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In this paper, we derive and study two versions of the short pulse equation (SPE) in (2 + 1) dimensions.
Using Maxwell’s equations as a starting point, and suitable Kramers-Kronig formulas for the permittivity
and permeability of the medium, which are relevant, e.g., to left-handed metamaterials and dielectric slab
wave guides, we employ a multiple scales technique to obtain the relevant models. General properties of
the resulting (2 + 1)-dimensional SPEs, including fundamental conservation laws, as well as the Lagrangian
and Hamiltonian structure and numerical simulations for one- and two-dimensional initial data, are presented.
Ultrashort one-dimensional breathers appear to be fairly robust, while rather general two-dimensional localized
initial conditions are transformed into quasi-one-dimensional dispersing wave forms.
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I. INTRODUCTION

Ultrashort pulses, having a duration of a few optical cycles,
have been the subject of intense study over the past years;
this is due to the fact that they find many applications
in various contexts, ranging from light-matter interactions,
harmonic generation, attosecond physics, nonlinear optics, and
others [1]. A theme of particular interest related to ultrashort
pulses, is their evolution in nonlinear media characterized
by an intensity-dependent refractive index. In that respect,
models describing ultrashort pulses in nonlinear media, as
well as their systematic study, have attracted much attention;
see, e.g., Refs. [2–9]. Prominent examples are the modified
Korteweg-de Vries (mKdV) equation [3], the sine-Gordon
(sG) equation [5,6], and combined mKdV-sG equations [7–9]
among others. Note that most of these works refer to the one-
dimensional (1D) setting; in the two-dimensional (2D) one,
pertinent studies are related to few-cycle solitons described
by the generalized Kadomtsev-Petviashvilli (KP) equation
[10] and collapse dynamics of ultrashort spatiotemporal
pulses [11].

Another model describing ultrashort pulse dynamics is the
so-called short-pulse equation (SPE), which was first derived
in the context of nonlinear fiber optics [12] and later in the
context of nonlinear metamaterials [13]. From the physical
point of view, the interest in the SPE model arises from the fact
that its few-cycle pulse solutions have been shown to compare
more favorably to the ones of the original Maxwell’s equations,
as compared to pertinent solutions of the more traditional
nonlinear Schrödinger (NLS) model [12,14]. Furthermore,
this model is also interesting from a mathematical point of
view, due to the existence of an infinite hierarchy of conserved
quantities [15], its connection to the sG model and, thus, to its
complete integrability [16]. The SPE admits various types of
solutions, including singular soliton solutions—the so-called
loop solitons [17]—as well as other nonsingular solutions,
such as peakons, breather- and periodic-type wave forms
[13,17–19]. Note that, recently, wave-breaking phenomena
[20], as well as the global well-posedness question [21] of
the SPE, were also investigated. The above volume of work

refers to the 1D setting; to the best of our knowledge, the SPE
has not been considered or analyzed so far in 2D.

In this work, we derive and study two different versions
of the SPE in (2 + 1) dimensions, namely the SPE-I and
SPE-II. In particular, starting from Maxwell’s equations, and
assuming general Kramers-Kronig or Sellmeier formulas for
the permittivity and permeability (see, e.g., Ref. [22]), we
use a multiscale expansion method to obtain the SPE-I and
SPE-II models. Then, we study the general properties of each
model, present the Hamiltonian, Lagrangian, and momenta,
and also obtain zero-mass constraints that are used in the
simulations (and, specifically, in the preparation of the initial
data). Next, we explore the dynamics of ultrashort pulses in
2D, employing as initial conditions either the breather solution
of the underlying 1D SPE or a wave form localized in 2D;
our purpose is to investigate if ultrashort pulses are prone to
transverse instabilities (induced by the presence of diffraction
in our models) and also identify purely 2D structures that can
be supported by the SPE-I and SPE-II. We find that the 1D
breathers are stable in the 2D setting, while 2D initial data are
gradually transformed into quasi-1D wave forms, reminiscent
of the 1D solutions.

Our presentation is structured as follows. In Sec. II, we
derive the SPE-I and SPE-II models. Sections III and IV are
devoted to the general properties and numerical study of SPE-I
and SPE-II, respectively. Finally, in Sec. V, we summarize and
discuss our conclusions.

