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Towards particle creation in a microwave cylindrical cavity
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We present numerical results for the particle (photon) creation rate of dynamical Casimir effect (DCE) radiation
in a resonant cylindrical microwave cavity. Based on recent experimental proposals, we model an irradiated
semiconducting diaphragm (SCD) using a time-dependent “plasma sheet”’ where we show that the number of
photons created for the transverse magnetic mode TM011 is considerably enhanced even for low laser powers (of
μJ order). Conversely to the moving mirror case, we also show that the fundamental TM mode (TM010) is not
excited for an irradiated plasma sheet. We show that polarization (arising due to the back reaction of pair created
photons with the plasma SCD) implies losses for TM, but not transverse elelctric (TE) modes. However, we
argue that these losses can be reduced by lowering the laser power and shortening the relaxation time. The results
presented here lead support to the idea that TE and, in particular, TM modes are well suited to the detection of
DCE radiation in a cylindrical cavity.
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I. INTRODUCTION

The dynamical Casimir effect (DCE) was first discussed by
Moore [1] more than 40 years ago in 1970, who showed that
pairs of photons would be created in a Fabry-Pérot cavity if
one of the ends of the cavity wall moved with periodic motion.
The number of photons produced during a given number of
parametric oscillations is proportional to sinh2(2ωt v/c), e.g.,
see [2]. However, in most cases, the mechanical properties of
the material imply v/c � 1, where v is the wall velocity and c

is the speed of light. To overcome this problem there have been
various other proposals besides the mechanical oscillations
of a boundary, such as using a dielectric medium [3–9]
(see also [10]). This leads to an effective wall motion by
varying the optical path length of the cavity [5,7,10]. There
are also other methods such as illuminated superconducting
boundaries [11] and time varied inductance effects in quantum
circuit devices [12], where evidence for photon creation in a
one-dimensional system has been reported [13] (see also the
review in Ref. [14]). An experiment in progress [15–17] (see
Fig. 1 for the general idea) uses a plasma mirror obtained
by irradiating a semiconductor sheet with a pulsed laser.
This leads to an effective wall motion by varying the surface
conductivity, which generalizes early proposals [18–20] that
suggested using a single laser pulse. (For more details on all
these ideas, see the review by Dodonov [21].)

The goal of this paper is to extend previous numerical
work on rectangular cavities [22] to the case of a cylindrical
one.1 Previously [22] (for related work, see also [23]), we
considered the fundamental transverse magnetic (TM; TM111)
and second fundamental transverse electric (TE; TE111) mode
for a semiconductor diaphragm (SCD) irradiated by a pulsed
laser in a rectangular cavity. However, there are various
reasons for considering a cylindrical cavity: the tuning of the
standing-wave frequencies depends only on the radius R and
length Lz (rather than Lx,Ly,Lz); it is easier to irradiate the
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1An experiment has already been built at Padau University [15–17]

using an SCD fixed to the wall of a rectangular cavity.

SCD uniformly; and it is easier to construct a higher finesse
cavity.

Furthermore, in some proposed experiments, a Rydberg
atom beam (which can be used to detect individual photons
[24–26]) may lead more favorably to considering TM modes
[27]. Thus, in this work we focus on the lowest excited
(second fundamental) TM011 mode (for a cylinder of length
Lz = 100 mm and radius R = 25 mm) that has a resonant pulse
duration of T ≈ 103 ps for the TM011 mode with frequency
f011 = 4.83 GHz (cf. the TE111 mode with T ≈ 131 ps and
f111 = 3.83 GHz).2 However, as we discuss in Sec. IV, TM
modes are susceptible to polarization losses in the SCD coming
from the back-reaction of DCE-created photons with the
plasma sheet (this stems from the fact that the conductivity is
related to the imaginary part of the dielectric function). Even
so, the results presented here give upper bounds on the number
of photons created, particularly given the fact that (see Sec. IV)
decreased laser powers (implying less dissipation) still lead to
significant particle creation.

The outline of this paper is as follows. In the next section
(Sec. II) we explain the plasma sheet model (Sec. II A), the
necessary boundary conditions (Sec. II B), and the form of the
eigenfunctions (Sec. II C). In Sec. III we discuss how to find
the number of particles created using the Bogoliubov method
(Sec. III A) and then show how the TM010 fundamental mode
has no contribution to the photon creation rate (Sec. III B). In
Sec. IV we argue on the dissipative nature of TM modes, based
on polarization effects. Finally, analysis and discussion is given
in Sec. V. In the Appendix the Hertz potentials approach
to separate Maxwell’s equations, including polarization, is
discussed.

