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We investigate the cross-phase-modulation-induced modulational instability (MI) of two co-propagating optical
beams in the system of relaxing Kerr nonlinearity with the effect of higher-order dispersion (HOD) and walk-off
effect. We identify and discuss the salient features of relaxation of nonlinear responses and HOD using suitable
theoretical model. First, we analyzed the impact of HOD and walk-off on the MI spectrum and found both
analytically and numerically that the MI exhibits alternate characteristics like the evolution of different spectral
bands in addition to the conventional MI bands. The walk-off effects in the virtue of HOD not only consist of
the conventional group velocity mismatch (GVM) but also the difference in third-order dispersion (TOD) of the
two beams, and thereby significantly modify the dynamical behavior of the MI. We also consider the combined
effect of relaxation of nonlinear response and the HOD effects, and we observe that any finite value of delay
leads to the evolution of two unstable modes and thereby extends the range of unstable frequency; HOD on the
other hand along with the walk-off effect brings other characteristic spectral bands. A detailed discussion about
the various combinations of parameters and the relative competence of one over the other on the MI spectrum is
presented. Thus the evolution of MI from cross-phase modulation in the system of relaxing Kerr nonlinearity is
emphasized in detail and the influence of HOD and the walk-off effect are highlighted.
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I. INTRODUCTION

Co-propagation of two intense optical beams in a dielectric
media may lead to a pool of information about the various
physical effects in the world of nonlinear physics [1–7].
The coupling of these two beams result in many fascinating
effects like modulational instability (MI), four-wave mixing
(FWM), stimulated Raman scattering (SRS), and so on. One
such phenomenon is the MI, which is considered to be a
central process in nonlinear optics. MI is an instability process,
whereby a continuous wave (CW) or quasi-CW undergoes an
exponential growth of the weak perturbation under the con-
servative interaction between nonlinear and dispersive effects.
The perturbation can originate either from quantum noise or
from the frequency shifted signal; accordingly MI can be called
spontaneous MI or induced MI [1]. In the context of optical
fiber, the generation of ultrashort solitonlike pulse trains using
MI was proposed theoretically by Hasegawa in 1984 [8]. Later,
the experimental realization was given by Tai et al. [9] in 1986.
After this seminal work, MI has attracted a lot of attention and
evolves as the subject of intense investigation due to numerous
potential applications in various diverse fields.

MI until now has been addressed in two distinct directions
based on its fundamental and applied interest. The two distinct
perceptions are exactly in the opposite sense, where one
deals with the catastrophic effects and the other presents the
exuberance of its usefulness in the various applications. The
deleterious effects of MI are detrimental to the long-haul
optical fiber communication system: The non-return-to-zero
code in optical communication, the drastic enhancement of
MI gain in the WDM system sets the limitation to the
bandwidth window of the communication system, MI lasers,
and new frequency generation in optical systems are the
ultimate concern for the realization of a repeater-less long-haul

optical communication system [10,11]. Quite a good number
of works have been devoted to address the above highlighted
issues with the objective of reducing the disastrous effects
caused by MI. Equally, another side of the literature, especially
the contemporary research activities, focused primarily on
the constructive part of the MI. For example, generation of
pulse trains at a high repetition rate is a useful technique
to produce the ultrashort pulses; frequency conversion and
the generation of new frequencies can be effectively made
useful in the multifrequency source under the context of
supercontinuum generation, which has been recognized in
modern days as “white-light laser” [12–14]. In addition, MI
has also found important applications in optical amplification
of weak signal, material absorption and loss compensation
[15,16], dispersion management, all-optical switching [17],
frequency comb for metrology, and so on [18–20]. Thus a
suitable manipulation with a clinical tailoring can make MI
a suitable contender for a wide class of applications. Our
strategic view in the present work is rather focused on the
constructive side, precisely in the new frequency generation
by enhancing and appreciating the MI effects in the fiber.

In the context of optical fibers, the MI analysis is
deeply connected with the nonlinear Schrödinger equation
(NLSE) which leads to the formation of soliton or solitary
wave by virtue of the delicate balance between anomalous
group velocity dispersion (GVD) and self-phase modulation
(SPM) [1,7,21]. Depending on the power of the intense beam,
by incorporating the various physical effects, the NLSE can be
extended and the different physical phenomena can be studied.
In recent times, much attention has been paved towards the
understanding of the role of relaxation of nonlinear response
on the MI [22–28]. It is worth noting that the usual assumption
of instantaneous Kerr response fails for ultrashort pulses,
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thereby the inclusion of delay in the nonlinear response
is very much essential. In the context of spatial MI, due
to the noninstantaneous nature of the nonlinear response
MI is observed both in self-focusing and self-defocusing
medium [23]. Spatiotemporal MI with finite response time has
been observed in Refs. [24,25]. The role of the Raman delayed
response on the MI sideband has been explained in Ref. [29].
Recently, Liu et al. analyzed exclusively the impact of finite
relaxation time in the MI spectrum by considering a simple
model called the Debye relaxational model [22]. The authors
have predicted that the role of delay is crucial in determining
the gain of the MI and also found the inclusion of any finite
relaxation time extends the range of unstable frequencies [22].
In Ref. [30], the authors have followed such a relaxational
model as in Ref. [22], and analyzed the combined effect of
relaxation and saturation of nonlinearity in the MI spectrum.
They have reported the existence of two unstable bands in the
anomalous GVD regime, namely, instantaneous and Raman
band. MI is observed even in the normal GVD regime with the
aid of the finite relaxation time, but instead of two unstable
bands, only a single band is observed [30].