II. DERIVATION OF 2D SHORT-PULSE EQUATIONS

We consider the propagation of TEz (transverse-electric
field propagating along the z axis) electromagnetic (EM) waves
in a planar metamaterial or optical waveguide structure. In par-
ticular, we consider the case where the electric and magnetic
field components take the form E(x,z,t) = ŷEy(x,z,t) and
H(x,z,t) = x̂Hx(x,z,t) + ẑHz(x,z,t), where x̂, ŷ, ẑ are the unit
vectors along the x, y, z directions, respectively, and we have
assumed no variations (i.e., a homogeneous medium) with
respect to the variable y. Under these assumptions, we may
use Maxwell’s equations—namely, Ampére’s and Faraday’s

023841-11050-2947/2012/86(2)/023841(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.023841


Y. SHEN et al. PHYSICAL REVIEW A 86, 023841 (2012)

laws—take, respectively, the following form:

−∂Hz

∂x
+ ∂Hx

∂z
= ∂Dy

∂t
, (1)

∂Ey

∂z
= ∂Bx

∂t
,

∂Ey

∂x
= −∂Bz

∂t
. (2)

Here Dy is the y component of the displacement vector D =
ŷDy . Furthermore, we assume that the magnetic induction
vector B is connected with the magnetic field intensity H by
means of the constitutive relation B̂ = μ̂(ω)Ĥ, where μ̂(ω) is
the linear magnetic permeability (hereafter, we use f and f̂

to denote any function f in the time and frequency domain,
respectively). Additionally, we assume that the considered
structure exhibits a weak cubic (Kerr-type) nonlinearity in
its dielectric response. In other words, Dy = ε ∗ Ey + PNL,
where ε is the permittivity, ∗ denotes the convolution integral
f (t) ∗ g(t) = ∫ +∞

−∞ f (τ )g(t − τ )dτ of any functions f (t) and
g(t), while the nonlinear polarization PNL is of the form

PNL = ε0

∫ +∞

−∞
χNL(t − τ1,t − τ2,t − τ3)

×Ey(τ1)Ey(τ2)Ey(τ3)dτ1dτ2dτ3. (3)

Here, ε0 is the dielectric constant of vacuum and χNL is the
nonlinear electric susceptibility of the medium. In the case of
small-amplitude, ultrashort pulse propagation, the nonlinear
response can safely be considered to be instantaneous, namely,

χNL(t − τ1,t − τ2,t − τ3) = κδ(t − τ1)δ(t − τ2)δ(t − τ3),

(4)

where κ is the Kerr coefficient given by κ = ±E−2
c , with Ec

being a characteristic electric field value; generally, both cases
of focusing (κ > 0) and defocusing (κ < 0) dielectrics are
possible. Notice that Eqs. (3) and (4) imply that PNL = ε0κE3

y

and, thus, Dy = ε ∗ Ey + ε0κE3
y . Substituting the considered

form of the constitutive relations into Eqs. (1) and (2), we
derive the following equation for the y component of the
electric field intensity (Ey) which, for convenience, will be
denoted hereafter by E:

∇2E − ∂2
t (ε ∗ μ ∗ E) − ε0κ∂2

t (μ ∗ E3) = 0, (5)

where ∇2 ≡ ∂2
x + ∂2

z is the Laplacian in the (x,z) plane.
Equation (5) is the (2 + 1)-dimensional generalization of

the 1D Klein-Gordon type model derived in the context of
nonlinear fiber optics [12,23] (in this case, μ = const) and
nonlinear metamaterials [13,24–26] (in this case, ∂ωμ̂ �= 0).
Below, we will analyze the latter (more general) case, and
assume that both permittivity and permeability are frequency
dependent. In particular, considering general Kramers-Kronig
or Sellmeier formulas (see, e.g., Ref. [22]), we assume that
the frequency dependence of ε̂ ≡ ε̂(ω) and μ̂ ≡ μ̂(ω) can be
approximated by the relations

