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We use the generalized rotating-wave approximation approach [Irish, Phys. Rev. Lett. 99, 173601 (2007)] to
study single-photon scattering on a two-level system (TLS) with arbitrarily strong coupling to a local mode in
a one-dimensional (1D) coupled-resonator array. We obtain the scattering amplitudes by an analytical method,
which works well in a broad parameter region, confirmed by independent numerical results. In particular, when
the resonator mode is far off resonance with the TLS, our results appear more reasonable than the ones from the
standard adiabatic approximation. The approach is further extended to cases with a 1D resonator array strongly
coupled to more than one TLS.
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I. INTRODUCTION

Recently, much attention has been paid to photon transport
in a low-dimensional array of coupled resonators [1–25] or
a one-dimensional (1D) wave guide [24–49], which plays
crucial roles in the realization of all-optical quantum devices.
In these systems, two-level or multilevel devices coupled to
the resonators or wave guides can be used as quantum switches
to control the scattering or transport of the photons.

Up to now, the single-photon scattering amplitudes in 1D
resonator arrays or wave guides coupled to a single two-level
system (TLS) [1–6,25,28–33] or a single three-level sys-
tem [15,41,47,48] or multiple quantum devices [8–12,34–38]
have been well investigated. The relevant multiphoton scatter-
ing amplitudes [21–27,42–46] have also been studied. To our
knowledge, all these studies are based on the rotating-wave
approximation, which is applicable under the conditions that
the frequencies of the two-level or multilevel system are very
close to the photon frequencies in the resonators or wave
guides, and the coupling strengths between the two-level or
multilevel system and the photons are much smaller than their
frequencies, namely, in the weak-coupling limit.

Steady progress in related experiments has also been made.
D resonator arrays or wave guides can be realized with
photonic crystals [50,51], superconducting transmission line
resonators [12–14,29,47,52], or other solid devices, while
two-level or multilevel systems can be implemented with
either natural atoms or solid-state artificial atoms. In hybrid
systems of solid-state devices, it has been predicted [53–56]
that one can realize ultrastrong TLS-photon coupling with
intensities comparable to or even higher than the photon
frequencies. Furthermore, the frequency of a solid-state TLS
can be controlled easily in a broad region. Therefore it is
possible to reach the strong-coupling and far-off-resonance
regime in a quantum network based on solid-state devices. In
these parameter regions where the conditions of rotating-wave
approximation are violated, we need to use effective methods
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for the scattering between the flying photon and the TLS, and
then investigate the possible new effects caused by the strong
TLS-photon coupling to the photon transport. Fortunately, for
the TLS-coupled single-mode bosonic field, several theoretical
methods beyond the rotating-wave approximation [57–73]
have been developed. In particular, the generalized rotating-
wave approximation (GRWA) [73] developed by Irish is a very
effective method with a clear physical picture.

In this paper, we study single-photon scattering on a TLS
which strongly couples to the local mode of a 1D single-
mode-resonator array. Using the GRWA approach we obtain
the single-photon scattering amplitudes under the condition
that the photon hopping between different resonators is weak
enough. We show that the approach works significantly well in
a very broad parameter region, including the region where the
rotating-wave approximation is applicable and the one where
the TLS-photon coupling is strong while the frequency of the
TLS is close to or smaller than the photon frequency.

In particular, in the far-off-resonance region where the TLS
frequency is much smaller than that of the flying photon,
the standard adiabatic approximation does not work well in
the current hybrid system, while the GRWA approach still
provides good results. In addition, when the photon-TLS
coupling is strong enough, the GRWA approach shows that the
single-photon scattering by the TLS becomes equivalent to the
transport of a single photon in a 1D resonator array in which
the frequency of a certain resonator is shifted. Then our results
are further simplified and one can make reasonable qualitative
estimations of the characteristics for the photon transport,
even without quantitative calculations. We also show that the
GRWA approach can be generalized to systems with a 1D
single-mode-resonator array coupled with more than one TLS.

This paper is organized as follows. In Sec. II, we apply the
GRWA approach to a hybrid system of a 1D resonator array
coupled to a single TLS. In Sec. III, we analytically calculate
the single-photon scattering amplitudes in such a system with
the GRWA approach and compare our results with numerical
results. In Sec. IV, we discuss the single-photon scattering
problem in the case of strong TLS-photon coupling. In Sec. V,
we show the GRWA approach in a system with more than one
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TLS. We give several discussions and a brief conclusion in
Sec. VI.

II. THE GRWA FOR THE TLS-COUPLED
1D RESONATOR ARRAY

In this paper we consider the transmission of a single
photon in a 1D single-mode-resonator array coupled to a
TLS located in a specific resonator. To obtain reasonable
analytical results beyond the rotating-wave approximation, in
this section we will generalize the GRWA approach proposed
by Irish in Ref. [73] for a single resonator coupled to a
TLS to our current hybrid system of a resonator array. We
will first make the adiabatic approximation in our system for
the cases where the frequency of the TLS is much smaller
than the photon frequency, and then introduce the GRWA
approach as an improvement of the adiabatic approximation.
For the reader’s convenience, in Appendix A we review Irish’s
GRWA approach for a system with a single resonator from the
viewpoint of the adiabatic approximation.

A. The system and Hamiltonian

As shown in Fig. 1, we consider a 1D array of an infinite
number of identical single-mode resonators with a TLS located
inside a certain resonator, which is marked as the zeroth
resonator in the array. We further assume that the photons can
hop between neighboring resonators. Then the total system is
modeled by the Hamiltonian

H = HC + HA + HI , (1)

where the tight-binding Hamiltonian HC of the resonator array
is

HC = ω

+∞∑
j=−∞

a
†
j aj − ξ

+∞∑
j=−∞

(a†
j aj+1 + H.c.). (2)

Here ω is the frequency of the photons in the resonators, ξ

is the inter-resonator coupling strength, and aj and a
†
j are

the annihilation and creation operators of the photons in the
j th resonator, respectively. Throughout this paper, we set
h̄ = 1.

|e>

|g>
Ω

-2 -1 0 +1 +2

ωξλ

FIG. 1. (Color online) Schematic configuration for the hybrid
system of a 1D resonator array interacting with a TLS. The frequency
of the photon in each resonator is ω, while the intensity of the photon
hopping is ξ . The TLS with frequency � is localized at the zeroth
resonator and coupled to the photon with coupling strength λ.

In addition, we assume the weak-hopping condition

|ξ | � ω (3)

is satisfied. Therefore the term a
†
j a

†
j+1 + H.c. has been

neglected in our consideration. This condition also provides
us a small parameter ξ/ω which is very useful in the following
calculation.

The Hamiltonian HA of the TLS and the interaction HI

between the TLS and the photons in the zeroth resonator
are

HA = �

2
σz (4)

and

HI = λσx(a†
0 + a0), (5)

respectively. Here � is the energy difference between the
ground state |g〉 and the excited state |e〉 of the TLS, λ is
the coupling strength, and the Pauli operators σz and σx are
defined as σz = |e〉〈e| − |g〉〈g| and σx = |e〉〈g| + |g〉〈e|.

