in the phase estimation is
given by

�φ2 = |α|2 + |β|2
16|α|2|β|2 sin2 	 sinh2 s cosh2 s

. (13)

As was done in [17], this expression can be written in terms
of the internal number of spontaneous photons, such that

�φ2 = |α|2 + |β|2
4|α|2|β|2ns(ns + 2) sin2 	

, (14)

which shows that the uncertainty scales as 1/n2
s . Note,

however, that since |α|2,|β|2 �= 0 the total number of photons
inside the interferometer, ni , can be significantly larger than ns .
In general, if we write Eq. (13) in terms of ni instead of ns , we
find that it has terms that scale as both 1/n2

i and 1/ni . However,
if we consider the case 	 = π/2 and |α|2,|β|2 � 0, such that
the stimulated photons dominate over the spontaneous ones,
then Eq. (13) can be written as

�φ2 = |α|2 + |β|2
4|α|2|β|2

1

[ni/(|α|2 + |β|2)]2 − 1
, (15)
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where, in this limit, ni 	 (|α|2 + |β|2)(cosh2 s + sinh2 s).
Note that Eq. (15) only contains the number of photons that
are internal to the interferometer divided by, or normalized
to, the number of photons in the input seed, ni/(|α|2 + |β|2).
This ratio is always greater than unity and depends only on
the strength of the parametric process, s. Thus, except for the
prefactor, the scaling of the sensitivity becomes independent
of the input coherent amplitudes. It is thus possible to change
the sensitivity without changing the power of the seeds by
controlling s. As this result shows, in this configuration the
HL can be obtained for the SU(1,1) interferometer even when
both the stimulated and spontaneous number of photons after
the first parametric process are taken into account. As we can
see from this result in the limit as s → 0 then �φ2 → ∞.
This is to be expected since in this limit there is no parametric
process and thus no mixing of the input states. As a result,
the intensity measurements of the output fields contain no
information about the phase.

III. EFFECT OF LOSSES

As has been previously pointed out, the phase sensitivity
of an interferometer can be extremely dependent on losses
[11,12,21], both in terms of the detection efficiency and
internal losses. We now turn to the effect of both of these
types of losses on the SU(1,1) interferometer. To simplify the
calculations we consider only the case in which both arms of
the interferometer have the same internal losses (1 − η1) and
the detectors for both output beams have the same detection
efficiency η2. After taking into account these losses we find
that we can write the rate of change of 〈N̂〉 with respect to φ

in terms of the ideal lossless case described in the previous
section as

∂〈N̂〉l
∂φ

= η1η2
∂〈N̂〉
∂φ

, (16)

where the l subindex indicates that the losses are taken into
account. In the same way we find that

〈(�N̂)2〉l = η2
1η

2
2〈(�N̂)2〉 + η1η2[1 − η1η2 + 2(1 − η1)η2 sinh2 s]〈N̂〉 + 2η1(1 − η1)η2

2 sinh s cosh s

× [ei(φ−θ1)(aβ − bα∗)(aα − bβ∗) − ei(φ−θ1)ab + e−i(φ−θ1)(a∗β∗ − b∗α)(a∗α∗ − b∗β) − e−i(φ−θ1)a∗b∗]

+ 2(1 − η1)η2 sinh2 s[1 + (1 − η1)η2(sinh2 s + cosh2 s)]. (17)

With these two results we can now calculate the uncertainty in
the phase estimation of the interferometer in the presence of
losses using Eq. (1).

It has been shown that for the Mach-Zehnder interferometer
the losses that result from an inefficient detector can be a
significant problem [21,22], thus requiring perfect or almost
perfect detectors to obtain a sensitivity below the classical
limit. A few schemes such as those based on nonlinear phase
shifts [22] and “quantum beam splitters” that can generate
NOON states [23] have been shown to be robust against this
type of loss mechanism.

We start by looking at the effect of the detection efficiency
by making η1 = 1 (no internal loss) in the above equations. In
this case Eq. (17) reduces to

〈(�N̂)2〉l = η2
2〈(�N̂)2〉 + η2(1 − η2)〈N̂〉, (18)

such that

�φ2
l = �φ2 + 1 − η2

η2

〈N̂〉
(∂〈N̂〉/∂φ)2

. (19)

Thus, for the balanced case with φ = 0 we find that for |α| =
|β| = 0

�φ2
l = 1 + η2

2η2
�φ2, (20)

and for |α|,|β| �= 0

�φ2
l = 1

η2
�φ2. (21)

As we can see from these results the effect of the detector
efficiency is to reduce the sensitivity by introducing an overall

prefactor. It does not change the functional form, however,
thus making it possible to maintain the 1/n2 scaling for
the uncertainty characteristic of the HL. Thus, this type
of interferometer is robust against losses due to inefficient
detection. This is consistent with previous results that have
shown that the limitations in detection efficiency can be
overcome by using a configuration that disentangles the states
prior to performing the measurements [23,24], as is the case
with the SU(1,1) interferometer when φ = 0.