ε̂(ω) ≈ ε0

(
α1 − α2

ω2

)
, μ̂(ω) ≈ μ0

(
β1 − β2

ω2

)
, (6)

where α1, α2, β1, and β2 are some constants. The above approx-
imations can be applied to the contexts of nonlinear left-handed
metamaterials and nonlinear optical slab waveguides. Specif-
ically, in the context of nonlinear left-handed metamaterials,
α1 = 1, α2 = ω2

p, β1 = 1 − F , and β2 = Fω2
res, where ωp, F ,

and ωres denote, respectively, the plasma frequency, the filling
factor, and the magnetic permeability resonance frequency
[13]. On the other hand, in the context of nonlinear optical slab
waveguides, α1 = ε(0)

r , α2 = ε(2)
r , β1 = 1, and β2 = 0, where

ε(0)
r and ε(2)

r are relative dielectric constants (with ε(2)
r being

measured in units of squared angular frequency) obtained
by matching the full form of the permittivity with the first
of Eqs. (6) over a specific wavelength range in the infrared
regime [12].

Next, we express Eq. (5) in the frequency domain and
substitute Eqs. (6), keeping terms up to order O(ω−2) (i.e.,
assuming that α1β2/ω

4 � 1); then, expressing the resulting
equation back in time domain, and measuring time, space, and
field intensity E2 in units of 1/

√
α2, c/

√
α1α2β1, and |κ|−1,

respectively, we reduce Eq. (5) to the following dimensionless
form:

∇2E − ∂2
t E − αE − sκ

(
βE3 + γ ∂2

t E3) = 0. (7)

In the above equation, sκ = sgn(κ), while the other constants
are given by

α = 1

α1
+ β2

α2β1
, β = β2

α1α2β1
, γ = 1

α1
. (8)

Note that in the context of nonlinear metamaterials α = 1 +
β = 1 + Fω2

res/[(1 − F )ω2
p] and γ = 1, while in the context

of nonlinear optical slab waveguides α = γ = 1/ε(0)
r and β =

0.
We now consider propagation of ultrashort pulses, of width

ε, where 0 < ε � 1 is a formal small parameter, which will
also set the field amplitude (see below). Then, we employ the
method of multiple scales to derive from Eq. (7) two different
versions of short pulse equations in (2 + 1) dimensions. In that
regard, we introduce the following asymptotic expansion for
the unknown field E:

E = εE1(T ,Xn,Zn) + ε2E2(T ,Xn,Zn) + · · · , (9)

where the functions En depend on the spatial variables Xn

and Zn (n = 1,2, . . .), as well as on the fast time variable T .
Defining Zn as

Zn = εnz, (10)

we consider two different definitions for Xn and T , namely

Xn = εn−1x, T = t − z

ε
, (11)

Xn = εnx, T = t − (x + z)/σ
√

2

ε
, (12)

where σ = ±1. Then, substituting Eqs. (9), (10), and (11)
in Eq. (7), we derive at order O(ε) the following (2 + 1)-
dimensional SPE for the unknown field E1:

2
∂2E1

∂Z1∂T
− ∂2E1

∂X2
1

+ αE1 + sκγ
∂2

∂T 2

(
E3

1

) = 0. (13)

Equation (13) will be called hereafter SPE-I. Similarly,
substituting Eqs. (9), (10), and (12) in Eq. (7), we derive [again
at orderO(ε)] another (2 + 1)-dimensional version of the SPE,
namely

2σ

(
∂2E1

∂Z1∂T
+ ∂2E1

∂X1∂T

)
+ αE1 + sκγ

∂2

∂T 2

(
E3

1

) = 0, (14)
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which will be called hereafter SPE-II. We note that variants of
these models have been considered in the past in the context of
ultrashort propagation in nonlinear dielectrics [2,4], and more
recently in relevant studies [9], as well as in the context of
collapse in two-level media [11].

III. SPE-I: GENERAL PROPERTIES AND
NUMERICAL STUDY

In this section, we focus on the SPE-I which, for simplicity
of notation, is expressed in the form

2Ezt − Exx + αE + s(E3)t t = 0, (15)

where s = sκγ and subscripts denote partial derivatives, with
z being the evolution variable. Below, we will consider general
properties of this equation and discuss its solutions.