All the above cases considered the propagation of a single
optical beam down the fiber; MI of such a kind is termed the
scalar MI. The co-propagation of two or more optical beams
inside the fiber can lead to interesting and peculiar phenomena
which could not be realized in the single beam case. As a
matter of fact, one of the breakthroughs in the field of nonlinear
optics is the observation of MI in the normal GVD by Agrawal
et al. [4–6]. It is a well proven fact that the propagation of the
optical beam in the normal GVD regime is not subject to the MI
process, due to the lack of phase matching between the disper-
sion and nonlinear components of the system. But the nonlinear
coupling between the two co-propagating beams due to the
cross-phase modulation (XPM) (i.e., refractive index seen
by one wave depends on the intensity of the co-propagating
wave through the XPM coefficient) destabilize the steady state
leading to frequency modulation even in the normal GVD
regime [31–33]. This pioneering work of Agrawal et al. set
the benchmark for the extensive work on two-color light
propagation in the optical fiber system. Thereafter numerous
theoretical and experimental works were reported based on the
wave propagation dynamics in birefringent fibers and also on
the dual frequency pumping in the standard single-mode fiber.

For instance, a comprehensive idea of the ultrashort pulse
generation in the normal dispersion regime of a birefringent
fiber using MI was discussed in Refs. [34–39]. The existence
of a nonlinear gap and the critical regime of MI was
illustrated in Refs. [40,41]. A complete interplay between
MI and SRS and the relative dominance of one over the
other like the suppression of SRS and the enhancement of
MI for the ultrashort pulse generation can be seen from Refs.
[42–45]. Our intensive literature survey suggests that there has
been only limited work available in the context of relaxing
the nonlinear medium concerning the coupled system. In
Ref. [28] MI is investigated in the noninstantaneous nonlinear
media under two-beam propagation following the report of
Refs. [17,46]. Recently, Canabarro et al. [47] have considered
the combined effect of relaxing nonlinearity and the XPM-
induced MI in the normal GVD regime.

What concerns the effect of HOD is as follows: When the
width of the optical pulse is short enough, or when the light
propagation is near the so-called zero dispersion wavelength
(ZDW), the HOD will inevitably take effect [48,49]. Cavalcanti
et al. [49] analyzed the MI near the ZDW and predicted the
possibility of MI even at the normal GVD regime provided the
fourth-order dispersion takes negative values, thereby serving
for the necessary phase-matching condition. Pitois et al. [50]
have experimentally observed the generation of a new spectral
window by fourth-order dispersion. Dinda et al. [45,51], with
their detailed analytical and numerical analysis, explained the
various interesting behavior of MI under the combined effect
of HOD and delayed Raman response. A concise analysis
of the MI and SRS in the normally dispersive birefringent
fiber can be seen in Ref. [52]. Moreover, inclusion of HOD
also qualitatively changes the walk-off effect between the
co-propagating beams thereby significantly modifying the MI
spectrum. The emergence of a new spectral band due to the
interplay between HOD and walk-off on XPM was discussed
in Ref. [53]. Although the combined effect of the relaxing
nonlinearity and XPM in normal GVD regime has been
discussed in Ref. [47], however, it is limited only to the case of
second-order dispersion. There has been no report to the best of
our knowledge that brings the cumulative effect of relaxation
of nonlinearity, HOD, and walk-off effect in the XPM-induced
MI spectrum. Thus, considering the importance of HOD and
walk-off effect in the MI dynamics, we in this article intent to
investigate the interplay between the HOD and walk-off effect
in the XPM-induced MI spectrum in the system of relaxing
nonlinear response.

The paper is organized as follows: Following the detailed
introduction in Sec. I, Sec. II features the theoretical model
of the underlined problem, followed by the MI analysis in
Sec. III. The paper is twofold: In Secs. IV and V, the influence
of HOD and walk-effect in the MI spectrum are discussed in
normal and anomalous dispersion regime, respectively. Later,
Secs. VI and VII include the delay in the nonlinear response
and bring the exclusive investigation of the interplay between
various physical effects in the MI spectrum for both the
dispersion regimes. Section VIII features the detailed summary
and conclusion.

II. THEORETICAL MODEL

The co-propagation of two optical waves of different
frequencies and the same polarization in the single-mode
optical fiber is given by the coupled nonlinear Schrödinger
equation (CNLSE). The general form of the CNLSE for
the slowly varying envelope Ej (z,t) corresponding to the
co-propagation of optical beams along z axis with a group
velocity Vgj in a retarded time frame t = (T − z/Vg) is given
by Refs. [4,47,52]

∂Ej

∂z
+ 1

Vgj

∂Ej

∂t
+ i

β2j

2

∂2Ej

∂t2
− β3j

6

∂3Ej

∂t3
+ i

β4j

24

∂4Ej

∂t4

= iγj (|Ej |2 + 2|E3−j |2)Ej , (1)

where z and t are the longitudinal coordinate and time in
the moving reference frame, respectively. Vgj (j = 1,2) is the
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group velocity. The dispersion coefficient βkj (k = 1,2,3,4)
attributes the Taylor expansion of the propagation constant
around the center frequency ω0. It is a proven fact that
HOD plays a crucial role in the MI dynamics. Among HOD,
fourth-order dispersion (FOD) plays a significant role in many
of the practicable operating conditions. HODs beyond FOD
are immaterial due to their small magnitude, unless and until
included with any physical meaning to the desired problem,
thus we limit our analysis only up to FOD, where γ = n2ω0

cAeff
is

the Kerr parameter, n2 is the nonlinear index coefficient, and
Aeff is the effective core area.

In order to account for the delay in the nonlinear response,
a simple relaxational model termed the Debye relaxational
model is considered as in Ref. [22]. The dynamical equation
governing the evolution of the envelopes of the co-propagating
field can be written as a set of coupled equations as follows:

∂Ej

∂z
+ 1

Vgj

∂Ej

∂t
+ i

β2j

2

∂2Ej

∂t2
− β3j

6

∂3Ej

∂t3
+ i

β4j

24

∂4Ej

∂t4

= iγjNjEj , (2a)

τ
∂Nj

∂t
= (−Nj + |Ej |2 + 2|E3−j |2), (2b)

where Nj = Nj (z,t) is the nonlinear index of the medium and
τ represents the finite response time of the medium.