B. The GRWA approach for a TLS-coupled
1D resonator array

Now we apply the GRWA approach to a system of a TLS-
coupled 1D resonator array. To this end, we first briefly recall
the original GRWA for the single-mode bosonic field coupled
to a TLS. As shown in Appendix A, in the GRWA for that
system, the Rabi Hamiltonian

HRabi = ωa†a + �

2
σz + λσx(a† + a) (6)

is approximated as

HGR = UR

[ ∞∑
n=0

[
P̂

(n)
Rabi

(
U−1

R HRabiUR

)
P̂

(n)
Rabi

]]
U−1

R . (7)

Here a and a† are the annihilation and creation operators
of the single-mode bosonic field, respectively. The unitary
transformation UR is defined as

UR = exp

[
− λ

ω
σx(a† − a)

]
. (8)

It can be used to remove the linear term λσx (a† + a) of a and a†

in the Hamiltonian ωa†a + λσx(a† + a) for the single-mode
bosonic field, i.e., we have

U−1
R [ωa†a + λσx(a† + a)]UR = ωa†a. (9)

The projection operator P̂
(n)
Rabi in Eq. (7) is defined as

P̂
(n)
Rabi =

{|0g〉〈0g| if n = 0,

|n,g〉〈n,g| + |n − 1,e〉〈n − 1,e| if n � 1,
(10)

where |n,g(e)〉 is the direct product of the Fock state with
n photons and the atomic state |g(e)〉. Therefore, in Eq. (7)
the “counter-rotating-wave” transitions between the states
|n,g〉 and |m,e〉 with m �= n − 1, or the transitions between
the eigenstates of the total excitation operator a†a + |e〉〈e|
with different eigenvalues, are removed by the operation∑∞

n=0[P̂ (n)
Rabi · P̂

(n)
Rabi] for the rotated Hamiltonian U−1

R HRabiUR.
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In this sense, the GRWA can be understood as “the rotating-
wave approximation for the rotated Hamiltonian.” It is pointed
out that, as shown in Appendix A, the GRWA converges to the
normal rotating-wave approximation under the near-resonance
condition |ω − �| � |ω + �| and the weak-coupling con-
dition |λ| � �,ω. In addition, under the far-off-resonance
condition � � ω, the GRWA becomes the adiabatic approxi-
mation. Therefore, the GRWA smoothly connects the adiabatic
approximation and the rotating-wave approximation, and thus
can be used in a broad parameter region.

For our system with a resonator array, we can also develop
the GRWA approach with a similar scheme. In the GRWA
approach the total Hamiltonian H is approximated as HG,
which is defined as

HG = UH RWA
R U−1. (11)

Here the operator H RWA
R is defined as

H RWA
R =

∞∑
n=0

[P̂n(U−1HU )P̂n] (12)

and the unitary transformation U is given by

U =
+∞∏

j=−∞
exp[αjσx(a†

j − aj )], (13)

where

αj = λω1

2ξ 2 − ωω1

(
ξ

ω1

)|j |
(14)

with

ω1 = (ω +
√

ω2 − 4ξ 2)/2. (15)

A straightforward calculation in Appendix B shows that this
unitary transformation can remove the linear terms of aj and
a
†
j in the Hamiltonian HC + HI of the photons, i.e., we have

U−1(HC + HI )U

= ω

+∞∑
j=−∞

a
†
j aj − ξ

+∞∑
j=−∞

(a†
j aj+1 + H.c.) − C, (16)

with C an unimportant c number. The operator P̂n is defined
as

P̂n =

⎧⎪⎨
⎪⎩

|0〉〈0| ⊗ |g〉〈g| if n = 0,∑
{ml}

∏
l |ml〉l〈ml| ⊗ |g〉〈g|δ∑

l ml ,n

+∑
{ml}

∏
l |ml〉l〈ml| ⊗ |e〉〈e|δ∑

l ml ,n−1 if n �= 0.

(17)

Therefore, in Eq. (12) the counter-rotating-wave transitions
between the eigenstates of the total excitation operator∑

j a
†
j aj + |e〉〈e| with different eigenvalues are removed by

the operation
∑∞

n=0[P̂n · P̂n] for the rotated Hamiltonian
U−1HU. In this sense the GRWA approach can also be
considered as “the rotating-wave approximation for the rotated
Hamiltonian U−1HU .”

Obviously, the GRWA Hamiltonian HG in Eq. (11) is
a direct generalization of the original GRWA Hamiltonian
HGR. Furthermore, a straightforward calculation shows that,

the GRWA Hamiltonian HG also converges to the normal
rotating-wave approximation under the near-resonance and
weak-coupling conditions. In addition, under the far-off-
resonance condition � � ω, as shown in Appendix C, the
GRWA becomes an improved adiabatic approximation. There-
fore, the GRWA approach smoothly connects the adiabatic
approximation and the rotating-wave approximation, and thus
can be used in a broad parameter region.

III. THE SINGLE-PHOTON SCATTERING AMPLITUDES

In the above section we applied the GRWA to a hybrid
system with a 1D resonator array coupled to a single TLS.
The single-photon scattering amplitudes in such a system
have been calculated analytically under the rotating-wave
approximation [2]. In this section we calculate the single-
photon scattering amplitudes with the GRWA approach, which
is applicable in a broader parameter region.

A. The single-photon scattering amplitudes

The single-photon scattering amplitudes can be extracted
from the asymptotic behavior of the eigenstate of the Hamilto-
nian H , which is approximated as HG in the GRWA approach.
To this end, we need to solve the eigenequation

HG|	(k)〉 = E(k)|	(k)〉 (18)

with boundary conditions

|	(k)〉 = (eik(−j ) + rke
−ik(−j ))|1〉−j |0〉j |
′(k)〉

+ tke
ikj |0〉−j |1〉j |
′(k)〉 + |0〉−j |0〉j |
(k)〉 (19)

in the limit of j → +∞. Here |0〉−j |0〉j is the vacuum
state of the resonator modes in the j th and −j th resonators,
and |1〉−j |0〉j and |0〉−j |1〉j are defined as a

†
−j |0〉−j |0〉j and

a
†
j |0〉−j |0〉j , respectively. |
(k)〉 and |
′(k)〉 are the quantum

states of the TLS and other resonators except the ±j th ones.
rk and tk are the single-photon reflection and transmission
amplitudes, or the single-photon scattering amplitudes.

The physical meaning of the boundary condition (19) can
be understood as follows. For the scattering state with respect
to a single photon input from the left of the 1D resonator
array, there are three possible relevant states for the −j th and
j th resonators with large |j |, i.e., |0〉−j |0〉j , |1〉−j |0〉j , and
|0〉−j |1〉j . Furthermore, the probability amplitude with respect
to |1〉−j |0〉j is eik(−j ) + rke

−ik(−j ), since the photon in the
−j th resonator can be either the input one or the reflected one.
Similarly, the probability amplitude with respect to |0〉−j |1〉j
is tke

ikj . It is easy to prove that the boundary condition used
in the calculation of the single-photon scattering state with
the rotating-wave approximation [Eq. (5) of Ref. [2]] can be
reexpressed as the one in Eq. (19).