A. Properties and canonical structure

First, we study the Hamiltonian structure of Eq. (15). For
this purpose, we integrate Eq. (15) with respect to time t and,
introducing the auxiliary field E = φt , we express Eq. (15) as
follows:

2φtz − φxx + αφ + s(φ3
t )t = 0. (16)

Then, it can be verified that Eq. (16) can be obtained from the
variational principle, with Lagrangian density:

L = −α

2
φ2 + s

4
φ4

t + φtφz − 1

2
φ2

x . (17)

From this Lagrangian density, we can derive the Hamiltonian

H =
∫ +∞

−∞

∫ +∞

−∞

(
∂L
∂φz

φz − L
)

dt dx

=
∫ +∞

−∞

∫ +∞

−∞

(
α

2
φ2 − s

4
φ4

t + 1

2
φ2

x

)
dt dx, (18)

as well as the momenta

Mt =
∫ +∞

−∞

∫ +∞

−∞

∂L
∂φz

φtdt dx =
∫ +∞

−∞

∫ +∞

−∞
φ2

t dt dx, (19)

Mx =
∫ +∞

−∞

∫ +∞

−∞

∂L
∂φz

φxdt dx =
∫ +∞

−∞

∫ +∞

−∞
φtφxdt dx.

(20)

Let us next consider the Fourier transform of Eq. (15) with
respect to time t , which leads to the equation

(iω)Êz = 1

2
Êxx − α

2
Ê − s

2
(iω)2Ê3. (21)

The above equation implies that

Êz(ωt,x,z) = − i

2

(
Êxx − αÊ

ω
+ sωÊ3

)
, for ω �= 0, (22)

Êxx − αÊ = 0, for ω = 0. (23)

In our numerical simulations below, we will set Ê(ω =
0,x,z) = 0, so that Eq. (23) is satisfied. Thus, in this case,
the Fourier transform of the field E leads to the following
“zero-mass constraint:”∫ ∞

−∞
E(t,x,z)dt = 0 for any x,z, (24)

which also holds for the traditional SPE in (1 + 1) dimensions
(see, e.g., the relevant analysis of Ref. [27]).

B. 1D breatherlike structures

Let us now seek one-dimensional (1D) solutions of Eq. (15),
by assuming that the unknown field E depends on the traveling-
wave coordinates ξ and η, defined as

ξ = z, η = t + cx + c2

2
z, (25)

where c is an arbitrary real constant setting the velocities of
the traveling wave in the (x, t) and (x, z) planes. Using the
above variables, Eq. (15) is reduced to the form

2Eξη + αE + s(E3)ηη = 0, (26)

which is actually the (1 + 1)-dimensional SPE [12]. As shown
in the simulations of Ref. [18], the most robust among the
various solutions of the 1D SPE is the breatherlike structure
(this solution satisfies the zero-mass constraint). Naturally,
this purely 1D structure satisfies the full 2D SPE-I, Eq. (15)
and, thus, an interesting question concerns the stability of
this solution in the 2D space. A similar question appears
in many physically relevant models and, in many cases, the
answer is that such “planar” solutions are prone to transverse
instabilities in higher-dimensional settings; as characteristic
examples, we mention the line soliton solutions of the
Kadomtsev-Petviashvilli-I (KP-I) equation which decay into
lumps [28,29], or the dark soliton stripes of the defocusing
NLS equation which decay into vortices [30,31] in (2 + 1)
dimensions.

To study the stability of the 1D breatherlike solution of
Eq. (26) in the framework of the full 2D SPE-I, we have used
the following procedure. We employed the breather solution
of the 1D SPE Eq. (26) and also added, as a perturbation,
a small noisy signal, of amplitude of 1% of the breather’s
amplitude. Then, using the resulting structure (cf. top left panel
of Fig. 1) as an initial condition, we numerically integrated
Eq. (15) by means of a Galerkin method (and assuming
periodic boundary conditions in our numerical scheme). The
results (corresponding to parameter values c = 0, s = −1/3,
and α = −2) are shown in the panels of Fig. 1, in terms of
different contour plots depicting the profile of the 1D breather
in the (x,t) plane for various values of the propagation distance
z [and also the evolution at x = 0 as a function of (z,t)].
It is clear that the breather is robust, at least up to z = 200
(where the simulation ended). We should also mention that,
for these simulations, we have also calculated the evolution of
the Hamiltonian and momenta [cf. Eqs. (18)–(20)]. The results,
depicted in Fig. 2, justify the conservation of these quantities
with a satisfactory (relative) accuracy, of order 10−3 or
less.