II. THE MODEL

A. Plasma sheet model

A microscopic model would be a more realistic way to
discuss the coupling of DCE photons to the background SCD

2The TM010 case does not contribute to photon creation (see
Sec. III B).
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FIG. 1. General idea of plasma window experiments such as that
in Italy [15–17]: A laser periodically irradiates a semiconductor
diaphragm (SCD) inside a superconducting cavity. In our simulations
we assume a cylindrical cavity with dimensions Lz = 100 mm,
R = 25 mm, and we also assume that the SCD can be placed at various
locations d within the cavity: η = d/Lz. Inset: Typical pulsed laser
profile with each pulse train of order 10 ns (10–100 pulses) repeated
every ∼10 ms. Each pulse is typically of order T = te + t0 + τ ∼
100 ps and depends on the excitation time te and relaxation time τ .

in a consistent way, particularly to include dissipative effects
(for particle creation in a crystal, based on a microscopic
model without dissipation, see [6]). It is also interesting to
note that working with a dielectric of finite thickness (resulting
in more complicated Bessel functions; e.g., see [28,29]), does
not result in the same wave equation or junction conditions in
the limit of an infinitely thin dielectric for TM modes [30].3

However, these issues are somewhat out of the scope of the
current work and, for simplicity, we discuss the interaction
of a plasma sheet irradiated by a laser in the hydrodynamic
approximation, because it leads to semianalytic expressions
for the mode functions and eigenvalues.

The Hamiltonian for a surface plasma of electrons of charge
e and “effective mass” m∗ on a background electromagnetic
field is (using the minimal substitution)

H = 1

2

∫
d3x[E · D + B · H]

+
∫

d3x

(
1

2m∗ns

(pξ − ensA‖)2 + ensA0

)
δ(x − x�),

(1)

where the canonical momentum is

ξ̇ = [pξ − ens(t)A‖]/m∗ns(t), (2)

ns(t) is the “time-dependent” surface charge density, and A‖
is the vector potential. The Hamiltonian, which is subject
to constraints, implies that pξ = 0 (see [31]), and thus the
electron momentum is related to the tangential vector potential
by

ξ̇ = −eA‖/m∗, (3)

3We have verified that TE modes do agree with the “plasma sheet”
model in the case of an infinitely thin dielectric [30].

which implies that the surface current density is

K = ens(t)ξ̇ = −e2ns(t)

m∗ A‖. (4)

Using surface continuity [32]:

σ̇ + n̂ · [∇ × n̂ × K] = 0, (5)

where n̂ is the unit normal (this is actually the charge
conservation law: σ̇ + ∇ · K = 0) along with the Lorenz
gauge condition:

∂tA0 + ∇ · A = 0, (6)

we find

σ̇ = −e2ns(t)

m∗ ∇ · A‖ = e2ns(t)

m∗ ∂tA0 ⇒ σ = e2ns(t)

m∗ A0,

(7)

where A0 is the scalar potential. Thus, in the plasma model
we see that the surface charge density depends on the number
of charge carries ns which can be made to vary in time by
using a pulsed laser, with time profile ns(t) [see Fig. 1 (inset)].
To mimic current [15] and proposed experiments as closely
as possible we model ns(t) by two Gaussian profiles te and τ

joined smoothly to a plateau of length t0 (all of picosecond
order); see Fig. 1.

B. Boundary conditions

The boundary conditions for a charged plasma interface
were derived very concisely in the work of Namias [32] (ac-
tually for charged moving interfaces), where for completeness
we include the case where the interface is moving (v �= 0):

(D2 − D1) · n̂ = σ, (B2 − B1) · n̂ = 0 (8)

n̂ × (H2 − H1) − v · n̂(D2 − D1) = K,
(9)

n̂ × (E2 − E1) − v · n̂(B2 − B1) = 0.

Here n̂ is the unit normal pointing from a given region I
into another region II, and t̂ is any unit vector tangential to
the surface. Although it might be interesting to consider how
the mechanical vibrations of a two-dimensional electron layer
affect photon creation, we set v = 0 in the following (however,
see the discussion in Sec. III B).