Usually the expression of HG in Eq. (11) is complicated and
it is difficult to solve the eigenequation (18) directly. However,
due to Eq. (11), the Hamiltonian HG is related to H RWA

R through
a unitary transformation. Then the eigenequation (18) of HG

is equivalent to that of H RWA
R :

H RWA
R |	R(k)〉 = E(k)|	R(k)〉 (20)
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and the eigenstate |	R(k)〉 of H RWA
R is given by

|	R(k)〉 = U−1|	(k)〉. (21)

More importantly, with the aid of Eq. (13) and the fact that
lim|j |→∞ αj = 0, the boundary condition (19) for |	(k)〉 is
transformed to the one of |	R(k)〉, i.e., in the limit of j → ∞
we have

|	R(k)〉 = (eik(−j ) + rke
−ik(−j ))|1〉−j |0〉j |
′

R(k)〉
+ tke

ikj |0〉−j |1〉j |
′
R(k)〉+|0〉−j |0〉j |
R(k)〉, (22)

where |
R(k)〉 and |
′
R(k)〉 are defined as

|
R(k)〉 =
∏
i �=±j

exp[−αiσx(a†
i − ai)]|
(k)〉 (23)

and

|
′
R(k)〉 =

∏
i �=±j

exp[−αiσx(a†
i − ai)]|
′(k)〉, (24)

respectively. Therefore, the scattering amplitudes rk and tk can
be obtained from the solution of the eigenequation (20) of
H RWA

R with boundary conditions (22).

B. The perturbative approach for the single-photon
scattering amplitudes

In this section we solve the eigenequation (20) of H RWA
R

and calculate the single-photon scattering amplitudes. To this
end, we first use the explicit result about the unitary operator U

shown in Appendix B to calculate the Hamiltonian U−1HU .
The result is

U−1HU = ω

∞∑
j=−∞

a
†
j aj − ξ

∞∑
j=−∞

(a†
j aj+1 + H.c.)

+ �

2

[
cosh

(∑
i

2νi

)
σz − i sinh

(∑
i

2νi

)
σy

]

(25)

with νi = −αi(a
†
i − ai). In principle, we can derive the

explicit expression for H RWA
R with Eqs. (12) and (25).

Here, for simplicity, we expand H RWA
R as a power series of

the parameter ξ/ω and keep only the low-order terms under
the weak-hopping condition ξ � ω. Then we can analytically
solve Eq. (20) with the approximated H RWA

R and derive the
single-photon scattering amplitudes.

Now we calculate the single-photon scattering amplitudes
with a first-order approximation where only the zeroth- and
first-order terms of ξ/ω are kept in H RWA

R . As shown in the
following, in most cases, this approximation is enough to give
good results for the scattering amplitudes. A straightforward
calculation shows that, up to the first order of ξ/ω, H RWA

R is
approximated as

H RWA
R ≈ H

RWA(1)
R ≡ ω

∑
j

a
†
j aj − ξ

∑
j

(a†
j+1aj + H.c.)

+ω
(0)
0g (|0g〉〈0g| +

∑
j �=0

|1j g〉〈1j g|) + ω
(0)
0e |0e〉〈0e|

+ω
(0)
1g |10g〉〈10g| + J (0)(|0e〉〈10g| + H.c.)

+ω
(1)
1g (|11g〉〈10g| + |1−1g〉〈10g| + H.c.)

+ J (1)(|0e〉〈11g| + |0e〉〈1−1g| + H.c.) (26)

with the parameters

ω
(0)
0g = −ω

(0)
0e = −�

2
exp

(
−2

λ2

ω2

)
, (27a)

ω
(0)
1g = −�

2
exp

(
−2

λ2

ω2

)(
1 − 4

λ2

ω2

)
, (27b)

J (0) = �λ

ω
exp

(
−2

λ2

ω2

)
, (27c)

ω
(1)
1g = 2�λ2ξ

ω3
exp

(
−2

λ2

ω2

)
, (27d)

J (1) = �λξ

ω2
exp

(
− 2

λ2

ω2

)
. (27e)

In Eq. (26) the states |0e〉, |0g〉, |1j e〉, and |1j g〉 are defined
as |0〉|e〉, |0〉|g〉, |1j 〉|e〉, and |1j 〉|g〉, respectively, where |0〉 is
the vacuum state of all the resonators.

The physical meaning of Eq. (26) is very clear. In the
zeroth-order terms of ξ/ω, or the terms proportional to ω

(0)
0g ,

ω
(0)
0e , ω

(0)
1g , and J (0), the effective couplings occur between the

TLS and the photon in the zeroth resonator in which the TLS
is located. Nevertheless, in the first-order terms proportional
to J (1), effective couplings appear between the TLS and the
modes in the ±1st resonators. These terms imply that the
non-rotating-wave effects from the coupling between the TLS
and the zeroth resonator can indirectly influence the behavior
of the modes in the ±1st resonators. Furthermore, the hopping
intensities between the zeroth and ±1st resonators are also
tuned by the terms with ω

(1)
1g .

As shown above, the single-photon scattering amplitudes
are approximately derived from the eigenequation

H
RWA(1)
R |	R(k)〉 = E(k)|	R(k)〉 (28)

of H
RWA(1)
R with boundary condition (22). It is apparent that

the solution |	R(k)〉 of Eq. (28) takes the form

|	R(k)〉 =
+∞∑

j=−∞
u

(1)
k (j )|1j g〉 + u(1)

e |0e〉 (29)

with the coefficients u
(1)
k (j ) given by

u
(1)
k (j ) =

⎧⎨
⎩

eikj + r
(1)
k e−ikj if j � −1,

uk(0) if j = 0,

t
(1)
k eikj if j � 1.

(30)

Substituting Eqs. (29) and (30) into Eq. (28), we obtain
the linear equations for the reflection amplitude r

(1)
k and

transmission amplitude t
(1)
k . These equations can be solved

analytically. Then we obtain the scattering amplitudes r
(1)
k and
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t
(1)
k given by the first-order approximation of H RWA

R :

r
(1)
k =

eikλ2�{4λ2ξ�2 cos(k) + 2e4λ2/ω2
ω3[ω2 + 2ξω cos(k) − 4ξ 2 − 4ξ 2 cos(2k)]

+ e2λ2/ω2
�[8λ2ξ 2 + 2ω2ξ 2 − ω4 − 4ξω(2λ2 + ω2) cos(k) + 2ξ 2(4λ2 + ω2) cos(2k)]}

{−4e2ikλ4ξ�3 + e6λ2/ω2
(−1 + e2ik)ξω6[ω − 2ξ cos(k)]

+ e4λ2/ω2
ω3�[8e3ikλ2ξ 2 + 2eikλ2(4ξ 2 − ω2) + ξω(2λ2 + ω2) − e2ikξω(6λ2 + ω2)]