III. MODULATIONAL INSTABILITY ANALYSIS

A. Linear stability analysis

The stability of the steady-state solution against small
perturbation for the above dynamical equation is studied using
linear stability analysis. In the continuous wave limit, the
steady-state solution can be written as

ECW
j = E0

j exp
[
iγj

(∣∣E0
j

∣∣2 + 2
∣∣E0

3−j

∣∣2)
z
]
, (3a)

NCW
j = |E0

j

∣∣2 + 2
∣∣E0

3−j

∣∣2
. (3b)

To analyze the stability of the steady state against small
perturbation, we perturb the steady state with a perturbed field

of the following form:

Ej = [
E0

j + aj (z,t)
]

exp
[
iγj

(∣∣E0
j

∣∣2 + 2
∣∣E0

3−j

∣∣2)
z
]
, (4a)

Nj = nj (z,t) + (∣∣E0
j

∣∣2 + 2
∣∣E0

3−j

∣∣2)
, (4b)

where aj (z,t) is the small perturbation satisfying |aj (z,t)|2 �
|E0

j |2 and nj (z,t) is the small deviation from the stationary
solution of the nonlinear index. Using Eq. (4) in Eq. (2), we
obtain the linearized equation for the perturbations aj (z,t) and
nj (z,t) as follows:

∂aj

∂z
+ 1

Vgj

∂aj

∂t
+ i

β2j

2

∂2aj

∂t2
− β3j

6

∂3aj

∂t3
+ i

β4j

24

∂4aj

∂t4

= iγjnjE
0
j , (5a)

τ
∂nj

∂t
= −nj + E0

j (aj + a∗
j ) + 2E0

3−j (a3−j + a∗
3−j ). (5b)

We assume the following ansatz for the perturbations with
frequency detuning from the pump �, and k will be the wave
number of the perturbation.

aj (z,t) = Uj exp[−i(kz − �t)] + Vj exp[i(kz − �t)], (6a)

nj (z,t) = Uj exp[−i(kz − �t)] + Vj exp[i(kz − �t)], (6b)

where U and V are the perturbation amplitudes corresponding
to the anti-Stokes and Stokes sidebands, respectively. Solving
the above linearized equation one will arrive at a set of four
homogenous equations for Uj and Vj . Collecting the linear
terms in Uj and Vj , one will arrive at the 4 × 4 stability matrix
as follows:

D(�) ≡ β21
�2

2
− β31

�3

6
+ β41

�4

24
, (7a)

D̃(�) ≡ β21
�2

2
+ β31

�3

6
+ β41

�4

24
, (7b)

E(�) ≡ β22
�2

2
− β32

�3

6
+ β42

�4

24
, (7c)

Ẽ(�) ≡ β22
�2

2
+ β32

�3

6
+ β42

�4

24
, (7d)

γ̃ = γ /(1 + i�τ ). (7e)

⎡
⎢⎢⎢⎢⎣

k − 1
Vg1

� + D(�) + γ̃
∣∣E0

1

∣∣2
γ̃
∣∣E0

1

∣∣2
2γ̃ E0

1E
0
2 2γ̃ E0

1E
0
2

γ̃ |E0
1 |2 −k + 1

Vg1
+ D̃(�) + γ̃

∣∣E0
1

∣∣2
2γ̃ E0

1E
0
2 2γ̃ E0

1E
0
2

2γ̃ E0
1E

0
2 2γ̃ E0

1E
0
2 k − 1

Vg2
� + E(�) + γ̃

∣∣E0
2

∣∣2
γ̃
∣∣E0

2

∣∣2

2γ̃ E0
1E

0
2 2γ̃ E0

1E
0
2 γ̃ |E0

2 |2 −k + 1
Vg2

+ Ẽ(�) + γ̃
∣∣E0

2

∣∣2

⎤
⎥⎥⎥⎥⎦ .

(8)

The matrix has nontrivial solution only when the wave number
k satisfies the dispersion relation as follows:[(

k − 1

Vg1
� − 1

6
β31�

3

)2

− h1

]

×
[(

k − 1

Vg2
� − 1

6
β32�

3

)2

− h2

]
= CXPM. (9)

The above dispersion relation is the deterministic of the
stability of the steady-state solution against the harmonic
perturbation. The parameter of the equation can take the form,
respectively, as follows:

hj = (
1
2β2j�

2 − 1
24β4j�

4
)

× [
1
2β2j�

2 − 1
24β4j�

4 + 2γ̃j

∣∣E0
j

∣∣2]
, (10)
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CXPM = 16γ̃1γ̃2

∣∣E0
1

∣∣2∣∣E0
2

∣∣2( 1
2β21�

2 − 1
24β41�

4
)

(
1
2β22�

2 − 1
24β42�

4
)

(11)

The above expression looks similar to the case of dispersion
relation corresponding to the case of second-order dispersion
(SOD). The difference being the definitions of the parameters
h1, h2, and CXPM varies from the (SOD) case. Unlike the
case of scalar MI, where the odd order dispersion parameters
are literally insignificant in the MI dynamics, here in the
case of XPM, the odd order dispersion plays a sizable
role. For instance, the walk-off effect in the case of SOD
consists of only the conventional group velocity mismatch
(GVM), whereas, the walk-off effects here constitute both the
GVM and also the difference of the third-order dispersion
(TOD). Although the TOD difference is not fundamental
to the existence of MI, the inclusion of TOD certainly
changes the MI dynamics and eventually makes the calculation
more complex. For simplicity, we consider the well-known
assumption as follows: δ1 = V −1

g1 − V −1
g2 , δ2 = β31 − β32, and

K = k − �Vg2 − (1/6)β32�
3, where δ1 and δ2 correspond

to the GVM and TOD difference, respectively. After some
mathematical manipulations, Eq. (9) can be written in a
compact form as