Substituting the relations for E,B [cf. Eq. (A6)] into the
above boundary conditions, with v = 0, we find the following
continuity and jump conditions, e.g., see [22,33]:

disc 
|z=d = 0, disc ∂z�|z=d = 0, (10)

disc ∂z
|z=d = μ
e2ns(t)

m∗ 
(d),

disc �(d) = −μ
e2ns(t)

k2
⊥m∗ ∂z�

∣∣∣∣
z=d

. (11)

These equations can now be used to solve for the eigenvalues
(see Sec. II C, below). This work focuses on a cylindrical cavity
of radius R = 25 mm and length Lz = 100 mm (see Fig. 1).
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C. Wave functions and eigenfrequencies

From the continuity and the jump conditions given above
we have the following solutions for the wave function (for TE
modes):


m =
⎧⎨⎩A(TE)

m

√
1
d

sin(kmz
z)vnm(x⊥) 0 < z < d

B(TE)
m

√
1

Lz−d
sin[kmz

(Lz − z)]vnm(x⊥) d < z < Lz,

(12)

where for a cylindrical section we have [34,35]

vnm(x⊥) = 1√
π

1

RJn(ynm)
√

1 − n2/y2
nm

Jn

(
ynm

ρ

R

)
einφ,

(13)

where ynm is the mth positive root of J ′
n(y) = 0, for TE modes.

Then, due to symmetry the eigenvalue relation depends only
on the z direction and reduces to the result we previously
found [22]:

sin(kmz
Lz)

(kmz
)∓1 sin(kmz

[Lz − d]) sin(kmz
d)

= ∓e2ns(t)

k2
⊥ m∗ , (14)

where the ± signs refer to TE and TM modes, respectively
(for TE modes drop the 1/k2

⊥ factor).
In the above the wave function for TM modes is obtained

by replacing sin → cos and vnm(x⊥) → rnm(x⊥), where

rnm(x⊥) = 1√
π

1

RJn+1(xnm)
Jn

(
xnm

ρ

R

)
einφ (15)

and xnm is the mth root of Jn(x) = 0.
For comparison with the rectangular case [22] we present

some representative examples for the numerical solution of
Eq. (14) above, for the case of η = 1/2 (the SCD placed at
the midpoint) in Fig. 2, for a driving period of O(100) ps.
The figure shows kn(t) for TE and TM modes, where as found
in [22], TE modes upshift in frequency, while TM modes
downshift. In contrast to the TE case, one important feature
(also found for rectangular cavities) is that decreased laser
powers still lead to large frequency shifts for TM modes (cf.
the TE low power case in Fig. 2); this may be of relevance to
dissipation (see Sec. IV).

It may also be worth mentioning that TM modes depend
explicitly on the transverse eigenfrequencies k⊥ [see Eq. (14)]
and thus TM modes are influenced directly by the topology
of the transverse section.4 The physical reason for this is that
the electric Hertz vector �e, responsible for TM modes, leads
to transverse magnetic H‖ and perpendicular E⊥ fields, which
induces electron motion parallel to the SCD and hence depends
on the transverse dimension. TE modes, on the other hand,
arise from the magnetic Hertz vector �m where in this case the
electric and magnetic fields are transverse and perpendicular,
respectively: E‖,H⊥.

4For actuation in time of a mirror or semiconductor in the
longitudinal direction the cylindrical and rectangular mode functions
kn(t) are identical for TE modes. However, the resonant frequencies
and driving periods [as well as ωn(t): Eqs. (21) and (28)] are different
for a rectangular and cylindrical cavity.

III. PARTICLE CREATION WITHOUT LOSSES

Before we begin discussing how to evaluate photon creation
rate via the Bogoliubov method we would like to mention that
most of the numerics in this work assumes a pulse train of
order 10 pulses per train, which is ∼1000 ps for a driving
period of order 100 ps. One possible benefit of shorter pulses
per train would be that weaker laser powers are needed.
However, recently it was argued in [21] that our previous
results for a rectangular cavity [22] require a larger number
of pulses per train to obtain a photon creation rate of about
5/s for TM modes, comparable to results for the TE mode
with moving mirrors in a rectangular cavity [36]. Thus, in
Fig. 3 (see Sec. III A below) we also ran some simulations
with ∼30 pulses/train and found a photon creation rate of
about 5/s−1 for the TM011 mode. However, longer pulse trains
may imply that dissipative effects start damping the photon
creation rate (see discussion in Sec. IV).5