Next we study the effect of internal losses on the interfer-
ometer by setting η2 = 1. We first look at the configuration
with no input fields (|α| = |β| = 0). In this case we find after
writing the uncertainty in terms of the number of internal or
spontaneous photons that it is given by

�φ2
l = �φ2 + 1 − η1

η1

[
2(ns + 1)

(1 + cos φ)ns(ns + 2)

+ 1 + (1 − η1)(ns + 1)

η1ns(ns + 2)2 sin2 φ

]
. (22)

As this result shows, the last extra noise term is out of phase
with respect to the lossless case, which means that at φ = 0,
where the ideal result reaches the HL, this terms diverges, as
shown in Fig. 3. It is possible to find a range of values φ for
which the sensitivity can go below the classical limit even in
this case; however, it will only be for a very limited range of
ns given that even for the ideal lossless case a small deviation
from φ = 0 [see Fig. 2(b)] makes it impossible to reach the
HL. Thus, any internal loss in this configuration will practically
make it impossible to reach the HL or beat the SQL. A similar
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FIG. 3. (Color online) Uncertainty in the phase estimation of the
SU(1,1) interferometer in the presence of internal losses for the case
of no inputs, Eq. (22). The contributions from (a) the ideal lossless
SU(1,1) interferometer and from (b) the extra term that results from
losses are out of phase. (c) Uncertainty when the losses are taken into
account. η1 = 0.9 and ns = 5.

result is obtained in the case when only one of the input ports
of the interferometer is seeded with a coherent state.

Finally, we look at the configuration with coherent state
inputs (|α|,|β| �= 0). As was done before, in order to simplify
the results, we consider only the case where φ = 0 and
	 = π/2 in which case we find that

�φ2
l = �φ2

[
1 + 1 − η1

η1
(1 + 2 sinh2 s)

]

+ 1 − η1

η2
1

1 + (1 − η1)(sinh2 s + cosh2 s)

8|αβ|2 cosh2 s
. (23)

If we take into account the condition in which the ideal lossless
case can reach the HL (|α|2,|β|2 � 1) we can neglect the
contribution from the last term in the above equation, such
that after writing the uncertainty in terms of ni we find that

�φ2
l 	 �φ2

[
1 + 1 − η1

η1

ni

|α|2 + |β|2
]

. (24)

From this result we can see that internal losses result in an
additional noise term with a prefactor that scales as ni , such that
when combined with the 1/n2

i scaling for the lossless SU(1,1)
interferometer it leads to a 1/ni scaling for the uncertainty.
Figure 4(a) shows the effect of this extra noise term due to
internal losses on reaching the HL, which is given by the red
dashed line. As can be seen from this figure, as long as the
internal losses are less than 50% it is possible to beat the SQL,
given by the red dotted line.

The extra noise term will start to dominate when
its contribution is equal to the contribution of the ideal
SU(1,1) interferometer, which occurs when the internal losses
are

1 − η1 = 1

1 + ni/(|α|2 + |β|2)
. (25)

Once this happens the interferometer will not operate at the HL
anymore, although it will still operate below the classical limit
until the second term of Eq. (24) is significantly larger than the
first one. This implies that for a given loss the interferometer
will operate at the HL for a limited range of ni . Figure 4(b)
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FIG. 4. (Color online) (a) Uncertainty in the phase estimation of
the SU(1,1) interferometer in the presence of losses for the configura-
tion with coherent state inputs as a function of the normalized internal
number of photons, ni/(|α|2 + |β|2), for different levels of internal
loss (1 − η1). The red dashed line indicates the Heisenberg limit while
the red dotted line indicates the SQL. (b) Level of loss at which the
extra noise term in Eq. (24) dominates vs the normalized number
of photons inside the interferometer. Note that ni/(|α|2 + |β|2) = 15
corresponds to s = 1.7.

shows the amount of loss that will make the extra noise term
dominate. As can be seen from this figure, even for a large
interaction strength parameter s of the order of 2, an internal
loss of 5% is required for the extra noise term to dominate.
Therefore we can conclude that the use of coherent input states
for the SU(1,1) interferometer make it robust against internal
losses.