+ e2ik+λ2/ω2
λ2�2[4ξω(2λ2 + ω2) + (ω4 − 4ξ 2ω2 − 16λ2ξ 2) cos(k) − iω4 sin(k)]}

, (31)

t
(1)
k = r

(1)
k + 1. (32)

The above procedure can be straightforwardly general-
ized to cases with high-order approximations of H RWA

R .
For instance, in the second-order approximation, H RWA

R is
approximated as H

RWA(2)
R which includes the zeroth-, first-,

and second-order terms of ξ/ω. It can be found that in
H

RWA(2)
R the TLS is effectively coupled to the zeroth, ±1st,

and ±2nd resonators. We can also solve the eigenequation
of H

RWA(2)
R , and obtain the analytical expressions for the

relevant scattering amplitudes r
(2)
k and t

(2)
k . In general, for

any integer n, the scattering amplitudes r
(n)
k and t

(n)
k from

the nth-order approximation of H RWA
R can be obtained with

a similar approach. In the limit of n → ∞, the results r
(n)
k and

t
(n)
k would converge to fixed values rk and tk or the precise

values of the single-photon scattering amplitudes.

C. Results and discussion

In Figs. 2 and 3, we illustrate the single-photon scattering
amplitude rk given by the GRWA approach in the first-
and second-order approximations, i.e., r

(1)
k and r

(2)
k , the one

given by the rotating-wave approximation and the result from
the numerical diagonalization of the rotated Hamiltonian

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.2
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0.6
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k/(2π)

|r
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p
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FIG. 2. (Color online) The single-photon reflection rate |rk|2 given by the GRWA approach with the first- and second-order approximations
for (ξ/ω), i.e., |r (1)

k |2 (red solid line) and |r (2)
k |2 (black empty triangles), |rk|2 from the rotating-wave approximation (RWA) (green empty

circles), |rk|2 from the adiabatic approximation (green filled diamonds), and the numerical calculations with cutoff excitation number Cp = 2
(blue filled circles) and Cp = 3 (blue empty squares). Here we consider the cases of ξ = 0.04ω and � = ω, λ = 0.04ω (a), � = 0.4ω, λ = ω

(b), � = ω, λ = 1.6ω (c), and � = 0.4ω, λ = 2ω (d).
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FIG. 3. (Color online) The real (a)–(d) and imaginary (e)–(h) parts of the single-photon scattering amplitude rk given by the GRWA
approach with the first-order approximation for (ξ/ω), i.e., r

(1)
k in Eq. (31) (red solid line), the rotating-wave approximation (green empty

circles), and the numerical calculations with cutoff excitation number Cp = 2 (blue filled circles) and Cp = 3 (blue empty squares). Here we
consider the cases of ξ = 0.04ω and � = ω, λ = 0.04ω (a),(e), � = 0.4ω, λ = ω (b),(f), � = ω, λ = 1.6ω (c),(g), and � = 0.4ω, λ = 2ω

(d),(h).

U−1HU . In our numerical calculations the total excitation∑
j a

†
j aj + |e〉〈e| is cut off at a given number Cp for the

Hamiltonian U−1HU , and the results with Cp = 2,3 are
shown in our figures.

In Fig. 2 we calculate the reflection rate |rk|2. It is clearly
shown that the results |r (1)

k |2 and |r (2)
k |2 from the first- and

second-order approximations for (ξ/ω) are very consistent
with each other. Therefore, in most of the cases with |ξ | � ω,

the first order approximation is good enough for the GRWA
approach.

Furthermore, it is shown that in the case of Fig. 2(a) where
the weak-coupling and near-resonance conditions are satisfied,
both the results from the rotating-wave approximation and
the GRWA approach fit well with the numerical calculations.
Nevertheless, in the cases of Figs. 2(b)–2(d) where the rotating-
wave approximation is not applicable, the results from the
GRWA approach are also significantly well consistent with the
numerical calculations. This observation is further confirmed
by Fig. 3 where the real and imaginary parts of rk given by
different approaches are illustrated.

In Figs. 2(b) and 2(d) with � = 0.4ω, we also compare our
results with the ones given by the adiabatic approximation. It is
shown that, as we argued in Sec. II, the adiabatic approximation
may not be applicable even when � � ω, while the GRWA
approach can still provide reasonable results.

Therefore, the results in Figs. 2 and 3 show that the
GRWA approach with the first-order approximation for ξ/ω,
or our results r

(1)
k and t

(1)
k in Eqs. (31) and (32) can be

used as a good analytical approximation for the single-photon
scattering amplitudes in the parameter region with |ξ | � ω and
� � ω.

IV. THE SCATTERING AMPLITUDES IN THE
STRONG-COUPLING CASE

In the above section we derived the single-photon scattering
amplitudes with the GRWA approach. It is pointed out that our
results in Eqs. (27a)–(27e) are applicable for arbitrarily large
coupling between the TLS and the photon. Now we consider a
special case where the TLS is strongly coupled to the photon
in the resonator array, so that the condition

λ2

ω2
e−2λ2/ω2 � 1 (33)

is satisfied. We further assume that the frequency � of the
TLS is equal to or smaller than the photon frequency ω,
i.e., � � ω. In this strong-coupling case the expressions in
Eqs. (27a)–(27e) can be significantly simplified and then one
obtains simple pictures for both the quantitative calculation
and the qualitative estimation of the single-photon scattering
amplitudes.

Under the condition (33), we keep only the leading term
proportional to (λ2/ω2) exp(−2λ2/ω2) in ω

(0)
0g,e, ω

(0,1)
1g , and

J (0,1) defined in Eqs. (27a)–(27e). Then we have

ω
(0)
1g ≈ 2�λ2

ω2
exp

(
−2

λ2

ω2

)
, (34a)

ω
(1)
1g ≈ ξ

ω
ω

(0)
1g , (34b)

ω
(0)
0g,e,J

(0,1) ≈ 0. (34c)

Therefore, in Eq. (26) of the Hamiltonian H RWA
R , we need to

keep only the first two terms and the terms proportional to
ω

(0)
1g and ω

(1)
1g . This simplification implies that, in the strong-
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coupling regime, our system is equivalent to the simple 1D
resonator array with the frequency of the zeroth resonator
shifted from ω to ω + ω

(0)
1g , while the photon hopping intensity

between the zeroth and the ±1st resonators is shifted from ξ to
ξ + ω

(1)
1g . Since we have also assumed � � ω, it is apparent that

ω
(1)
1g � ξ in the strong-coupling regime. Then the shift ω

(1)
1g of

the photon hopping intensity is negligible. We need to consider
only the effect given by the frequency shift ω(0)

1g of the photon in
the zeroth resonator. Namely, our system is finally equivalent
to a 1D resonator array, in which the zeroth resonator has the
frequency ω + ω

(0)
1g , while all the other resonators have the

same frequency ω. In this case the Hamiltonian H
RWA(1)
R is

approximated as

H
RWA(1)
R ≈ ω

∑
j

a
†
j aj − ξ

∑
j

(a†
j+1aj + a

†
j aj+1) + ω

(0)
1g a

†
0a0,

(35)

which leads to the single-photon scattering amplitudes

rk ≈ − ω
(0)
1g

ω
(0)
1g − 2iξ sin(k)

, (36)

tk ≈ rk + 1. (37)

A straightforward result given by the above expressions for
the scattering amplitudes is that, when the effective frequency
shift ω

(0)
1g of the zeroth resonator is much larger than the

bandwidth 4ξ of the free Hamiltonian HC of the array of
resonators with the same frequency ω, the zeroth resonator will
be far detuned from a photon with any incident momentum k,
and thus every photon will be reflected. Namely, in such a limit
we have rk ≈ 1, tk ≈ 0. Likewise, if the effective frequency
shift ω

(0)
1g is much smaller than 4ξ , the frequency of the

zeroth resonator will be approximately the same as that of the
other resonators, and then every photon transmits through the
zeroth resonator. In this limit we have rk ≈ 0 and tk ≈ 1.