A. Instantaneous mode functions and the Bogoliubov method

The quantum field operator expansion

ψ̂(r,t) =
∑

m

[amψm(r,t) + a†
mψ∗

m(r,t)] (16)

of the Hertz scalars with instantaneous basis ansatz during
irradiation is [4]

ψout
s (r,t) =

∑
m

P (s)
m 
m(r,t), t � 0, (17)

where before irradiation t < 0 (for TE modes) we have the
standard stationary time dependence:

ψ in
m (r,t) = e−iω0

mt√
2ω0

m

√
2

Lz

sin

(
πmzz

Lz

)
vnm(x⊥) (18)

[for TM modes replace sin → cos, vnm(x⊥) → rnm(x⊥), and
(ψ,
) → (φ,�)]. When Eq. (17) is substituted into the
equations of motion (on either side of, but not including the
SCD located at z = d),

∇2
⊥
 + ∂2

z 
 − ∂2
t 
 = 0, ∀z �= d (19)

(for TM replace 
 → �), we find the following set of coupled
second-order differential equations:6

P̈ (s)
n + ω2

n(t)P (s)
n = −

∞∑
m

[
2MmnṖ

(s)
m + ṀmnP

(s)
m

+
∞∑
�

Mn�Mm�P
(s)
m

]
, (20)

and for a cylindrical cavity (for TE modes) we have

ω2
mz

(t) = c2

[(
ynm

R

)2

+ k2
mz

(t)

]
, (21)

5A phenomenological time-dependent damping term can be in-
cluded using the Heisenberg-Langevin approach [37] (see also
[29,38]).

6In the following we drop the x,y dependence of the mode functions
and write the eigenfrequencies solely in terms of index mz ≡ m.
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FIG. 2. (Color online) Frequency variation for various kn for fundamental TE11n modes and for second fundamental TM01n modes, with
two different laser powers, in dimensionless units VmaxLz = 5000 (on left) and VmaxLz = 1 (on right). Numerically, for a given power (VmaxLz)
and driving period T we carefully choose the profile ns(t) ∝ ti + t0 + te, with Gaussians: ti = exp(−t2/2σ 2

i ), i = e,τ (denoting excitation and
relaxation, respectively) by varying σe such that there is a smooth transition from relaxation to excitation when the pulse repeats. The profile is
then substituted into Eq. (14), which is solved for numerically, resulting in plots such as that above.

where ynm is the nth root of the Bessel equation J ′
m(x) = 0 [34]

(for TM modes see Sec. III B). Note the coupling matrix is
defined by [4]

Mmn = (
n,
n)−1 δmxnx
δmyny

(
∂
m

∂t
,
n

)
. (22)

Then given the scalar product

(φ,ψ) = −i

∫
cavity

d3x(φ ψ̇∗ − φ̇ ψ∗), (23)

the Bogoliubov coefficients are defined as

αmn = (
ψout

m ,ψ in
n

)
, βmn = −(

ψout
m ,

[
ψ in

n

]∗)
, (24)

where in terms of the “instantaneous” mode functions it is
possible to show that [8,36]

βmn =
√

ωm

2
P (n)

m − i

√
1

2ωm

[
Ṗ (n)

m +
�max∑
�

M�mP
(n)
�

]
, (25)

where αmn is obtained by complex conjugation. The number
of photons in a given mode (for an initial vacuum state) is then
given by [39]

Nm(t) =
�max∑
n

|βmn|2, (26)

where as a representative example, in Fig. 3, we have plotted
the lowest DCE-created modes for the TM case with �max = 71
and for about 30 laser pulses (we checked convergence by
going up to �max = 81). The plot shows that in a given mode
we can easily obtain a large number of photons ∼5/s−1 and
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FIG. 3. (Color online) Particle creation rate for 3000 ps (about 30 pulses) for the lowest TM01n modes n = 1,2,3,4 with high and low
laser powers, respectively: V Lz = 5000,1. The number of mode couplings was cut off at �max = 71 and we found no discernible difference by
increasing the number to �max = 81. The driving period for both cases was set to T = 113 ps. Insets: Plot of unitarity bound, Eq. (27), for the
same parameters.

also shows that even modes make a greater mode contribution
to particle creation.

Interestingly, we see that on time scales of the order of
15–30 pulses the TM012 mode is more greatly enhanced for
high laser powers. However, in this work we wish to focus on
pulse trains of order 10 (up to ∼1200 ps) and hence the TM011

mode is typically more dominant (though not necessarily for
decreased laser powers; see Fig. 3 at right).