[(
K − δ1� − 1

6δ2�
3
)2 − h1

]
[K2 − h2] = CXPM. (12)

The distinct MI gain spectra correspond to solutions of the
above Eq. (12). For the case of instantaneous nonlinear
response (τ = 0), it is straightforward to notice that the
dispersion relation is a fourth-order polynomial in K with
real coefficients leading to four distinct solutions. Out of the
four solutions, two are always real and thus insignificant as
far as MI is concerned. But the rest of the two are most
probably a complex conjugate pair, thereby participating in
the MI dynamics and thus ensuring the possibility of only one
unstable mode leading to a gain in the band. Now, including
the delay in the nonlinear response, it is evident from the
dispersion relation [Eqs. (9) and (12)] that any finite value
of relaxation time (τ �= 0), hj and CXPM become complex
thus producing an imaginary part to the wave vector K at
any frequency irrespective of the nature of the dispersion
regime and thereby extending the frequency range of unstable
harmonic perturbation [30]. For any finite value τ , Eq. (12),
results in a fourth-order polynomial with complex coefficients.
Since the complex roots do not appear in conjugate pairs, this
leads to the possibility of two unstable modes for a given
frequency � [47]. Thus, incorporation of delay in the XPM
leads to two unstable modes, in contrast to one in the case
of the instantaneous system. The inclusion of HOD, walk-off
effect, and delay in the coupled system is extremely difficult
to solve, hence a numerical approach is generally preferred.

For the sake of completeness and also to provide a self-
explanatory note of the underlying problem, we here intend
to recollect some of the much needed results. It is a proven
fact that when the wave number K becomes real, obviously the
steady-state solution is stable and the harmonic perturbation
is purely oscillatory in nature. However, for the case of
imaginary K, the steady-state solution is unstable and the
perturbation grows exponentially along the length of the fiber,
which eventually leads to the breakup of the CW into a train of

ultrashort pulses. The corresponding MI gain can be defined
as g(�) = 2 Im{K}. K can be calculated numerically from Eq.
(12). For instance, we consider the case of scalar MI with the
instantaneous nonlinear response (τ = 0), by making either
CXPM or one of the hj in Eq. (12) zero. Now, Eq. (7) reduces the
conventional dispersion relation of the scalar-type MI process
as follows:

K = �

vgj

± √
hj . (13)

The above case can be addressed in two distinct ways
depending upon the propagation wavelength with respect to
zero dispersion wavelength, (i) normal dispersion regime,
and (ii) anomalous dispersion regime. In the case of normal
dispersion regime, there can be two possible cases: (a) β2 > 0
and β4 > 0, and (b) β2 > 0 and β4 < 0. For both β2 and β4

taking positive values hj > 0; hence K ∈ Re, which means
that the steady-state solution is stable against the harmonic
perturbation and it is purely oscillatory. However, the case
β2 > 0 and β4 < 0 leads to modulation gain even when β2 > 0;
this is attributed to the fact that the negative value of β4 < 0
contributes the required phase matching for the MI process to
occur [49,50]. Thus by virtue of the negative value of FOD one
can achieve MI even at the normal dispersion regime. The latter
case is the anomalous dispersion regime, a familiar case that
ensures MI irrespective of the sign of β4, since any one of the
two even order dispersion components or both can contribute to
the required phase matching (PMC). Thus for both (c) β2 < 0
and β4 < 0, and (d) β2 < 0 and β4 > 0, K ∈ Re∗ and hence
the harmonic perturbation grows exponential with fiber length.
A comprehensive analysis of the scalar MI with HOD under
different parametric cases was discussed in Refs. [48–50].

Now, we consider the co-propagation of two optical beams
inside fiber with the same polarization; this involves the XPM
coupling between the optical field. The XPM with HOD is
tricky and requires a good understanding about the role of
the individual effects. We consider both the typical cases
of the propagation regime: (i) normal dispersion regime and
(ii) anomalous dispersion regime. As a matter of fact, the
propagation of an individual intense beam in the normal
dispersion regime is not subject to MI. Thus in order to achieve
MI at least one of the dispersion coefficients needs to take
negative values. Interestingly, MI occurs even when both β2

and β4 take positive values. This can be made possible only
through the XPM effects by means of coupling between the
co-propagating beams. In this context, MI occurs solely due
to the effect of XPM, thus for any values of the dispersion
coefficient the steady-state solution becomes unstable and
leads to the exponential growth of the perturbation. Thus
the nonlinear coupling between two different modes by XPM
extends the domain of MI to the normal GVD regime. It is to
be noted that if any of the field vanishes then CXPM = 0 and MI
no longer exist. The latter case of the anomalous dispersion
regime is relatively easier to understand, since the dispersion
coefficients (either both or one) can take negative values and
eventually lead to MI. The role of XPM here is to enhance the
MI [4,5].

After the detailed introductory ideas about the XPM-
MI, we now move on to the objective of the paper. We
organized our analysis twofold: (i) effect of walk-off on
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FIG. 1. (Color online) The MI gain spectra G(�) with the effect
of GVM for different values of δ1(ps m−1).

the XPM-MI spectrum, and (ii) impact of finite relaxation
time in the MI spectrum. In order to give a comprehensive
picture of the role of walk-off and HOD in the MI spec-
trum, we consider both normal and anomalous dispersion
regimes. Without loss of generality, we consider the dispersion
parameters as β2 = β21 = β22 = ±60 ps2km−1, β4 = β41 =
β42 = 0.1 ps4km−1 and the nonlinear parameter γ1 = γ2 =
15 W−1km−1. The input optical powers are set as P1 = 100 W
and P2 = 100 W. The TOD difference can vary in the range
δ2 = 0 − 6 × 10−4ps3m−1 and the group velocity mismatch
varies in the range δ1 = 0−4 ps m−1.