In Fig. 4 we plot the photon reflection rate |rk|2 in the
strong-coupling case and compare the results given by Eq. (36)
and from numerical diagonalization of the rotated Hamiltonian
U−1HU with cutoff excitation number Cp = 2,3, respec-
tively. It is clearly shown that our results in Eq. (36) fit well
with the numerical results. Furthermore, it is illustrated that in
the case of Fig. 4(a), where we have ω

(0)
1g /ξ = 15, the photon

reflection rate |rk|2 is almost unity for all incident momenta k.
In the case of Fig. 4(c) with ω

(0)
1g /ξ = 0.06, we have |rk|2 ≈ 0 in

the region with nonzero momentum k. All these observations
are consistent with our above qualitative analysis.

At the end of this section, we remark that, since all the
quantities defined in Eqs. (27a)–(27e) exponentially decay
to zero with (λ/ω), for any given values of �, ω, and ξ ,
when the TLS-photon coupling intensity λ is large enough,
we can always neglect all these parameters and approximate
the Hamiltonian H

RWA(1)
R as the free Hamiltonian HC for

an array of identical resonators. Therefore, when the TLS-
photon coupling is strong enough, the photon scattering effect
becomes negligible and we have rk = 0, tk = 1 for a photon
with any incident momentum k.
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FIG. 4. (Color online) The single-photon reflection rate |rk|2 in
the cases with strong TLS-photon coupling. Here we show the results
given by Eq. (36) (red solid line), rotating-wave approximation (green
empty circles), and the numerical calculations with cutoff excitation
number Cp = 2 (blue filled circles) and Cp = 3 (blue empty squares)
for the cases with � = ω, λ = 1.6ω, ξ = 0.002ω (a), � = 0.4ω, λ =
1.4ω, ξ = 0.03ω (b), and � = ω,λ = 2ω, ξ = 0.04ω (c). In the three
cases we have ω

(0)
1g /ξ = 15,1,0.06, respectively.

V. THE GRWA FOR A RESONATOR ARRAY
WITH MULTIPLE TLSs

In the above sections, we generalized the GRWA to a
system with a 1D resonator array coupled to a single TLS,
and calculated the single-photon scattering amplitudes with
the GRWA approach. In this section, we extend the GRWA to
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more general cases with m two-level systems coupled to the
resonator array. For simplicity, here we assume that each TLS
is individually located in a resonator. Then the Hamiltonian of
the total system is written as

HM = HC + HAM + HIM (38)

with the Hamiltonian HC of the resonator defined in Eq. (2),
the Hamiltonian HAM of all the TLSs given by

HAM = �

2

m∑
β=1

σ (β)
z , (39)

and the interaction Hamiltonian HIM defined as

HIM = λ

m∑
β=1

σ (β)
x (a†

c(β) + ac(β)). (40)

Without loss of generality, here we assume that the βth TLS
is located in the c(β)th resonator.

In such a general system, we straightforwardly develop the
GRWA approach with the unitary transformation procedure in
Secs. II and III. To this end, we first write the Hamiltonian HM

as

HM = HM1 + HM2

with HM1 and HM2 defined as

HM1 = HC + HIM, (41)

HM2 = HAM. (42)

Then we find a unitary operator UM which can eliminate the
linear terms of (aj ,a

†
j ) in HM1 and satisfies

U−1
M HM1UM

= ω

∞∑
j=−∞

a
†
j aj − ξ

∞∑
j=−∞

(a†
j aj+1 + H.c.) − CM (43)

with CM a constant c number. The analytical calculation of UM

is obtained in Appendix E.
With the operator UM , we apply the unitary transformation

to the total Hamiltonian H , and make the rotating-wave
approximation to the transformed Hamiltonian U−1

M HMUM .
Finally we perform an inverse unitary transformation. Then
the GRWA Hamiltonian for the resonator array with multiple
TLSs is

HM ≈ HMG ≡ UM

{ ∞∑
n=0

[
P̂Mn

(
U−1

M HMUM

)
P̂Mn

]}
U−1

M ,

(44)

which is a direct generalization of the result in Eq. (11). Here
P̂Mn is the projection operator to the eigenspace of the total
excitation operator

m∑
β=1

|e〉(β)〈e| +
+∞∑

j=−∞
a
†
j aj (45)

with respect to the eigenvalue n. With a similar analysis as
in Appendix C, one finds that in the case of � � ω, such
an approach also includes the intraband transitions which are
missed in the adiabatic approximation. On the other hand,

under the weak-coupling and near-resonance conditions, this
approach converges to the rotating-wave approximation.

VI. CONCLUSIONS

In summary, we apply the GRWA to a hybrid system of
a 1D single-mode resonator array coupled to a single TLS,
and obtain analytical results for the single-photon scattering
amplitudes under the conditions |ξ | � ω and � � ω. It is
shown that in comparison with the rotating-wave approx-
imation, the GRWA approach can give better results in a
much broader parameter region. In particular, in the far-off-
resonance case with � � ω, the adiabatic approximation is
no longer applicable for our current system, while the GRWA
approach still works well. We also discuss how to apply the
GRWA approach to a 1D resonator array coupled to multiple
TLSs.

In this paper, we assume the resonators in the 1D array are
single mode. However, the resonators used in the experiments
usually have more than one photon mode. Especially in the
cases with strong TLS-photon coupling the multimode effect
may be important. Likewise, it may also be necessary to go
beyond the two-level approximation and include the higher
excited states of the artificial atoms in the strong-coupling
cases. These effects will be discussed in a future presentation
for the calculation of the photon scattering in a multimode-
resonator array or a multimode waveguide beyond the rotating-
wave approximation.
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APPENDIX A: GRWA FOR A TLS-COUPLED
SINGLE-MODE BOSONIC FIELD

In this appendix, we reformulate the GRWA approach
proposed by Irish in Ref. [73] from the viewpoint of the
adiabatic approximation. To this end, we begin with the simple
Rabi Hamiltonian for the TLS-coupled single-mode bosonic
field:

HRabi = ωa†a + �

2
σz + λσx(a† + a). (A1)

Here a and a† are the annihilation and creation operators,
respectively, of the single-mode bosonic field with frequency
ω. � is the energy level spacing between the excited state |e〉
and the ground state |g〉 of the TLS, and λ is the coupling
intensity between the TLS and the bosonic field. The Pauli
operators σz and σx are defined in Sec. II.