In Fig. 3 we also see that the total photon creation rate (sum
of all mode contributions) increases by an order of magnitude.
However, for times greater than ∼1000 ps we find that the total
number of modes needed to maintain convergence implies a
much larger value of �max � O(100) and is out of the scope of
the current work.

In the following sections we shall solve for the amount of
particle creation numerically with a cutoff at �max ∼ 50 where
we find the results do not change (for time durations up to
∼1200 ps). However, an independent check comes from the
unitarity constraint [39]:

�max∑
n

(|αmn|2 − |βmn|2) = 1, (27)

which we have verified (e.g., see the insets in Fig. 3 above,
and also figures in Refs. [22,36,40]).7

B. No particle creation for the fundamental TM mode

We will now show that the fundamental TM010 mode leads
to no photon creation, because it is a zero mode and it also
has a coupling matrix Mmn = 0 (this is converse to the case of
moving mirrors [35,41]). Thus, the second fundamental mode
(TM011) is the lowest excited TM mode that produces DCE
radiation in the plasma sheet model.

To start consider the angular eigenfrequency for TM modes:

ω2
mz

(t) = c2

[(
xnm

R

)2

+ k2
mz

(t)

]
, (28)

7More details of the numerical method can be found in [8,22,36,40].

where xnm is the nth root of the Bessel equation Jm(x) = 0
[34]. The lowest eigenfrequency in the static case: ωmnp with
m,p = 0,1,2, . . . and n = 1,2,3, . . ., becomes

ω2
010(t) = c2

[(
xnm

R

)2]
(29)

and in the time-dependent case instead of p2π2/L2
z = 0, we

have k2
mz

(t) which also has a zero mode, k2
mz=0(t) = 0, which

means that there is no parametric enhancement of the TM010

mode in Eq. (20). Also note that by definition the coupling
matrix Mmn in Eq. (22) is zero and hence Eq. (20) leads to no
particle creation through multimode coupling either.

One might wonder, thus, how photon creation occurs at all
for TM010, even for the moving mirror case, given that we have
such a zero mode? However, as discussed in [41], although the
boundary conditions in Eq. (9) (for ρ = 0 and K = 0) lead to
the standard Dirichlet condition for TE modes, a generalized
Neumann boundary condition arises for TM modes, where for
our Hertz potentials [35] we have


(z = 0,L) = 0,
(
∂0 + v

c
∂t

)
�(z = 0,L) = 0 (30)

and we have assumed a perfect conductor with vanishing field
in region II (the region external to the cavity for the moving
wall case).

This nonstandard generalized Neumann boundary condi-
tion can lead to subtleties with quantization; however, by
making a coordinate transformation we can work in a frame
of reference where the time derivative vanishes. This leads to
extra terms that appear in the coupled differential equation,
Eq. (20) (e.g., see [41] and [35]). These are the terms
responsible for DCE photon creation for TM010 modes for
a moving boundary, but they are not present for the plasma
sheet model (with v = 0), as we have discussed.

IV. POLARIZATION LOSSES IN
THE PLASMA SHEET MODEL

It appears difficult to discuss dissipation in the plasma sheet
model, because a δ-function profile has no intrinsic length scale
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in the longitudinal z direction, where, for example, we expect
temperature rises in the SCD to lead to dissipative effects.
However, we can still make some general statements about
dissipation based solely on Maxwell’s equations: To consider
dissipation we can either use a longitudinal z-dependent
imaginary part in the dielectric function, ε2(t), and set the
electric polarization vector, P = 0; or conversely (see the
Appendix) we can set ε2 = 0 and include a time-dependent
polarization P.8

In this work we will consider dissipation based on the
assumption that losses arise due to electric polarization, P(t),9

of pair created DCE photons, with back-reacted E(t). These
photons are of GHz frequency (in the microwave regime) that
implies that ωτ � 1, where τ is the typical relaxation time of
a conductor. The laser field itself [which generates ns(t)] also
leads to losses [21], but we will assume that most of the energy
absorbed there is used to create the plasma window itself, i.e.,
to move the valence electrons into the conduction band.

Based on the above assumptions we will now show that
polarization losses from DCE photons only affect TM modes
as follows. In the Appendix in Eqs. (A8) we are free to choose
a gauge where all stream potentials are zero (except Qe); see,
e.g., [43]. Thus, Maxwell’s equations in Hertz form [Eqs. (A8)]
imply that losses due to polarization only affect �e, namely,
TM modes10 [assuming that μ(x,t) = μ0 is a constant, i.e., the
induced magnetization is M = 0].

