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Exact solvability of the quantum Rabi model using Bogoliubov operators
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Within extended coherent states, a recent exact solution to the quantum Rabi model (QRM) [D. Braak, Phys.
Rev. Lett. 107, 100401 (2011)] can be recovered in an alternative simpler and more physical way, without use of
any extra conditions. In the same framework, the two-photon QRM is solved exactly by treating extended squeezed
states on an equal footing. Concise transcendental functions responsible for the exact solutions are derived. The
isolated Juddian solutions are also analytically obtained in terms of degeneracy. Both the extended coherent states
and squeezed states employed here are essentially Fock states in the space of the corresponding Bogoliubov
operators, which result in free-particle number operators. The present approach can be summarized concisely in
a unified way and easily extended to various spin-boson systems with multiple levels, even multiple modes.

DOI: 10.1103/PhysRevA.86.023822 PACS number(s): 42.50.Pq, 03.65.Ge, 42.50.Lc

I. INTRODUCTION

Matter-light interaction is fundamental and ubiquitous in
areas of modern physics ranging from quantum optics and
quantum information science to condensed-matter physics.
The simplest paradigm is a two-level atom (qubit) coupled
to the electromagnetic mode of a cavity (oscillator), which is
called the Rabi model [1]. If the coupling strength g/ω (ω is
the cavity frequency) between the atom and the cavity mode
exceeds the loss rate, the atom and the cavity can repeatedly
exchange excitations before coherence is lost. Rabi oscilla-
tions can be observed in this atom-cavity system, which is
usually known as cavity quantum electrodynamics (QED) [2].
Typically, the coupling strength in cavity QED reaches g/ω ∼
10−6. It can be described by the Jaynes-Cummings (JC) model
[3] where the rotating-wave approximation (RWA) is made and
analytically closed-form exact solutions are available.

Recently, for superconducting qubits, a one-dimensional
(1D) transmission line resonator [4] or an LC circuit [5–8]
has been shown to be able to play the role of the cavity;
this is known today as circuit QED. More recently, an LC
resonator inductively coupled to a superconducting qubit
[9–11] has been realized experimentally, where the qubit-
resonator coupling can be strengthened by 10%. In this
ultrastrong-coupling regime of circuit QED, evidence for the
breakdown of the RWA has been provided by the transmission
spectra [9]. The remarkable Bloch-Siegert shift associated with
the counter-rotating terms also demonstrates the failure of
the RWA [10]. So the quantum Rabi model (QRM) has been
reconsidered by many authors recently.

On the other hand, the two-photon QRM has also attracted
a lot of attention. It is a phenomenological model describing
a three-level system interacting with two photons. When
the intermediate transition frequencies are strongly detuned
from the cavity frequency, after adiabatically eliminating the
intermediate levels, one arrives at the effective Hamiltonian. It
can describe the two-photon processes occurring in rubidium
atoms [12] and quantum dots [13]. The two-photon QRM has
also been studied for a long time both with the RWA [14] and
beyond the RWA [15–17].

More recently, Braak presented an exact solution [18] to
the one-photon QRM, in a representation of bosonic creation
and annihilation operators in the Bargmann space [19] of
analytical functions in a complex variable. A transcendental
function, whose zeros could give exact eigenvalues, was
derived. By a proposed criterion for quantum integrability,
Braak further shows that the QRM is integrable due to the
parity symmetry. However, the derivations are outlined in
a mathematical way. It was suggested [20] that an intense
dialogue between mathematics and physics is needed. In other
words, it is useful to shed some physical insights on Braak’s
mainly mathematical solutions.

In this paper, without the use of extra conditions, like ana-
lyticity of the eigenfunction in the Bargmann representation,
we alternatively rederive the same transcendental functions as
in Ref. [18] quantum-mechanically within extended coherent
states [21,22]. Both zero-bias and biased QRM can be treated
simultaneously. Our method is more intuitional and more
easily understandable. Similarly, we also study the two-photon
QRM [16,17] within extended squeezed states. Compact
transcendental functions which are responsible for the exact
solution are derived. The Juddian solutions [23] are then easily
discussed.