IV. EFFECT OF WALK-OFF ON XPM IN THE NORMAL
DISPERSION REGIME

The scenario in which both beams experience a normal
GVD is of particular importance since MI may occur solely
by virtue of the XPM. Thus in the present section we intend to
provide a detailed analysis of the interplay between walk-off
and HOD. In order to make the discussion clear, subsections
are made to study the impact of various physical effects in
detail.

A. In the case of δ1 �= 0 and δ2 = 0

To illustrate the role of HOD and the walk-off effect in the
MI spectrum, first the interplay between FOD and GVM (δ1)
is analyzed. For the case (δ1 �= 0 and β4 = 0), it is observed
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FIG. 2. The MI gain spectra G(�) with the effect of FOD in the
absence of GVM.
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FIG. 3. (Color online) First MI spectral window with the effect
of FOD and GVM for various values of δ1.

from Fig. 1, as δ1 increases the instability band shifts towards
the higher frequencies and the corresponding bandwidth
decreases considerably with its peak approaching a limiting
value. Whereas inclusion of β4 dramatically changes the MI
spectrum, where new spectral bands evolve at characteristic
frequencies given by the dispersion relation. It is apparent
from Fig. 2, for the null group velocity mismatch the MI
spectrum consists of two distinct bands, one at near- and the
other at far-from-center frequencies. It is to be noted that the
second spectral band consists of a subordinate spectral band
with reduced gain. For better understanding about the influence
of GVM and FOD on the MI spectrum, the spectral window
has been divided into two segments. Incorporation of GVM
qualitatively changes the MI spectrum, like shape, position,
and the number of spectral peaks. The evolution of a new
spectral band is obvious from Figs. 3 and 4. Incorporation of
GVM brings in new characteristic spectral spikes at different
frequencies as given by the dispersion relation Eq. (12).

For a particular case (δ �= 0 and β4 �= 0), the second spectral
window is interesting and consists of an immobile primary
central band with two mobile secondary spectral spikes on
either side of the central band. With increase in the value
of the GVM, the central band remains stationary whereas
the secondary spectral spikes moves away from the central
band. On the contrary, the increase in the GVM shifts the
first spectral band towards higher frequencies; for a particular
value of GVM the first spectral band collides with one of the
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FIG. 4. (Color online) Second spectral window of MI with the
combined effect of GVM and FOD.
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FIG. 5. The first MI spectral window of null GVM for different
values of δ2 with the effect of β4.

secondary spectral spikes moving towards the center frequency
as shown in Fig. 3.

B. In the case of δ1 = 0 and δ2 �= 0

We now shift our attention to analyze the walk-off effect by
virtue of TOD. For instance, we consider δ1 = 0 and δ2 �= 0 to
study exclusively the influence of TOD on the MI spectrum.

The influence of HOD effects like TOD and FOD are
interesting and lead to a rich variety of information about
the MI dynamics in most practical scenarios. Quite clearly, the
role of TOD is similar to the case of the GVM.

Figures 5 and 6 show the gain spectrum of MI for different
values of δ2. As in the previous section, the MI spectrum
consists of two distinct spectral windows. Like the earlier case,
with an increase in δ2 the first spectral band remains stationary
and the two secondary spectral spikes on either side of the
immobile primary central band in the second spectral window
move away from the primary central band.

C. In the case of δ1 and δ2 �= 0

Here, we will discuss the interplay between the walk-off
effect and HOD under the combined action of GVM and TOD.
In order to analyze the above, we consider the case of δ1 �= 0
and δ2 �= 0.

Figures 7 and 8 depict the MI spectrum for some represen-
tative cases of δ1 and δ2. It is observed that like in the previous
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FIG. 6. (Color online) The second spectral window for the
combined effect of δ2 and β4 for null GVM.
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FIG. 7. (Color online) First MI spectral window for the combined
effect of FOD and walk-off (both the GVM and TOD difference) for
different combinations of δ1 and δ2.

cases of varying δ1 and δ2, here, too, many of the results
coincide. Thus, one can conclude that the increase in either
δ1 or δ2, or both, leads to the shift of the first spectral band
to the higher frequency side and the two secondary spectral
spikes on either side of the primary central band moves apart.
For a particular value of either δ1 or δ2, the first spectral band
collides with one of the secondary spectral spikes and evolves
as a single band.

Figures 1–8 portray the evolution of a new spectral band
due to the HOD effects. It is obvious from these figures that the
instability region is no longer continuous as in the case of the
GVD dominant system; rather it is discrete with localized MI
gain peaks. We observed from our calculation, when τ → 0,
the system switch back to the conventional Kerr-type nonlinear
case (γ̃ → γ ) and our Eq. (12) coincides completely with
Eq. (11) of Ref. [53]. Moreover, one can infer from Figs. 1–8
that our findings agree readily with Ref. [53], except for the
change in the numerical value of quantities such as G (�) and
�; this is obvious because of the different values of the vari-
ables handled in the context. Unlike the case (δ �= 0 and β4 =
0), where there exists one critical GVM (δc) above which
the MI gain occurs at a finite frequency range, for β4 �= 0,
in addition to the instability band near center frequency, there
exist three more distinct spectral bands on the longer frequency
side, each corresponding to a characteristic frequency width
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FIG. 8. (Color online) Second spectral window of MI for different
combinations of δ1(ps m−1) and δ2(10−4 ps3 m−1) with the effect of
FOD.
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determined by the parameters of the dispersion relation. Thus
the critical GVM as stated in Ref. [47], has to be redefined
with the required modification. In the case of (δ �= 0 and
β4 �= 0), the δc required for the evolution of MI with finite
bandwidth can only be applicable to the first spectral band and
can take the value δc = 1.0395, whereas the second spectral
window emerges inevitably for all δ1. The above agreement
fairly holds for the δ2 with the parameter values being different.
Thus this section concludes that incorporation of δ1 and δ2