We finally note that similar results (not shown here) were
also obtained for breathers with, i.e., for c �= 0 in Eq. (25); in
such a case, the only difference is that the breather is “tilted,”
i.e., oblique in the (x,t) plane with respect to its direction in
the case c = 0 and follows a similar evolution (i.e., it is stable
up to the end of the simulation time).
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FIG. 1. (Color online) Top (four) panels: contour plots showing
profiles of the evolution of a perturbed 1D breather in the (x,t) plane,
when evolved according to Eq. (15). Snapshots correspond to z = 0
(top left), z = 50 (top right), z = 100 (bottom left), and z = 150
(bottom right). Bottom panel: the evolution of the breather for x = 0.
Parameter values are c = 0, s = −1/3, and α = −2. All depicted
quantities are dimensionless.

C. Localized initial data

Having discussed the properties of the 1D breather in the
2D setting, we now turn our attention to initial data associated
with Eq. (26), which are localized in both transverse directions,
x and t . In that regard, it is convenient to consider at first the
decomposition E(x,t) = f (t)g(x), and substitute this ansatz
in the zero-mass constraint, Eq. (24). This way, for nontrivial
solutions, we derive the necessary condition

∫ ∞
−∞ f (t)dt = 0.

Taking into account the above constraint, we now may use
f (t) = (1 − t2) exp(−t2/2) which has the above property, and
also choose g(x) to be of the same functional form, namely,
g(x) = (1 − x2) exp(−x2/2). The aim of the latter choice is to
produce a two-dimensional localized wave form. Employing
these choices, we can now numerically integrate Eq. (15),
using the initial condition:

E(z = 0,x,t) = (1 − x2)(1 − t2) exp[−(x2 + t2)/2]. (27)

The results of our simulations are presented in Fig. 3, where
we show the evolution of this initial data. It is clearly observed
that, already at small values of the propagation distance
(z ≈ 2), the initially localized structure bends and splits at
(x,t) = (0,0), thus forming two “winglike” structures. The
size (length) of these structures is small at the early stages of
the evolution but, afterward, their spatial extent is increased, as
the initial data progressively disperses. This way, the resulting
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FIG. 2. (Color online) Evolution of the conserved quantities of
the SPE-I for the simulation shown in Fig. 1: top panel shows the
Hamiltonian H and bottom panels show the momenta Mt (left)
and Mt (right). The relative error for H and Mt is of order 10−4

and 10−3, respectively, and Mx is zero. All depicted quantities are
dimensionless.

structures yield, at longer propagation distances (see bottom
panels of Fig. 3), a quasi-one-dimensional pattern, somewhat
reminiscent of the breather states examined previously. Here
we should mention that our simulations end up at relatively
small distance (z = 38) in order to avoid interference of these
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FIG. 3. (Color online) Contour plots showing profiles of the field
E, in the (x,t) plane, evolved as per SPE-I, Eq. (15), with localized
initial data [cf. Eq. (27)]. The snapshots, from left to right, and top
to bottom correspond to z = 0,3,10,20,30,38. Parameter values are
s = −1/3 and α = −2. All depicted quantities are dimensionless.

023841-4



ULTRASHORT PULSES AND SHORT-PULSE EQUATIONS . . . PHYSICAL REVIEW A 86, 023841 (2012)

x

t

−2 0 2

−20

0

20 −0.5

0

0.5

1

x

t

−2 0 2

−20

0

20 −0.5

0

0.5

1

x

t

−2 0 2

−20

0

20 −0.5

0

0.5

1

x

t

−2 0 2

−20

0

20 −0.5

0

0.5

1

t

z

−20 0 20

0

10

20

30

40

50
−1

−0.5

0

0.5

1

FIG. 4. (Color online) Top (four) panels: contour plots showing
profiles of the 1D breather solution of Eq. (38) in the (x,t) plane, when
evolved as per Eq. (28). Snapshots correspond to z = 0 (top left), z =
10 (top right) z = 30 (bottom left), and z = 50 (bottom right). Bottom
panel: the evolution of the breather for x = 0. Parameter values are
c = 0, s = −1/3, α = −2, and σ = 1. All depicted quantities are
dimensionless.

expanding quasi-1D structures with the boundaries (recall
that we use periodic boundary conditions in our numerical
scheme).