IV. PHYSICAL IMPLEMENTATIONS

The SU(1,1) interferometer configured with input coherent
states on both input ports is robust against both internal and
detection losses, making this a promising configuration for
an experimental implementation with current technologies.
The original discussion by Yurke et al. [16] proposed using
either parametric down-conversion or 4WM interactions for
the nonlinear processes in Fig. 1. Recent work with 4WM in a
double-� configuration in Rb vapor has led to the generation
of “twin beams” with strong intensity-difference squeezing
[25] and a large degree of entanglement [26]. The relatively
straightforward implementation of these experiments with
warm Rb vapor cells makes this 4WM configuration an ideal
candidate for a possible implementation, along the lines of the
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implementation of this interferometer in the classical domain
in Ref. [18]. There are, however, a number of experimental
concerns and nonideal, or at least unexpected, behaviors that
can complicate this implementation.

The twin-beam-generation experiments in the 4WM
double-� configuration were performed by combining a
relatively strong cw pump and a weak probe beam at a small
angle inside a Rb cell. The atomic χ (3) interaction leads to
4WM, which generates a new beam, called the conjugate, at
the same angle but on the other side of the pump. In this
case the system acts as a phase-insensitive amplifier. In 85Rb
the frequency of the probe and conjugate beams are ±3 GHz
(the ground-state hyperfine splitting) away from the pump
frequency, which itself is tuned approximately 0.8 GHz from
the D1 atomic resonance. Such a frequency difference is not an
issue in the SU(1,1) interferometer since the photons from the
two paths “interfere” with each other through the parametric
process. With this process, interaction strengths as large as
s = 2 have been demonstrated while retaining the quantum
correlations that lead to intensity-difference squeezing and
entanglement. This allows a large range of possible values for
the internal number of photons ni .

The simplest physical implementation of the interferometer
would involve using two Rb cells to implement the two 4WM
processes, with a two-lens 4f system in between the cells
instead of the mirrors indicated in Fig. 1. This optical system
will image the first process onto the second one, matching the
spatial distribution and wavefronts of the fields in both cells.
In addition, the pump, probe, and conjugate beams will be
spatially separated and copropagating in the region between
the two lenses, making it possible to introduce the π/2 phase
shift required for the pump beam. When implementing the
SU(1,1) interferometer in the configuration with both the probe
and conjugate beams seeded at the input of the interferometer,
the process in the first parametric region becomes phase sen-
sitive. This makes it necessary to actively stabilize the relative
phases of the input fields. The second interaction region in the
interferometer is also a phase-sensitive process, which means
that the beams also need to be recombined in a phase-stable
manner with a pump beam that is phase-shifted by π/2 from
the first interaction region. In addition, the wavefronts need
to be properly mode-matched in the second cell so that this
4WM interaction can undo what the first region does. That is,
if the first region generates correlated pairs of photons, they
will undergo stimulated absorption in the second region.

One of the main complications with this implementation
would be that the χ (3) interaction also leads to a Kerr lensing
(intensity-dependent index of refraction) effect due to the
strong pump beam with a Gaussian profile that can distort
the probe and conjugate beams [26]. The probe and conjugate
beams are approximately 0.8 and 6.8 GHz away from the
atomic resonance, respectively, which leads to a significantly
different lensing effect for each beam. This will make the
mode-matching of the two beams when recombining them in
the second 4WM region more difficult, since the differential
Gaussian lensing on the two beams must be compensated for.
This Kerr lensing can be minimized by using a broad flat-top
pump profile, but this generally requires more pump power.
In addition, optical losses are somewhat hard to eliminate
completely, especially if extra optics are required to improve

mode-matching in the second interaction zone. Both of these
effects will reduce the mode-matching efficiency in the second
4WM region and will contribute to a reduction of the sensitivity
due to effective internal losses. An additional complication is
due to the air currents that result from the use of hot vapor cells,
because they will vary the optical path difference between
the two arms of the interferometer and make stabilization of
the interferometer more complicated. This, however, can be
compensated for by active stabilization of the internal paths of
the interferometer. Implementing the SU(1,1) interferometer
using parametric down-conversion will also entail some of the
same issues, to a greater or lesser degree.

Another, rather different approach to implementing the
SU(1,1) interferometer is the possibility of using an atom
interferometer with an interaction that can be made analogous
to a 4WM interaction. Spinor Bose-Einstein condensates
(BECs) can be made to interact such that, at least under some
conditions, they obey a 4WM interaction Hamiltonian [27–30].
This implementation can avoid some of the complications that
have been discussed above in the optical implementation.