leads to a threshold behavior for the evolution of the MI band
at finite frequency. But the evolution of the spectral band in
the secondary spectral window occurs spontaneously for all
finite values of δ1 and δ2. Thus the incorporation of HOD and
walk-off effect in the XPM leads to four discrete instability
regions (one near the center frequency and three far from center
frequency). Therefore the unstable region of MI can be written
in a simplified notation as �min

i < � < �max
i , where i at 1, 2,

3, and 4 corresponds to the unstable MI bands (numbering is
from the center to the extreme band).

V. EFFECT OF WALK-OFF EFFECT ON XPM IN THE
ANOMALOUS DISPERSION REGIME

This section deals with the practicable case of pulse
propagation, where β2 takes negative values and thereby
produces MI without the aid of the XPM. Although XPM
has nothing to do with the origin of the MI band, it plays a
crucial role in the characteristics of the MI band, thus making
the study of walk-off effect on XPM in the anomalous GVD
necessary. We proceed along similar lines as discussed earlier
by dividing into subsections, so as to appreciate the importance
of individual effects on MI spectrum.

A. In the case of δ1 �= 0 and δ2 = 0

In this case walk-off effect consists of only the conventional
GVM, and the TOD difference is temporarily disabled by
making δ2 = 0. For the anomalous GVD regime, β2 possesses
negative value, and FOD as in the previous case is maintained
as β4 = 0.1 ps4 km−1 throughout our discussion. It is worth
noting from Fig. 9 that the inclusion of β4 hardly has any
effect on the MI spectrum, since there exists only one MI
band. This is in contrast to the case of normal GVD, where
two MI bands, one at near- and the other at far-from-center
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FIG. 9. The MI gain spectra G(�) with the effect of FOD in the
absence of GVM.
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FIG. 10. (Color online) The MI gain spectra G(�) with the effect
of GVM for different values of δ1(ps m−1).

frequency is observed. This absence of the secondary band in
the higher frequency side is attributed to the opposite sign of
β2 and β4. The two dispersion effects compete with each other
due to the opposite nature of their signs, and, for the parameters
chosen in our case, it is quite evident that β2 dominates and
leads to the characteristic MI band near the center frequency
by eliminating the FOD bands on the far-frequency side.

Now we turn our attention towards the walk-off effect (β2 =
−60 ps2 km−1, β4 = 0); it is to be noted that with increase in
the δ1, the MI band as usual shifts towards the higher frequency
side, but the peak gain matters here. In the earlier case of
normal GVD, with increase in GVM the MI band shifts towards
the higher frequency side and the peak gain increases gradually
until it saturates after a certain finite value of δ1. However, in
the anomalous GVD case, the behavior of the peak gain is
the opposite (i.e., peak gain decreases from the maximum and
saturates after a certain value of δ1) as is evident from Fig. 10.
Now, we consider the combination of (β4 �= 0, δ1 �= 0) as in
Fig. 11; here unlike the normal GVD case there is no secondary
spectral window at the higher frequency region, which is a
consequence of the weak contribution by FOD. Moreover, in
addition to the finite frequency band due to GVM, one can also
observe the conventional MI band owing to the dominance of
SOD over other effects. The effect of walk-off (only δ1) as
expected shifts the MI band towards the higher frequency side
with an increase in the GVM.
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FIG. 11. (Color online) The MI spectra G(�) with the effect of
FOD and GVM for various values of δ1.
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FIG. 12. (Color online) The MI spectra for the combined effect
of δ2(10−4 ps3 m−1) and β4 for null GVM.

B. In the case of δ1 = 0 and δ2 �= 0

Now consider the walk-off effect due to the TOD difference.
Two distinct bands can be observed from Fig. 12: One near the
center frequency is the characteristic of the anomalous GVD
and the other away from the center corresponds to the walk-off
effect caused solely by the TOD difference.

It is evident from Fig. 12, like the case of GVM, increasing
δ2 shifts the MI band towards the longer wavelength side, but
very slightly. There is no evidence of secondary spectral bands
in the higher frequency side here, which is the signature of the
weak contribution by β4 and the relative dominance of the
GVD effect.

C. In the case of δ1 and δ2 �= 0

Here, we consider the interplay between HOD and walk-off
under the combined actions of δ1 and δ2. Two distinct spectral
bands can be observed at near- and far-from-center frequency.
To illustrate some representative combination of β4, δ1 and
δ2 are considered. It is obvious from Fig. 13 that the TOD
difference is indeed very weak, and the major contribution
to walk-off effect comes considerably from the GVM effect.
As discussed earlier, the walk-off, as usual, shifts the spectral
band towards higher frequency. Increase in the δ1 actually
determines the shift of the finite frequency band and δ2 is
found to be relatively weak. In addition, the increase in δ1
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FIG. 13. (Color online) The MI spectra with the effect of FOD
and the walk-off for different combinations of δ1(ps m−1) and
δ2(10−4 ps3 m−1).

brings a modest decrease in the peak gain of the conventional
MI band near the center frequency, which is apparent from
Fig. 13.

It is noteworthy that the inclusion of walk-off effect, as
usual, results in the discrete instability band. Unlike the
existence of four unstable bands for the normal dispersion
regime, here in the case of the anomalous GVD regime
only two discrete bands are observed. The critical unstable
frequency can be written as �min

i < � < �max
i , where i can

take 1, 2 corresponding to two unstable MI bands.