In addition, for a cylinder the lowest frequency modes
(0,1,1) for TM and (1,1,1) for TE, give the dominant
contribution to polarization,11 because, quite generally, these
are the modes with the greatest parametric enhancement due
to resonance (and multimode enhancement for TM modes; see
Fig. 5). Thus, in what follows we develop a simplified model of
dissipation (through polarization effects) based on the Drude
model.

The electric polarization can be defined (at the linear level)
as

P(t) = χ (t)E(t), (31)

where in the Drude model the susceptibility in momentum
space is (e.g., see [42])

χ (ω) = −nve
2

m∗

1

ω(ω + i/τ )
. (32)

It is then possible to show that the real-time susceptibility (via
an inverse Fourier transform) gives

χ (t − t ′) = nve
2τ

m∗
e−(t−t ′)/τ , χ (t − t ′) = 0 for t ′ > t,

(33)

8The two approaches here are equivalent, because the definition of
the electric displacement is D = εE + P.

9Choosing P �= 0 is equivalent to choosing −iωJ �= 0 (e.g., see
[42]).

10Another way to understand this fact is that for transverse TE waves,
E‖ and H⊥ have a lower order contribution to damping (e.g., see
Chap. 8 of [34]).
11The TM010 mode is a zero mode and therefore not excited by DCE

radiation (see Sec. III B).

where nv(t) is the volume charge density [related to the areal
density ns(t) via the penetration depth, δd : nv ∼ δdns], τ is
the relaxation (recombination) time, and m∗ is the effective
mass of the conduction electrons in the SCD. It may be worth
mentioning that, because the polarization depends on the field
strength we are left with a set of integro-differential equations
in Eqs. (A8).

To further simplify our discussion, we now assume that
only the second fundamental TM mode (the lowest mode
in our case) with ω011 = 30.3 GHz gives the dominant
contribution to polarization (denoted by ω0 in what follows).
A Fourier decomposition for a single mode implies (ignor-
ing the fact that a bounded cavity would have sinusoidal
modes)

E(t) = E0e
−iω0t (34)

and upon substituting this into the definition of causal
polarization [42]:

P =
∫ ∞

0
dt ′′ χ (t ′′)E(t − t ′′) (35)

along with Eq. (33) we find

P(t) = E0δdnse
2τ

m∗

∫ ∞

0
dt ′′ e−t ′′/τ e−iω0(t−t ′′)

= E0δdnse
2τ

m∗

1

(1/τ − iω0)
e−iω0t . (36)

Hence, there are two ways to reduce losses due to
polarization: One way is to decrease the laser power, because
as discussed in [22], a laser power of 100 μJ/pulse leads to
a penetration depth δd ∼ 50 μm, whereas for weaker laser
powers, such as 0.01 μJ/pulse, we can reduce this depth by a
factor of 100–1000. Interestingly, in the next section we will
see that TM modes are excited for low laser powers (ignoring
polarization); see Figs. 5 and 6. This compliments the fact that
smaller values of δd lead to less dissipation.

The other way to reduce losses can be seen by taking the
real and imaginary parts of

1

(1/τ − iω0)
(37)

in Eq. (36). We see that the limit

ω0τ � 1 (38)

leads to Re[P] � Im[P]. Thus, for frequencies of Gigahertz
order, ω0 ∼ O(10) GHz, we can also reduce the amount
of dissipation by reducing the recombination time in the
SCD down to picosecond order, τ ∼ O(10) ps (this rather
naive analysis leads us to conclude that relaxation times of
nanosecond order are not sufficient; see also the discussion
in [29]). Picosecond order relaxation times can, however,
be achieved by an appropriate semiconductor doping, or by
bombarding the SCD with gold ions [44].