We also note in passing that we have tried other localized
initial conditions, which led to qualitatively similar results: in
all cases, the respective evolutions of the initial localized data
gradually transformed into quasi-one-dimensional dispersing
structures of the above type.

IV. SPE-II: GENERAL PROPERTIES AND
NUMERICAL STUDY

Let us now consider the SPE-II which we express, for
simplicity of notation, in the following form:

2σ (Ezt + Ext ) + αE + s(E3)t t = 0, (28)

where s = sκγ , as in the SPE-I. Below we will follow the
presentation of the previous section and discuss general prop-
erties of this model, such as the corresponding Lagrangian-
Hamiltonian structure and relevant conservation laws as well
as some of its prototypical solutions.
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FIG. 5. (Color online) Evolution of the conserved quantities of
SPE-II for the simulation shown in Fig. 4: the top panel shows the
Hamiltonian H and the bottom panels show the momenta Mt (left)
and Mx (right). The relative error for H and Mt is of order 10−4

or less, and the value of Mx is zero (and remains so throughout the
simulation). All depicted quantities are dimensionless.

A. Properties and canonical structure

As in the case of the SPE-I, we integrate Eq. (28) with
respect to t and, introducing the field E = φt , we express
SPE-II in the following form:

2σ (φxt + φzt ) + αφ + s
(
φ3

t

)
t
= 0. (29)

The above equation can be obtained from the variational
principle, with Lagrangian density:

L = −α

2
φ2 + s

4
φ4

t + σ (φtφz + φtφx). (30)

The corresponding Hamiltonian can then be found as

H =
∫ +∞

−∞

∫ +∞

−∞

(
∂L
∂φz

φz − L
)

dt dx

=
∫ +∞

−∞

∫ +∞

−∞

(α

2
φ2 − s

4
φ4

t − σφtφx

)
dt dx, (31)

while the momenta read

Mt =
∫ +∞

−∞

∫ +∞

−∞

∂L
∂φz

φtdt dx = σ

∫ +∞

−∞

∫ +∞

−∞
φ2

t dt dx,

(32)

Mx =
∫ +∞

−∞

∫ +∞

−∞

∂L
∂φz

φxdt dx = σ

∫ +∞

−∞

∫ +∞

−∞
φtφxdt dx.

(33)

Next, we consider the Fourier transform of Eq. (28) with
respect to t , which leads to the equation

2σ (iω)(Êz + Êx) + αÊ + s ˆ(E3)(iω)2 = 0. (34)
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Solving the above equation with respect to Ê we find

Êz(ω,x,z) = −Êx − α

2σ (iω)
Ê − s(iω)

2σ
ˆ(E3), for ω �= 0,

(35)

Ê(ω = 0,x,z) = 0, for ω �= 0. (36)

The latter equation leads again to the zero-mass constraint [cf.
Eq. (24)] that we found in the case of the SPE-I as well. This
condition will also be satisfied in our simulations below.

B. 1D breathers and initial data localized in 2D

We consider traveling wave solutions of Eq. (28), in the
form E(ξ,η), where the coordinates ξ and η are defined as

ξ = z, η = t + cx − cz, (37)

where c is an arbitrary real constant. This way, Eq. (28) is
transformed to the equation

2σEξη + αE + s(E3)ηη = 0, (38)

which is actually the 1D SPE model [12]. Since the latter
admits breather solutions, we may follow the procedure
described in the previous section and study numerically the
evolution of such a 1D solution in the 2D setting of Eq. (28).

In this case also, the numerical integration of Eq. (28) has
shown that this 1D solution is stable in the 2D setting (as was
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FIG. 6. (Color online) Contour plots showing profiles of the field
E, in the (x,t) plane, evolved as per SPE-II, Eq. (15), with localized
initial data [cf. Eq. (27)]. The snapshots, from top to bottom and left to
right, correspond to z = 0,3,10,20,30,40. The domain for numerical
computation in x × t plane is [−20π,20π ] × [−20π,20π ]; we are
zooming in here in the snapshots to show more detail. All depicted
quantities are dimensionless.

also in the framework of the SPE-I). An example (pertaining
to parameter values c = 0, s = −1/3, α = −2, and σ = 1)
is shown in Fig. 4. Additionally, the numerical calculation of
the evolution of the Hamiltonian and momenta [cf. Eqs. (31)–
(33)], depicted in Fig. 5, illustrates the conservation of these
quantities with a relative error of order 10−4 or less. We also
note that similar results (not shown here) were also obtained
for oblique moving breathers, i.e., for c �= 0 in Eq. (37), as in
the case of SPE-I.