Since the Hamiltonian HRabi does not have simple invariable
subspaces, the exact diagonalization of HRabi is rather compli-
cated [74]. However, Jaynes and Cumming showed that [75],
under the near-resonance condition

|ω − �| � |ω + �| (A2)
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and the weak-coupling condition

|λ| � ω,�, (A3)

the term |e〉 〈g| a† + H.c can be safely neglected. Then the
Hamiltonian HRabi is approximated as HJC, which is defined
as

HJC = ωa†a + λ(|e〉〈g|a + H.c.). (A4)

That is the so called rotating-wave approximation. After this
approximation, the Hamiltonian HRabi becomes invariant in
the two-dimensional subspaces spanned by the states |g,n〉 and
|e,n − 1〉 for n = 1,2, . . . , as well as in the one-dimensional
subspace spanned by |g,0〉, and thus can be diagonalized
easily.

For the convenience of our discussions on the GRWA, here
we introduce the projection operators P̂

(n)
Rabi defined as

P̂
(n)
Rabi =

{ |0g〉 〈0g| if n = 0,

|n,g〉 〈n,g| + |n − 1,e〉 〈n − 1,e| if n � 1.

(A5)

Then the Jaynes-Cumming Hamiltonian HJC in Eq. (A4) is
rewritten as

HJC =
∞∑

n=0

P̂
(n)
RabiHRabiP̂

(n)
Rabi. (A6)

Now we introduce the GRWA approach, which is developed
as an analytical approximate method to diagonalize the
Hamiltonian H in Eq. (A1) in a broad parameter region beyond
the rotating-wave approximation. The GRWA is closely related
to both the rotating-wave approximation and the adiabatic
approximation [76–78] for the TLS-coupled single-mode
bosonic field [72,73,79] which is used in the far-off-resonance
case:

� � ω. (A7)

Therefore, before introducing the GRWA, we first introduce
the adiabatic approximation in the system of a TLS and a
single-mode bosonic field [72,73]. In such an approximation,
the bosonic field is considered to be the fast-varying part and
the TLS is considered as the slowly varying part. Then the
Hamiltonian HRabi is rewritten as

HRabi = HRabi1 + HRabi2, (A8)

where

HRabi1 = ωa†a + λσx(a† + a) (A9)

is the self-Hamiltonian of the fast-varying part together with
the interaction between the fast-varying and the slowly varying
parts, and

HRabi2 = �

2
σz (A10)

is the free Hamiltonian of the slowly varying part.
The Hamiltonian HRabi1 is easily diagonalized with the

eigenstates

|±,n〉 = |±〉 ⊗ |n±〉 (A11)

and the relevant eigenenergies

En± = ω(n − λ2/ω2). (A12)

Here |±〉 are the eigenstates of σx with eigenvalues ±1 and
|n±〉 are defined as

|n±〉 = exp[∓λ/ω(a† − a)] |n〉 . (A13)

In the Rabi Hamiltonian the states |α,n〉 and
∣∣α′,n′〉 are coupled

by the term HRabi2.
The spirit of the adiabatic approximation is described

as follows [76–78]. Under the far-off-resonance condition
� � ω, the motion of the fast-varying part or the bosonic
field adiabatically follows the slowly varying part or the TLS,
and can be frozen in the adiabatic branches with fixed quantum
number n, or the two-dimensional subspaces spanned by |+,n〉
and |−,n〉 for n = 1,2, . . .. We neglect the HRabi2-induced
transitions between the states |α,n〉 and |α′,n′〉 with n �= n′.
Then the eigenstates and eigenenergies of H are approximated
as

|	±,n〉 = 1√
2

(|+,n〉 ± |−,n〉) (A14)

and

E±,n = ±�

2
〈n−|n+〉 + ω(n − λ2/ω2), (A15)

respectively.
Now we introduce the GRWA. In the “adiabatic basis”

{|	±,n〉}, the Hamiltonian H is rewritten as

HRabi =
∑
n,n′

∑
α,α′=±

(HRabi)
α′,n′
α,n |	α,n〉〈	α′,n′ | (A16)

with the matrix elements

(HRabi)
α′,n′
α,n = 〈	α,n|HRabi|	α′,n′ 〉.

In the GRWA, the Rabi Hamiltonian HRabi is approximated as
HGR which is defined as

HGR =
+∞∑
n=0

∑
α=±

(HRabi)
α,n
α,n |	α,n〉〈	α,n|

+
∞∑

n=1

(HRabi)
+,n−1
−,n |	−,n〉〈	+,n−1| + H.c. (A17)

Namely, only the matrix elements (HRabi)α
′,n′

α,n inside each
two-dimensional subspace spanned by the states |	−,n〉 and
|	+,n−1〉 as well as the one in the one-dimensional subspace
spanned by the state |	−,0〉 are kept in the GRWA. In other
words, in the GRWA one takes into account only the quantum
transitions between the states |	α,n〉 and |	β,n′ 〉 with

n + Nα = n′ + Nβ, (A18)

where Nα = 1 for α = + and Nα = 0 for α = −. Then, as in
the rotating-wave approximation, the Hamiltonian is reduced
to a 2 × 2 block-diagonal matrix in the GRWA.

It can be shown that, under the weak-coupling and near-
resonance conditions, the GRWA returns to the rotating-
wave approximation. In addition, under the far-off-resonance
condition, the results given by the GRWA converge to those
from the adiabatic approximation. Therefore, the GRWA
smoothly connects the ordinary rotating-wave approximation
and the adiabatic approximation, and thus works well in a
broader parameter regime, especially the region with strong
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TLS-photon coupling and far-off-resonant � � ω (see, e.g.,
Ref. [73] and Fig. 8 of Ref. [80]).

It can be proved with a straightforward calculation that the
Hamiltonian HGR defined in Eq. (A17) could also be rewritten
as [73]

HGR = UR

{ ∞∑
n=0

[
P̂

(n)
Rabi

(
U−1

R HRabiUR

)
P̂

(n)
Rabi

]}
U−1

R (A19)

with the unitary transformation UR defined as

UR = exp

[
− λ

ω
σx(a† − a)

]
. (A20)

Comparing Eq. (A19) with Eq. (A6), one can see that the
GRWA is nothing but the rotating-wave approximation for the
rotated Hamiltonian U−1

R HRabiUR .