The paper is organized as follows. In Sec. II, we describe the
present approach in detail for the one-photon QRM. Braak’s
exact solution is recovered straightforwardly. Discussions and
comparisons and a brief tutorial for the approach are also
given. In Sec. III, the two-photon QRM is solved exactly on
an equal footing, concise transcendental functions are derived,
and Juddian solutions are discussed. A brief summary is given
finally.

II. THE QRM WITHIN BOGOLIUBOV OPERATORS

A. Rederivation of Braak’s solution

The Hamiltonian of a generalized QRM can be describe as
follows:

H = − 1
2 (εσz + �σx) + a†a + g(a† + a)σz, (1)
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where ε and � are the qubit static bias and tunneling matrix
element, a† and a are the photon creation and annihilation
operators of the single-mode cavity with frequency ω, g is
the qubit-cavity coupling constant, and σk (k = x,y,z) are the
Pauli matrices. To facilitate the study, we write the Hamiltonian
in the matrix form in units of h̄ = ω = 1,

H =
(

a†a + g(a† + a) − ε
2 −�

2

−�
2 a†a − g(a† + a) + ε

2

)
.

(2)

To remove the linear terms in the a† (a) operators, we perform
the following two Bogoliubov transformations:

A = a + g, B = a − g. (3)

In Bogoliubov operators A (B), the matrix element H11 (H22)
can be reduced to the free-particle number operators A†A
(B†B) plus a constant, which is very helpful for further study.

Unlike the previous ansatz, where the Hamiltonian is
expressed in the two operators A and B at the same time [21],
we here use the single operators one after the other. First, in
terms of operator A, the Hamiltonian can be written as

H =
(

A†A − α −�
2

−�
2 A†A − 2g(A† + A) + β

)
, (4)

where

α = g2 + ε

2
, β = 3g2 + ε

2
.

The wave function is then proposed as

| 〉 =
(∑∞

n=0

√
n!en|n〉A∑∞

n=0

√
n!fn|n〉A

)
, (5)

where en and fn are the expansion coefficients. |n〉A is called
an extended coherent state with the following properties:

|n〉A = (A†)n√
n!

|0〉A = (a† + g)n√
n!

|0〉A, (6)

|0〉A = e−(1/2)g2−ga† |0〉a, (7)

where the vacuum state |0〉A in Bogoliubov operators A is
well defined as the eigenstate of the one-photon annihilation
operator a, and is known as a pure coherent state [24].

The Schrödinger equation gives

∞∑
n=0

(n − α)
√

n!en|n〉A − �

2

∞∑
n=0

√
n!fn|n〉A

= E

∞∑
n=0

√
n!en|n〉A

−�

2

∞∑
n=0

√
n!en|n〉A +

∞∑
n=0

(n + β)
√

n!fn|n〉A

−2g

∞∑
n=0

(
√

nfn

√
n!|n − 1〉A + √

n + 1
√

n!fn|n + 1〉A)

= E

∞∑
n=0

√
n!fn |n〉A .

Left-multiplying by A〈m| gives

(m − α − E)em = �

2
fm, (8)

(m + β − E)fm − 2g(m + 1)fm+1 − 2gfm−1 = �

2
em. (9)

So the two coefficients em and fm with the same index m are
related by

em = �

2 (m − α − E)
fm, (10)

and the coefficient fm can be defined recursively,

mfm = �(m − 1)fm−1 − fm−2, (11)

�(m) = 1

2g

(
(m + β − E) − �2

4 (m − α − E)

)
, (12)

with f0 = 1 and f1 = �(0)
Similarly, using the second operator B, we can obtain the

Hamiltonian as

H =
(

B†B + 2g(B† + B) + β ′ −�
2

−�
2 B†B − α′

)
, (13)

where

α′ = g2 − ε

2
, β ′ = 3g2 − ε

2
.