V. ANALYSIS AND DISCUSSION

Based on the assumptions just made above we can assume
that under certain conditions, the Bogoliubov method (which
does not include losses) will lead to results that give an upper
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FIG. 4. (Color online) Tuning dependence for TE111 modes,
where the period of the pulse train varies from T = 119 ps up to
T = 133 ps for a high laser power: V Lz = 5000 (resonant period is
131 ps). The particle creation rate is that at t ∼ 1200 ps.

bound on the particle creation rate. Thus, in Figs. 4 and 5
we present results for the tuning dependence of the photon
creation rate in a cylindrical cavity for TE111 and TM011 modes,
respectively. The results are presented for the case where the
SCD is placed at the midpoint for the lowest TE and TM modes
in Figs. 4 and 5, and as we found for a rectangular cavity, we
find that multimode coupling enhances the TM contribution,
while for the TE case, it diminishes [this is related to the
different behavior of kn(t) for TE and TM modes; see Eq. (14)
and Fig. 2].

One of the most numerically intensive parts of this work
is in the calculation of the position dependence, η = d/Lz, of
the photon creation rate. Except for the midpoint (η = 1/2)
the coupling matrix Mmn(t) evaluates to thousands of lines of
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FIG. 5. (Color online) Tuning dependence for TM011 modes;
red circles and black squares are for high powers with single and
multimode coupling, respectively. Blue diamonds and green triangles
are for low laser powers, with single and multimode couplings,
respectively. The period of the pulse train varies from T = 102 ps up
to T = 115 ps (resonant period is 103 ps). The particle creation rate
is that at t ∼ 1200 ps.
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FIG. 6. (Color online) Position dependence for TM011 modes
(with multimode coupling); red circles and blue squares are for high
(V Lz = 5000) and low (V Lz = 1) laser powers, respectively. The
frequency of the pulse train was chosen to be T = 113 ps for all cases
except for the high power, η = 0.4 case where T = 107 ps (resonant
period is 103 ps). The particle creation rate is that at t ∼ 1200 ps.

FORTRAN code and significantly slows down the numerics.12

Furthermore, the procedure is hindered by the fact that the
coupling matrix detunes the resonant driving period of the
laser pulse train and we have to make many runs at different
driving periods (this is also an effect we expect from dissipation
as well [37]). Hence in this work we focused on a given
probe driving frequency of T = 113 ps, except for cases
where we found no real enhancement.13 In Fig. 6 we have
plotted the position dependence for TM011 modes, and like
for a rectangular cavity we find that TM modes are enhanced
even for decreased laser powers. They are also quite generally
unaffected by the location of the SCD, as compared to TE
modes.

In summary, we have evaluated the particle creation rate
in a microwave cylindrical cavity, where a laser periodically
irradiates a SCD. We focused on the second fundamental
TM011 mode (where the time dependence of the SCD was
modeled using the “plasma sheet” model, ignoring dissipa-
tion). Importantly we showed that TM011 modes are fairly
insensitive to the position η and also produce significant
numbers of photons for decreased laser powers, as opposed to
TE modes. Thus, because we have so far ignored dissipation,
our numerical results should give upper bounds on the amount
of photons created for TM011 modes.

We also explained in Sec. III B, why the TM010 is not
excited for a cylindrical cavity in the plasma sheet model.
In the case of moving mirrors and, for example, working with
an instantaneous basis [see Eq. (17)], we obtain extra terms,
besides the coupling matrix Mmn and zero mode ω010, which
are not zero for TM010. This is what leads to particle creation
in this mode (e.g., see Eq. (37) in Ref. [35]). However, in the
case of an irradiated plasma sheet the boundary conditions

12The current form of the equations are not parallelizable, and we
solve for Mmn(t) exactly for a given η = d/Lz.
13For η = 0.4 we found that T = 107 ps was a better driving period

in Fig. 6.
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are different and no extra coupling terms arise: TM010 is not
excited.

In Sec. IV we discussed dissipation from the electric
polarization of DCE pair created photons. An important point
from this analysis shows (at least within the plasma sheet
model) that only TM modes are affected, while TE modes
are not. However, we also argued that decreased laser powers
reduce polarization, which is encouraging given that decreased
powers still lead to significant photon creation (for TM modes);
see Figs. 5 and 6.

Of course there are limitations and we are currently
developing a numerical method to include the effects of
dissipation for TE and TM modes in a rectangular/cylindrical
cavity [37]. This approach leads to a parametric equation
with detuning very similar to that found via the Bogoliubov
method with multimode coupling [see Eq. (20)], and may
serendipitously result in TM modes enhancing in a way that
leads to an asymptotic saturation of dissipation (see [45]
for a discussion of this point for single mode coupling).
Furthermore, as we mentioned earlier there are limitations
to the validity of the plasma sheet model and indeed it remains
to be seen if the behavior of kn(t) for decreased laser powers
continues in some kind of microscopic model of a plasma sheet
(or by modeling the SCD as a thick dielectric [28,29]). These
issues as well as higher mode effects are left for future work.