APPENDIX B: THE UNITARY TRANSFORMATION U

In this Appendix, we calculate the unitary transformation U

determined by Eq. (16). It is obvious that U can be expressed
as the product of the displacement operators for each resonator
mode, i.e., we have

U =
+∞∏

j=−∞
exp[αjσx(a†

j − aj )]. (B1)

Then the Hamiltonian HC + HI is transformed into

U−1(HC + HI )U

= HC +
∑
j �=0

[ωαj − ξ (αj+1 + αj−1)]σx(a†
j + aj )

+ [ωα0 − ξ (α1 + α−1) + λ]σx(a†
0 + a0) − C. (B2)

The exact expression of C is not required here. Comparing the
result Eq. (B2) with Eq. (16), we get the equations for the
parameters {αj }:

ωαj − ξ (αj+1 + αj−1) = 0, j = ±1, ± 2, . . . (B3)

ωα0 − ξ (α1 + α−1) + λ = 0, j = 0. (B4)

Now we solve Eqs. (B3) and (B4) in two steps. First, we
introduce a cutoff for the equations at j = ±N , and solve the
equations

ωα
(N)
j − ξ

(
α

(N)
j+1 + α

(N)
j−1

) = 0, j = ±1, . . . , ± (N − 1),

(B5)

ωα
(N)
0 − ξ

(
α

(N)
1 + α

(N)
−1

) + λ = 0, j = 0, (B6)

α
(N)
N = α

(N)
−N = 0. (B7)

A straightforward calculation shows that

α
(N)
j =

[(
ω

2ξ
− ξ

ω1

)
α

(N)
0 + λ

2ξ

] (
ξ

ω1

)|j |−1 − (
ω1
ξ

)|j |+1

1 − (
ω1
ξ

)2

+
(

ξ

ω1

)|j |
α

(N)
0 (B8)

with ω1 given by

ω1 = 1
2 (ω +

√
ω2 − 4ξ 2). (B9)

Therefore, under the weak-hopping assumption |ξ | � ω, we
have ξ/ω1 < 1. Substituting Eq. (B7) into Eq. (B8), we obtain

α
(N)
0 =

−λω1
[(

ω1
ξ

)2|N | − 1
]

−ωω1 + 2ω2
1 − 2ξ 2

(
ω1
ξ

)2|N | + ωω1
(

ω1
ξ

)2|N |

(B10)

and then we obtain all α
(N)
j from Eq. (B8).

Second, we consider the solutions of Eqs. (B5)–(B7) in the
limit of N → ∞ as a trial solution of Eqs. (B3) and (B4):

αj = lim
N→∞

α
(N)
j = λω1

2ξ 2 − ωω1

(
ξ

ω1

)|j |
. (B11)

Substituting Eq. (B11) into Eqs. (B3) and (B4), we find that
the latter are exactly satisfied. Therefore, {αj } from Eq. (B11)
are realistic solutions of Eqs. (B3) and ((B4). Then the unitary
transformation U defined in Eq. (16) takes the form Eq. (13)
with αj given by Eq. (14).

We emphasize that, as shown in Eq. (B1), U is the product of
the displacement operators for each resonator; the magnitude
of the displacement for the mode in the j th resonator is
described by |αj |. Furthermore, since ξ/ω1 < 1, Eq. (B11)
implies that |αj | exponentially decays with |j |. Then we have

lim
|j |→∞

exp[αjσx(a†
j − aj )] = 1. (B12)

Therefore, for the resonators far away from the TLS, the
relevant displacements in U would be negligible, which is
consistent with our considerations above.

APPENDIX C: THE RELATIONSHIP BETWEEN THE
GRWA APPROACH AND THE IMPROVED ADIABATIC

APPROXIMATION

In this Appendix, we show that under the far-off-resonance
condition � � ω, the GRWA approach developed in Sec. II
becomes an improved adiabatic approximation for our TLS–
coupled-resonator-array system. To this end, we first develop
the improved adiabatic approximation for our system. Under
the far-off-resonance condition � � ω, the TLS is considered
to be the slowly varying part of the system, while the 1D
resonator array is the fast-varying part. Then we decompose
the total Hamiltonian as H = H1 + H2, where H1 = HC + HI

is the Hamiltonian of the fast-varying part together with the
interaction and H2 = HA is the Hamiltonian of the slowly
varying TLS.

A straightforward calculation shows that H1 has the
eigenstates

|±,�n〉 = U
∏
k

1√
n(k)!

A(k)†n(k)|0〉 ⊗ |±〉. (C1)

Here the TLS states |±〉 are the eigenstates of the operator
σx with eigenvalues ±1, and |0〉 is the vacuum state of the
resonator array. The photon momentum k can take any value
in the region (−π,π ], the creation operator A(k)† for a photon
with momentum k is given by

A(k)† = 1√
2π

+∞∑
l=−∞

eikla
†
l , (C2)

023824-10



SINGLE-PHOTON SCATTERING ON A STRONGLY . . . PHYSICAL REVIEW A 86, 023824 (2012)

(b)

8ξ 8ξ

(a)

E(2,+) E(2,-)

ω
E(n,+); N(n)=2 E(n,-); N(n)=2

ξ ξ

ω

E(1,+) E(1,-)

ω

E(n,+); N(n)=1 E(n,-); N(n)=1

4ξ 4ξ

ω ω

E(0,+) E(0,-)

ω

E(n,+); N(n)=0 E(n,-); N(n)=0

FIG. 5. (Color online) (a) The energy spectrum of the Hamilto-
nian H1 of the 1D resonator array and the interaction between the
resonator array and the TLS. The low-excitation spectrum has clear
band structure. The intraband transitions are missed unreasonably
in the adiabatic approximation. (b) The energy spectrum of the
Hamiltonian H1 of a single-mode bosonic field and the interaction
between the single-mode bosonic field and a TLS. In such a simple
system there is no band structure in the spectrum of H1, and then the
adiabatic approximation is applicable when � � ω.

and �n =(n(k1),n(k2), . . . ) is the set of all the numbers n(k).
The operator U in Eq. (C1) is defined in Eq. (13).

Obviously, the eigenenergy of H1 with respect to the
eigenstate |±,�n〉 is

E(±,�n) = N (�n)ω + 2ξ
∑

k

n(k) cos k + C (C3)

with

N (�n) =
∑

k

n(k). (C4)

As shown in Fig. 5(a), in the weak-tunneling case with ξ � ω

the low-excitation spectrum E(±,�n) of the eigenenergies of
H1 has a clear band structure. Each energy band includes all
the energy levels with the same total photon number N (�n) and
different photon-momentum distribution �n. The N th energy
band is centered at Nω with bandwidth 4Nξ . Therefore, in the
low-excitation cases the interband energy gap has the same
order as ω.

The spirit of the adiabatic approximation [76–78] is that,
during the quantum evolution, the motion of the slowly
varying part of the system follows the motion of the fast-
varying part. Then the quantum state of the fast-varying 1D
resonator array is frozen in each adiabatic branch with fixed
quantum number �n. Mathematically speaking, in the adiabatic
approximation for our system, all the H2-induced quantum
transitions between the states |±,�n〉 and |±,�n′〉 with �n �= �n′ are
neglected. This treatment leads to the approximate eigenstates
of the Hamiltonian H as

|	±,�n〉 = 1√
2

(|+,�n〉±|−,�n〉). (C5)

However, this standard adiabatic approximation is not a
reasonable approximation for our present system, and should
be improved even in the case of � � ω. That is because,

as shown in Fig. 5(b), the energy spectrum of H1 has a
band structure, and each band includes all the states |±,�n〉
with the same total photon number N (�n). In addition, in
the adiabatic approximation all the H2-induced transitions
between the eigenstates of H1 with different quantum number
�n are neglected. It means that all the interband and intraband
transitions between the states |+,�n〉 and |−,�n′〉 with �n �= �n′
are omitted. In the case of � � ω, the omission of interband
transitions is reasonable because the energy gap between
different bands is of the order of ω, which is much larger than
the intensity � of H2. However, the neglect of the intraband
transitions is unreasonable because the energy gaps between
the levels in the same band can be arbitrarily small.