The wave function can also be written in terms of B as

| 〉 =
( ∑∞

n=0 (−1)n
√

n!f ′
n|n〉B∑∞

n=0 (−1)n
√

n!e′
n |n〉B

)
. (14)

Proceeding as before, the two coefficients f ′
n and e′

n satisfy

e′
m =

�
2

m − α′ − E
f ′

m, (15)

and the recursive relation is given by

mf ′
m = �′(m − 1)f ′

m−1 − f ′
m−2, (16)

�′(m) = 1

2g

[
(m + β ′ − E) − �2

4(m − α′ − E)

]
, (17)

with f ′
0 = 1 and f ′

1 = �′(0).
If both wave functions (5) and (14) are true eigenfunctions

for a nondegenerate eigenstate with eigenvalue E, they should
be in principle only different by a complex constant r ,

∞∑
n=0

√
n!en |n〉A = r

∞∑
n=0

(−1)n
√

n!f ′
n |n〉B , (18)

∞∑
n=0

√
n!fn |n〉A = r

∞∑
n=0

(−1)n
√

n!e′
n |n〉B . (19)

Left-multiplying the original vacuum state 〈0| by both side of
the above equations yields

∞∑
n=0

√
n!en〈0||n〉A = r

∞∑
n=0

(−1)n
√

n!f ′
n〈0||n〉B, (20)

∞∑
n=0

√
n!fn〈0||n〉A = r

∞∑
n=0

(−1)n
√

n!e′
n〈0||n〉B, (21)

023822-2



EXACT SOLVABILITY OF THE QUANTUM RABI MODEL . . . PHYSICAL REVIEW A 86, 023822 (2012)

where √
n!〈0|n〉A = (−1)n

√
n!〈0|n〉B = e−g2/2gn. (22)

Eliminating the ratio constant r gives
∞∑

n=0

eng
n

∞∑
n=0

e′
ng

n =
∞∑

n=0

fng
n

∞∑
n=0

f ′
ng

n.

With the help of Eqs. (10) and (15), we arrive at
∞∑

n=0

�/2

n − α − E
fng

n

∞∑
n=0

�/2

n − α′ − E
f ′

ng
n

=
∞∑

n=0

fng
n

∞∑
n=0

f ′
ng

n. (23)

If we set fn=K−
n , f

′
n=K+

n , and E = x − g2, we can recover
Braak’s exact solution [18]

Gε(x) =
(

�

2

)2

R
+

(x)R
−

(x) − R+(x)R−(x) = 0, (24)

where

R±(x) =
∞∑

n=0

K±
n (x) gn,

R
±

(x) =
∞∑

n=0

K±
n (x)

x − n ∓ ε
2

gn.

If ε = 0, the above equation can obviously be reduced to the
following zero-bias case [18]:

G±
0 (x) =

∞∑
n=0

fn(x)

(
1 ∓ �/2

x − n

)
gn = 0. (25)

Therefore Braak’s G functions are completely rederived in a
very intuitional and concise way.

The G functions can be written [25] in terms of so-called
Heun functions [26]. The zeros of these Heun functions cannot
be given analytically; a numerical technique to locate the zeros
is still needed, so a cutoff for the summation is unavoidable in
the practical evaluation.

B. Discussion

In the above derivation, the crucial step is the propor-
tionality of the two wave functions (5) and (14) with the
same eigenvalue. Both Hilbert spaces in the two Bogoliubov
operators are complete, if truncation is not done, and the
proportionality is justified naturally for nondegenerate states.

Next, we link the degenerate states to the Juddian solutions
[23]. Koc et al. [27] have obtained isolated exact solutions
in the QRM, which are just the Juddian solutions with
doubly degenerate eigenvalues. The degenerate eigenstates are
excluded in principle in solutions based on proportionality. It
naturally follows that the Juddian solutions are exceptional
ones as discussed by Braak [18].

It is very interesting to note that, in the whole derivation
above, we do not need any extra conditions, such as the
analyticity of the eigenfunction in Bargmann representation
as in Braak’s work [18]. We believe that the extra condition in
the Bargmann representation is covered in the vacuum state in

the space of the Bogoliubov operators. These vacuum states
are well defined and known as coherent states, so the present
derivation is more physical and simpler.

In addition, the validity of the present approach is in-
dependent of the parity symmetry. Parity symmetry would
be contained self-consistently in the final G functions if the
system really has, e.g., ε = 0.