Bose-condensed 23Na in the F = 1 state constitutes an
example of a spinor BEC. The system can be thought of
as a degenerate cloud of F = 1 atoms with a vector order
parameter. Alternatively, one can think of it as three coupled
condensates, each with a different projection of spin (mF = 0,
+1, −1), population, and phase [31]. The condensates are
characterized by collisional interactions as well as an inter-
action with an imposed magnetic field. The only important
collisional interaction between the condensates is the collision
of two mF = 0 atoms that produces one atom in the mF = −1
state and one in the mF = +1 state, or vice versa. These
collisions conserve the total spin projection as well as the total
energy in the linear Zeeman approximation. The quadratic
Zeeman energy shift is left to play off against the atom-atom
interactions to determine the final distribution of the population
of atoms between the three mF states. In a Bogoliubov
approximation the Hamiltonian for this system can be written
as equivalent to a 4WM interaction [27].

The analogy to the optical implementation would be for
most of the atoms to start in the mF = 0 state, with a
small population of the mF = ±1 states. In this system the
mF = 0 condensate plays the role of the pump beam, while
the mF = ±1 states play the roles of the probe and conjugate
beams. Applying a microwave field that is off-resonant for the
F = 1 to F = 2 ground-state transition in Na, one can dress
the system such that the mF = 0 state is higher in energy than
the mF = ±1 states. This “turns on,” or allows the collisional
interactions to start generating pairs of mF = ±1 atoms. Pairs
of mF = ±1 atoms are generated by the 4WM of matter
waves in the first interaction region and then collide again
to regenerate mF = 0 state atoms in the second region. The
microwave field can also be pulsed to give a relative phase
shift between the phase of the mF = 0 condensate and those
of the mF = ±1 states, allowing the phase shift between the
two nonlinear interaction regions to be controlled.

In the experiments of Ref. [31] the atoms are trapped
in a crossed laser dipole trap, which maintains rather stiff
confinement and, under selected conditions, the atoms can
be confined to a single spatial mode of the trap [32]. This
confinement restricts the spatial modes of all three condensate
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components, enforcing essentially perfect mode-matching as
long as the single-mode conditions are maintained. Similarly,
beam-path stability is not an issue in this case. Losses internal
to the interferometer are much less of a problem in the atomic
interferometer than in the optical interferometer. Atomic losses
are dominated by scattering of hot background atoms against
the condensate atoms. The vacuum can be made quite good,
and the lifetime of the trap can be made to be much longer
(tens of seconds) than the duration of the proposed experiments
(perhaps tens of milliseconds). One issue that does arise for the
spinor atom interferometer is that the Hamiltonian is the exact
4WM Hamiltonian only in the Bogoliubov approximation.
If the population transferred to the mF = ±1 states be-
comes significant this approximation becomes invalid and the
mF = ±1 populations generated in the first region will not
return to the mF = 0 state in a symmetrically constructed
second interaction region.

V. CONCLUSION

We have shown that the SU(1,1) interferometer can be
used to reach the Heisenberg limit for the ideal lossless
case for configurations with and without input fields. Both
of these configurations are robust against losses that result
from inefficient detectors. This type of loss only introduces a
prefactor for the sensitivity but does not change its functional
form. As a result, using an inefficient detector has no effect on
demonstrating HL scaling with this type of interferometer.
On the other hand, the effect of internal losses can be a

significant limiting factor. For the configuration with no input
fields (vacuum input) or only one input coherent state, any
amount of internal losses will make it virtually impossible
to reach the HL or even to beat the classical limit. We have
shown, however, that with coherent state inputs on both ports
the interferometer is robust against losses and can beat the
SQL even with losses approaching 50%. The robustness of this
configuration makes it a promising one for demonstrating HL
scaling. In addition, we have discussed how an implementation
of the SU(1,1) interferometer in an atomic system may have
some real advantages over a particular optical implementation
of the interferometer.

One of the main limitations of the measurement strategy
for the SU(1,1) interferometer presented in this paper is its
dependence on φ. This means that precise control of the phase
difference between the two arms is required. In the future, we
intend to analyze other measurement strategies to see if one
exists which makes the measurement independent of the inter-
nal phase of the interferometer. For the regular Mach-Zehnder
interferometer there have been recent theoretical proposals
and experiments that show that such a goal is possible with
the use of Bayesian parameter estimation [13,33]. Such a
measurement strategy might also prove beneficial for the
SU(1,1) interferometer.
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