Finally, as in the case of SPE-I, we study the evolution of
localized data in 2D (i.e., in both x and t) in the framework
of the SPE-II. A typical example of the result obtained by the
numerical integration of Eq. (15) with such localized initial
data is shown in Fig. 6 (parameter values are s = −1/3, α =
−2, and σ = 1). It is observed that after a small propagation
distance (z ≈ 5) the initially localized wave form begins to
broaden along the t axis, but still remains localized along the
x axis. As a result, a quasi-1D structure is gradually formed,
which travels faster along the x direction (where it is localized)
than in the t direction (where it is elongated). In the latter
direction, the structure also possesses an alternating spatial
structure which merits further investigation.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have derived from Maxwell’s equations
two (2 + 1)-dimensional short pulse equations, referred to as
SPE-I and SPE-II. These equations may find applications
in various physical contexts where the study of ultrashort
electromagnetic pulses is important; such contexts include
nonlinear metamaterials, nonlinear optical waveguide struc-
tures, nonlinear dielectric media, and others. Since both
SPE-I and SPE-II actually generalize the (1 + 1)-dimensional
SPE [12], they can be used for the study of transverse
(diffraction-induced) dynamics of ultrashort pulses in such
settings. Suitable assumptions on the nature of the electric
and magnetic field and the form of the permittivity and
permeability under which the equations can be derived were
provided.

We have found and presented various general properties
of SPE-I and SPE-II. Particularly, we have identified the La-
grangian and Hamiltonian structure, and have used invariances
to infer (from Noether’s theory) the corresponding momenta,
as well as the associated zero-mass constraints; the latter have
to be satisfied for the solutions of these equations and, thus, are
also associated with the choice of the initial data used for the
numerical integration of SPE-I and SPE-II. We have conducted
a series of numerical experiments for the 2D SPEs using,
as initial conditions, either the 1D breather solution of the
underlying 1D SPEs or a localized (in 2D) wave form—both
satisfying the zero-mass constraint. Our motivation was to
study the stability and transverse dynamics of the most robust
solutions of the 1D analog of the system, and also examine the
fate of purely 2D initial data and potentially identify structures
that can be supported by the SPE-I and SPE-II models.

Our numerical simulations have shown that the 1D
breathers propagate (even when they are initially perturbed
by a small noise) practically undistorted. An important
conclusion is that these ultrashort localized structures are
actually insensitive in the presence of diffraction or, in other
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words, they appear to be robust in the presence of (small)
transverse perturbations for propagation distances of the order
of a few hundred dimensionless units. On the other hand,
simulations employing initial data localized in 2D have shown
that, during evolution, the initial data gradually transforms into
quasi-1D structures (which differ between SPE-I and SPE-II).
In fact, we were not able to find any, purely 2D, nonlinear wave
form that can be supported by either the SPE-I or the SPE-II.

The above results were obtained in the framework of the
particular models, i.e., SPE-I and SPE-II, that we derived and
considered in this work. It would be interesting to perform
similar studies (i.e., transverse dynamics of 1D ultrashort
pulses and localized 2D structures) in the framework of
other versions of the SPE-I and SPE-II, stemming from the
incorporation of higher-order effects (as in the 1D case, in
the context of the so-called regularized SPE [23,32]). On the
other hand, still in the context of SPE-I and SPE-II, it would
be relevant to consider other types of solutions, e.g., loop-type
solutions or periodic wave forms composed by breathers or

loops (as in the spirit of the analysis in the 1D case—see
Ref. [18]), and others. It would also be relevant to compare
the properties of the models derived herein with those of
other models for ultrashort pulses including, e.g., [2]– [11].
Finally, generalizing the present models to (3 + 1) dimensions,
removing the assumption of spatial homogeneity along the y

direction would also constitute an interesting theme for future
studies.
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