Hopefully, the work presented here leads support to the
idea that TE and, in particular, TM modes are well suited to
the detection of DCE radiation in a cylindrical cavity (even
with possible losses). We hope these results may be of use for
current and proposed experiments to detect DCE radiation in
microwave (centimeter-sized) cavities.
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APPENDIX: HERTZ POTENTIALS APPROACH

For completeness we describe, following Refs. [22,35], how
to use Hertz vectors to define a set of potentials (e.g., see [34,
43]), which conveniently separate Maxwell’s equations into
TE and TM equations of motion. This allows one to essentially
work with two scalar field equations (with different boundary
conditions). In the following we shall review the discussion
given, for example, in [34,35,43].

In the Lorenz gauge,

μεA0 + ∇ · A = 0, (A1)

where A0 is the scalar potential Maxwell’s equations become:

με
∂2A0

∂t2
− ∇2A0 = 1

ε
ρ − 1

ε
∇ · P0, (A2)

με
∂2A
∂t2

− ∇2A = 1

μ
J + μ

∂P0

∂t
+ ∇ × M0, (A3)

where the permanent polarization and magnetization (P0,M0)
are introduced to motivate the form of the potential. By
defining two Hertz vector potentials �e and �m as (with
μ0 = 1)

A0 = −1

ε
∇ · �e, A = μ

∂�e

∂t
+ ∇ × �m, (A4)

then is it straightforward to show that Eqs. (A2) and (A3),
above, automatically satisfy the Lorenz gauge condition,
Eq. (A1), as can be verified. Then from the definition of the
electromagnetic field in terms of

B = ∇ × A, E = −∂tA − ∇A0, (A5)

the electric field and magnetic displacement can be written in
terms of Hertz vectors as

E = 1

ε
∇(∇ · �e) − μ

∂2�e

∂t2
− ∇ × ∂�m

∂t
,

(A6)

B = μ∇ × ∂�e

∂t
+ ∇ × (∇ × �m).

The separation is effected by introducing the following stream
potentials [43]:

ρ = −∇ · Qe, J = Q̇e + 1

μ
∇ × Qm, (A7)

with a similar result for the magnetic stream potentials Re and
Rm, which have zero magnetic charge and current.

Using these definitions, Maxwell’s equations separate into
[43]

με�̈e − ∇2�e = (P + Qe + Re),
(A8)

με�̈m − ∇2�m = (M + Qm + Rm).

From the theory of gauge transformations of the third kind
[43]14 it is always possible to choose a gauge where the stream
potentials are Qm = Re = Rm = 0 and Qe = ∫

dt J, and in
the plasma sheet model J = 0 (no bulk charges, only surface
charges, K).

From the symmetry involved it is convenient to define the
following Hertz potentials:

�e = �ẑ, �m = 
 ẑ, (A9)

where ẑ is a unit vector in the longitudinal direction z, and
� and 
 correspond to TM and TE modes, respectively. It is
then easy to show that

A0 = −1

ε
∂z�, A = ∂y
 x̂ − ∂x
 ŷ + μ∂t� ẑ. (A10)

14Nisbet in [43] defines gauge transformations on two-form fields as
transformations of the third kind.
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The potentials 
 and � represent TE and TM modes,
respectively, and similarly the E and B fields become [using
Eq. (A6)]

E =
(

1

ε
∂x∂z� − ∂y∂t


)
x̂ +

(
1

ε
∂y∂z� + ∂x∂t


)
ŷ

− 1

ε
∇2

⊥�ẑ,

B = (μ∂y∂t� + ∂x∂z
)x̂ + (−μ∂x∂t� + ∂y∂z
)ŷ

−∇2
⊥
 ẑ, (A11)

where for cylindrical coordinates (ρ,θ,z) we have the follow-
ing transverse Laplacian:

∇2
⊥ = 1

ρ

∂

∂ρ

(
1

ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂θ2
. (A12)

The great utility of the Hertz potentials approach is that
the separation leads to a set of two scalar field equations
(one for TE and the other for TM) where the longitudinal
symmetry (the axis of a cylinder or rectangle) is decoupled.
Thus, considering 1 + 1 dimensions or 3 + 1 dimensions does
not really complicate the problem (see [36] for TE modes in
3 + 1 dimensions).
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