Furthermore, as proved in Appendix D, we have

〈	−,�n|H |	+,�n′ 〉 = 0 for N (�n) = N (�n′). (C6)

Then the intraband transition occurs only between the states
|	α,�n〉 and |	α,�n′ 〉 with N (�n) = N (�n′). After taking into ac-
count these intraband transitions, we can improve the adiabatic
approximation and approximate the total Hamiltonian H as

HIA =
∑
�n,�n′

∑
α=+,−

H
�n,α

�n′,α|	α,�n〉〈	α,�n|δN(�n),N(�n′). (C7)

Here the matrix elements H
�n,α

�n′,β are defined as

H
�n,α

�n′,β = 〈	α,�n|H |	β,�n′ 〉, (C8)

while the symbol δa,b is defined as δa,b = 1 for a = b and
δa,b = 0 for a �= b.

On the other hand, a straightforward calculation shows that
our GRWA Hamiltonian HG in Eq. (11) can be rewritten as

HG =
∑
�n,�n′

∑
α=+,−

H
�n,α

�n′,α|	α,�n〉〈	α,�n|δN(�n),N(�n′)

+
∑
�n,�n′

H
�n,+
�n′,−|	+,�n〉〈	−,�n′ |δN(�n),N(�n′)−1 + H.c. (C9)

Therefore, it is easy to prove that, under the far-off-resonance
condition � � ω, we have HG ≈ HIA and then the GRWA
approach converges to the improved adiabatic approximation
developed in this Appendix.

APPENDIX D: THE PROOF OF EQ. (C6)

In this Appendix, we prove Eq. (C6) in Appendix C. To this
end, we first define the operator Uk[βk] and the state |n(k)〉 for
the 1D resonator array as a function of the number βk:

Uk[βk] = exp{−2βk[A(k)† − A(k)]} (D1)

and

|n(k)〉 = 1√
n(k)

A(k)†n(k)|0〉, (D2)

respectively. Here |0〉 is the vacuum state of the resonator array,
and A(k)† is defined in Eq. (C2). We further define the function
f ( �β) as

f ( �β) =
∏
k

〈n(k)|Uk[βk]|n′(k)〉 (D3)

with

�β = (βk1 ,βk2 , . . .). (D4)
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A straightforward calculation shows that

f ( �β) =
∏
k

〈n(k)|Uk[βk]|n′(k)〉 =
∏
k

e−|2βk |2/2〈n(k)|e−2βkA(k)†e2βkA(k)|n′(k)〉

=
∏
k

⎛
⎝e−|2βk |2/2

n′(k)∑
m=max[0,n′(k)−n(k)]

[2β(k)]m[−2βk]n(k)−n′(k)+m

m![n(k) − n′(k) + m]!
〈n(k)|A(k)†mA(k)m|n′(k)〉

⎞
⎠ , (D5)

which gives

f (− �β) = (−1)N(�n)−N(�n′)f ( �β) (D6)

or

f (− �β) = f ( �β) for N (�n) = N (�n′). (D7)

On the other hand, with the above definitions and straight-
forward calculations, we have

〈+,�n|−,�n′〉 = f ( �β0), (D8)

〈−,�n|+,�n′〉 = f (− �β0), (D9)

where |±,�n〉 are the eigenstates of the Hamiltonian H1 defined
in Sec. II B and �β0 = (β0k1 ,β0k2 , . . .). Here we have

β0k = 1√
2π

+∞∑
l=−∞

αle
ikl (D10)

with αl defined in Eq. (14). Then using Eqs. (C5) and (C8),
we rewrite the matrix element H

�n,+
�n′,− as

H
�n,+
�n′,− = 〈	+,�n|H |	+,�n〉 = 〈	+,�n|H2|	−,�n′ 〉

= �

4
(〈+,�n|−,�n′〉 − 〈−,�n| + ,�n′〉)

= �

4
[f ( �β0) − f (− �β0)]. (D11)

Therefore, our result above in Eq. (D7) directly leads to
Eq. (C6).

APPENDIX E: THE UNITARY OPERATOR UM

In this appendix, we calculate the unitary operator UM

defined in Eq. (43). As in Appendix B, it is easy to prove
that UT M is the product of the displacement operators of each
resonator mode:

UM =
+∞∏

j=−∞
exp

[
αM

j σx(a†
j − aj )

]
. (E1)

To derive the expression of αM
j , we define the column vector

�α = (
. . . ,αM

−1,α
M
0 ,αM

1 , . . .
)T

. (E2)

Then a straightforward calculation shows that the condi-
tion (43) is equivalent to the equation

ω�α − ξK �α = ��. (E3)

Here K is a square matrix with the element Kij in the ith row
and j th column given by

Kij = δi,j+1 + δi,j−1. (E4)

In Eq. (E3), �� is a constant column vector with the j th
component �j defined as

�j = λ

m∑
β=1

δj,c(β). (E5)

Therefore, we formally have the expression for �α:

�α = 1

ω − ξK
��. (E6)

Furthermore, we notice that the matrix ω − ξK is diago-
nalized as

ω − ξK =
∫

dk(ω − 2ξ cos k)�v(k)�v(k)† (E7)

with the j th component of the column vector �v(k) satisfying

vj (k) = 1√
2π

eikj . (E8)

Then we have

1

ω − ξK
=

∫
dk

�v(k)�v(k)†

ω − 2ξ cos k
. (E9)

Substituting (E9) into (E6), we get the expression for αM
j :

αM
j = λ

2π

m∑
β=1

∫
dk

exp{ik[j − c(β)]}
ω − 2ξ cos k

. (E10)

In the case of a single TLS located at the zeroth resonator, we
have m = 1 and c(1) = 0. Then αM

j is expressed as

αM
j = λ

2π

∫
dk

exp[ikj ]

ω − 2ξ cos k
. (E11)

On the other hand, in such a single-TLS case, the value of αM
j

is also given by (B11). Therefore, we have

λ

2π

∫
dk

exp[ikj ]

ω − 2ξ cos k
= λω1

2ξ 2 − ωω1

(
ξ

ω1

)|j |
(E12)

with ω1 defined in Sec. II B. Substituting (E12) into (E10), we
finally obtain

αM
j =

m∑
β=1

λω1

2ξ 2 − ωω1

(
ξ

ω1

)|j−c(β)|
. (E13)

Therefore, we get the analytical expression of the unitary
operator UM defined in Eqs. (43) and (E1).
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