C. Comparisons and remarks

Based on two Bogoliubov operators A and B, three of the
present authors and one collaborator have used the following
wave function to the Hamiltonian(1) to analyze the spectrum
in qubit-oscillator systems [cf. Eq. (6) in Ref. [22]]:

| 〉 =
(∑N

n=0 cn|n〉A∑N
n=0 dn|n〉B

)
, (26)

where N is the truncated number. Numerical exact diagonal-
ization (ED) in the space of the two Bogoliubov operators
gave the spectrum exactly. The coefficients cn and dncan be
obtained also.

It is interesting to link coefficients in wave function (26)
and those in wave functions (5) and (14) as

cn =
√

n!en, dn = r (−1)n
√

n!e′
n,

although the former are obtained from ED and the latter
by the zeros of the G functions. It can also be confirmed
numerically. For practical purposes, there are perhaps no
essential differences, except that the avenues used to obtain
basically the same coefficients are different. The latter is
described in a mathematical way and is of more conceptual
interest.

In the mathematical sense, we cannot rule out the possibility
that ED gives good results for small N but gets worse for
higher N without a practical evaluation, although we know
empirically that it is generally not the case for large N .
For low-order perturbation theory, it happens that third-order
perturbation theory will give worse results than second-order
perturbation theory in some parameter regime, for instance, but
this may not be that case in very high-order perturbation theory.
In the calculation, we find that the difference between the exact
results, which are easily obtained to any desired accuracy,
and those for the cutoff N decrease monotonically with
increasing N , and convergence can be arrived at easily. One
can determine that the Heun series converges before numerical
calculations.

Braak’s G functions exhibit a very compact form in power
series, which motivates us to reshape our previous work.
By use of tunable extended bosonic coherent states, the
QRM can be mapped to a polynomial equation with a single
variable [28]. We can also write this polynomial in power
series in the following more concise form for large truncated
number M:

F (α) =
M∑

j=0

(2α)j

j !
c

M−j
= 0, (27)
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FIG. 1. (Color online) Spectrum of the one-photon quantum Rabi
model as zeros of functions F (α) in Eq. (27) at resonance. The
numerical solutions are also shown with solid lines.

where α is the key tunable variable we seek, and the coefficients
are also related recursively with the following scheme:

(m + 1)gcm+1 = −
(

m ± �

2

)
cm − (α + g) cm−1

±(−1)m
�

2

m∑
j=0

(2α)j

j !
cm−j , (28)

initiated from c0 = 1.0 and c1 = 0, because the coefficients
with the two highest indices, M and M − 1, are negligibly
small due to the required convergence and can thus be omitted.
The zeros of the above function F (α) can also give the exact
eigenvalue through

E± = αg ∓ �

2
, (29)

where ± denotes the parity. The results are shown in Fig. 1.
In Eq. (20) at the end of Ref. [28], it was demonstrated that
the wave function is equivalent to expansion in the Fock space
of displaced operators with tunable displacements, which are
different from the present Bogoliubov operators with fixed
displacements.

It is very interesting to note that the zeros of both functions
defined through different power series in Eqs. (25) and (27)
can give the exact eigenvalues. In our practical evaluation, it is
not more difficult to locate the zeros for the function in Eq. (27)
than those in Eq. (25), because the poles at x = n emerging
in the latter are not present in the former. The main difference
between Eqs. (25) and (27) is that the former is well defined
without restriction and the latter is well defined with built-in
truncation.

It is implied in the viewpoint of [20] that the QRM might
have been solved exactly with an analytical closed-form
solution in Ref. [18]. Nevertheless, whether Braak’s exact
solution could be called closed form is subtle and therefore
still controversial in our opinion. The so-called Heun functions
can be basically called closed form because they are well
defined, although much more complicated than, e.g., the
hypergeometric functions. But the eigenvalues are given by the

zeros of the Heun functions, which cannot be obtained without
truncation in the power series. As shown in wave functions
(5) and (14), the expansion cannot be closed naturally as in
the JC model. It is generally accepted that the QRM has no
trivial closed-form solution like that in the JC model, due
to the counter-rotating terms. The QRM can have closed-form
solutions only with a vanishing qubit tunneling � = 0 [28,29].
Perhaps the question of “closed-form” solutions is academic
and not of real value. Braak’s solution is mainly interesting for
the integrability of the QRM.