VI. ROLE OF RELAXATION OF NONLINEAR RESPONSE
IN THE NORMAL DISPERSION REGIME OF THE

MI SPECTRUM

It is worth noting from our mathematical treatment of
linear stability analysis, any finite relaxation time (τ ) in the
nonlinear response leads to the imaginary part of K for any
frequency. Thus, this leads to the evolution of two MI curves
as a consequence of two unstable modes for a given frequency.
The unstable modes are recognized as Raman modes due to the
retarded nature of the nonlinear responses. In order to figure
the role of HOD, GVM, and delay on MI, we have divided this
section into subsections to exclusively explore the individual
effects on the MI spectrum.

A. In the case of β4, τ �= 0 and δ = 0

In this case, the walk-off effect is made zero (δ = 0), in
order to analyze the effect of HOD and delay (τ ) on MI.
Here, the parameter δ stands for the total walk-off contribution
due to both GVM and the TOD difference (δ = δ1 + δ2). The
inclusion of FOD leads to the evolution of the secondary
sidebands at a characteristic frequency. In Fig. 14 two spectral
regions corresponding to the two MI bands are observed: The
former is close to the pump frequency and the latter is the FOD
band. For the case of short or fast response (small value of
τ ), the first MI band (instantaneous band) remains unaffected,
whereas the second MI band suffers a decrease in the gain with
the inclusion of delay, which is apparent from Fig. 14. The role
of delay is interesting, since any finite value of τ extends the
range of unstable frequencies, for instance, due to the small
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FIG. 14. (Color online) The MI gain spectra without walk-off
effect for the case of instantaneous (τ = 0) and delayed nonlinear
response with FOD. The nonlinear response is said to be a fast
response (τ = 0.01 ps).
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FIG. 15. (Color online) The MI gain spectra for the case of slow
response in the presence of FOD and the absence of walk-off.

value of τ the instability region extends all the way from
the primary sideband to the secondary band and eventually
connects the two MI bands. The second mode, which becomes
unstable due to the delayed nonlinear response (dashed curve),
shows a larger average MI gain than the primary band of the
first unstable mode but the dominance of FOD sets a fall in the
MI gain and the retarded Raman response extends the unstable
frequency range.

Now, for the case of slow response (large value of τ ) the
dynamics evolve differently. Although, in principle, the delay
results in the infinite unstable frequency, the slow response
generally leads to the overall suppression of MI. We consider
some representative cases of delay time in Fig. 15; it can
be observed that for larger value of τ the MI gain suffers
and registers the least gain factor for slow responses. No
distinct FOD peak is observed as in the fast response case,
which infers that delay suppresses even the dominant FOD
effects. Moreover, the second unstable mode (represented
by the dashed curve) records a larger gain factor than the
first mode; a sudden fall at the higher detuning frequency is
observed, which is a manifestation of the counteraction of the
slow response over the FOD peak.

B. In the case of β4, τ �= 0 and δ1 and δ2 �= 0

The inclusion of walk-off effects dramatically changes the
MI spectrum and leads to the emergence of a new spectral band
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FIG. 16. (Color online) The MI gain spectra under the combined
action of FOD and walk-off effect (δ1 = 1 ps m−1 and δ2 = 4 ×
10−4 ps3 m−1) in the regime of fast and instantaneous response.
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FIG. 17. (Color online) The MI gain spectra under the combined
action of FOD and walk-off effect in the regime of slow responses.

with finite frequency width as observed in the previous section.
The walk-off effect here constitutes the combined effects of
GVM (δ1) and the TOD difference (δ2). It is noteworthy
that each band corresponds to a finite frequency width and
thus the unstable frequency window is discrete. However, the
incorporation of delay extends the unstable frequency window
by connecting the individual localized unstable bands. Thus,
unlike the instantaneous case, where the unstable regions are
discrete, here in the case of the delayed system the unstable
window is continuous and runs all the way from the pump
frequency literally down to an infinite frequency range. For
the case of fast response, one can readily observe from Fig. 16
that the instantaneous band remains unaffected, whereas the
delay qualitatively suppresses the gain of the other MI bands.
The second unstable mode (dashed curve) possesses lesser
gain factor and a hump corresponding to the FOD peak (MI
band due to FOD) thus ensures the relative dominance of the
FOD effect.

Now we consider the slow response time, as predicted
earlier; here, too, slow response suppresses the MI. Two
representative cases of delay time are considered as shown
in Fig. 17; it is observed that the larger delay time leads to
significant decreases in the MI gain of the primary band (near
center frequency). It can also be noted that the increase in the
delay time (slow response) considerably decreases the gain
factor of the other MI band originates due to walk-off and
FOD. The behavior of the second spectral mode is the same as
the fast response (i.e., reduced gain factor with a hump at the
FOD peak).

VII. ROLE OF RELAXATION OF NONLINEAR RESPONSE
IN THE ANOMALOUS DISPERSION REGIME OF THE

MI SPECTRUM

A. In the case of β4, τ �= 0 and δ = 0

Here, the co-propagation of two beams in the anomalous
dispersion regime is considered, where β2 takes negative value,
thereby supporting MI without the aid of the XPM. In this
context, the role of XPM is to support MI and enhance its
effect in parallel with the GVD effects.

Our analysis of the impact of delay in the nonlinear
response over the MI spectrum follows in a similar way
as the proceeding section. First, we consider the null GVM
effect, in order to analyze the impact of HOD and delay on
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FIG. 18. (Color online) The MI gain spectra without walk-off
effect for the case of instantaneous (τ = 0) and fast response (τ =
0.01 ps) with the effect of FOD.

MI. The inclusion of FOD hardly brings any changes to the
MI spectrum; this is mainly due to the relative dominance
of anomalous GVD over FOD. For the parameters β2 =
−60 ps2 km−1 and β4 = 0.1 ps4 km−1, β2 dominates over
β4 and masks the characteristics of FOD. Therefore, there
exists only one MI band corresponding to the conventional
anomalous GVD effects.

Now consider the role of delay in the nonlinear response (we
initially consider the fast response); it is evident from Fig. 18
the delay extends the range of unstable frequencies and induces
two MI curves corresponding to two unstable modes. The first
mode of unstable frequency consists of a primary band of the
same gain as that of the instantaneous band, which further
extends to the higher frequencies. The second mode due to
the delayed nonlinear response consists of unstable frequency
of reduced gain. Figure 19 portrays MI spectrum for some
representative case of slow responses. It is obvious from our
earlier argument, and here, too, the increase in the delay time
leads to decrease in the gain, thereby suppressing the overall
MI.

B. In the case of β4, τ �= 0 and δ1 and δ2 �= 0

Now we include the walk-off effect in the picture, by
considering GVM (δ1) and the TOD difference (δ2) of the
co-propagating beams. A particular combination of δ1 and δ2

is considered. Due to the walk-off effect new spectral bands
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FIG. 19. (Color online) The MI gain spectra for the case of slow
responses with the effect of FOD and the absence of walk-off.
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FIG. 20. (Color online) The MI gain spectra under the combined
action of FOD and walk-off effect (δ1 = 1 ps m−1 and δ2 = 4 ×
10−4 ps3 m−1) in the regime of fast and instantaneous response.

originate, one near the center frequency and the other far from
the center frequency. No other spectral bands occur as in
the normal GVD case, which is purely due to the weaker
contribution of FOD. Incorporation of delay connects the
two spectral bands and further extends the range of unstable
frequencies. For the case of fast response, it is apparent from
Fig. 20 that the delay hardly disturbs the gain of the MI bands
but extends the instability window to longer frequency range.

Figure 21 illustrates the role of slow response, as well
established in the earlier section; here, also, slow response
inevitably suppresses the MI by reducing the gain factor. It
is pretty clear from Fig. 21 that increases in the delay time
certainly decrease the MI gain of both the unstable modes.

VIII. SUMMARY AND CONCLUSION

In summary, we have investigated the XPM-induced MI in
the system of relaxing Kerr nonlinearity under the influence
of HOD and walk-off effect. Using the Debye relaxational
model, a time-dependent nonlinear response is incorporated
in the system of CNLSE to account for the delay in the
nonlinear response. The governing dynamical equation is
suitably modeled to include the cumulative effect of HOD
and walk-off [Eq. (1)]. First, we analyzed the role of HOD
and walk-off effect in the XPM-induced MI for both the
dispersion regimes. In the normal GVD regime, the HOD
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FIG. 21. (Color online) The MI gain spectra under the combined
action of FOD and walk-off effect in the regime slow responses.
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and walk-off effect brings new characteristic spectral bands
at a definite frequency window. The walk-off effect consists
of both the GVM and the TOD difference and it is observed
that both play identical roles in the MI dynamics. In general,
increase in the walk-off (δ) shifts the MI band towards the
higher frequency side and also leads to new spectral bands.
Four discrete spectral bands are observed, which have been
divided into two spectral windows. The first spectral window
consists of a single band near the center frequency and the
spectral window consists of three bands: one immobile primary
band and two mobile secondary bands on either side of the
primary band, respectively (Figs. 1–8). Increase in (δ) shifts
the mobile band away from the primary center band. In the
anomalous GVD regime (Figs. 9–13), there exist two bands,
one near and the other away from the center frequency. This
is attributed to the fact that for the anomalous GVD regime,
FOD is relatively suppressed due to the dominance of SOD.
There is no observation of a secondary spectral band and the
role of walk-off effect is found to be the same as that of the
normal GVD case.

Later, we discussed exclusively the influence of relaxation
in the nonlinear response for both dispersion regimes. The
role of delay is addressed in two typical cases, namely
(a) fast response and (b) slow response. The cumulative
effect of HOD, walk-off, and the delay leads to interesting
behavior as follows: (i) Any finite relaxation extends the
range of unstable frequencies and there exist two unstable
modes called the Raman mode; (ii) in the normal GVD regime
(Figs. 14–17), there exist four discrete unstable MI bands for
the case of instantaneous response. Inclusion of delay (τ )
makes the MI curve run through the local instability bands
and thereby extends the range of unstable frequencies literally

down to infinite frequency. (a) For the case of fast response,
the incorporation of delay hardly has any impact on the first
band, whereas the rest of the MI bands undergo a relative fall
in the gain. The second unstable mode possesses the larger
gain factor and a hump corresponding to the FOD band. (b)
The slow response reduces the MI gain thereby suppressing
the overall MI. (iii) In the case of the anomalous GVD regime
(Figs. 18–21), there exist two discrete MI bands. The delay as
discussed earlier extends the unstable frequencies and connects
the two MI bands. (a) For the fast response, the gain of the first
band remains unaffected, whereas the second band suffers a
slight fall in the gain. (b) The slow response, however, extends
the unstable frequencies but suffers MI by depleting the overall
MI gain. Overall, the relaxation in the nonlinear response offers
infinite unstable frequencies. The walk-off effect and HOD, on
the other hand, bring a new characteristic local MI band. Thus
the combined action of both walk-off and HOD effects are
responsible for the generation of the MI spectrum, where the
MI curve looks like it is sailing over the local instability bands.
To wrap up, the combination of HOD and the relaxation effect
in coupled system leads to a rich variety of information, which
requires experimental realization. We believe that the outcome
of the article can set the benchmark for experiments pertaining
to the investigation of various nonlinear effects in the relaxing
nonlinear system.
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