D. Tutorial for Bogoliubov operator approach

The present approach using the Bogoliubov operators can
be generally described as follows; the description helpful for
further applications. The main task is to find the correspond-
ing Bogoliubov operators. Then, one can expand the wave
functions in terms of each Bogoliubov operator separately.
Eliminating the constant ratio of these wave functions will
give transcendental functions, which are defined through
power series in model parameter-dependent quantities with
coefficients related recursively. Finally, the zeros of these
transcendental functions give the eigenvalues exactly, where
numerical solutions to the one-variable (or finite variables in
other multilevel systems for example) nonlinear equation must
be required. Although the power series are defined through an
infinite summation formally, in a practical calculation, they
should be truncated to a finite summation. Fortunately, the
obtained transcendental function G(x) can be written in terms
of so-called Heun functions, from which we can determine
the convergence before numerical solution. The unavoidable
“cutoff” in the summation of the G functions in practical
calculations means that some states in the Hilbert spaceare
not considered, according to the wave functions (5) and (14);
even though their contribution is negligibly small, they still
belong to the Hilbert space of Bogoliubov operators.

Following the approach outlined aobve, we will study the
two-photon QRM in the next section.

III. THE TWO-PHOTON QRM

The Hamiltonian of the two-photon QRM takes the follow-
ing matrix form:

H =
(

a†a + g[(a†)2 + a2] −�
2

−�
2 a†a − g[(a†)2 + a2]

)
.

(30)

First, we perform a Bogoliubov transformation,

b = ua + va†, b† = ua† + va, (31)

to generate a new bosonic operator. Comparing to the Hamil-
tonian, if we set

u =
√

1 + β

2β
, v =

√
1 − β

2β
, (32)

with β =
√

1 − 4g2, we have a simple quadratic form of one
diagonal Hamiltonian matrix element:

H11 = a†a + g[(a†)2 + a2] = b†b − v2

u2 + v2
.
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Similarly, we can introduce another operator

c = ua − va†, c† = ua† − va, (33)

which yields a simple quadratic form of the other diagonal
Hamiltonian matrix element

H22 = a†a − g[(a†)2 + a2] = c†c − v2

u2 + v2
.

In terms of the Bogoliubov operator b, the Hamiltonian can
be written as

H =
(

b†b−v2

u2+v2 − v2 −�
2

−�
2 H ′

22

)
, (34)

with

H ′
22 = (u2 + v2 + 4guv)b†b

−[uv + g(u2 + v2)][(b†)2 + b2] + 2guv + v2.

The wave function is suggested as

| 〉 =
( ∑

n=0

√
n!en |n〉b∑

n=0

√
n!fn |n〉b

)
, (35)

where

|n〉b = (b†)n√
n!

|0〉b = (ua† + va)n√
n!

|0〉b, (36)

b |0〉b = 0. (37)

|0〉b is the vacuum state of a linear combination of a† and
a, which is well known as the single-mode squeezed state
[30]; |n〉b is thus called an extended squeezed state. Following
the procedures in [31], we derive for later use the explicit
expression of |0〉b in terms of the operator a involving either
even- or odd-number states as follows:

|0〉(e)
b ∝

∑
k

√
2k!

2kk!

(
−v

u

)k

|2k〉a, (38)

|0〉(o)
b ∝

∑
k

2kk!√
(2k + 1)!

(
−v

u

)k

|2k + 1〉a. (39)

The Schr
..
odinger equation gives

∑
n=0

b†b − v2

u2 + v2

√
n!en |n〉b − �

2

∑
n=0

√
n!fn |n〉b

= E
∑
n=0

√
n!en|n〉b,

(u2 + v2 + 4guv)b†b
∑
n=0

√
n!fn|n〉b

− [uv + g(u2 + v2)][(b†)2 + b2]
∑
n=0

√
n!fn |n〉b

+ (2guv + v2)
∑
n=0

√
n!fn |n〉b − �

2

∑
n=0

√
n!en |n〉b

= E
∑
n=0

√
n!fn |n〉b .

Left-multiplying by b〈m| gives(
m − v2

u2 + v2
− E

)
em − �

2
fm = 0,

− [uv + g(u2 + v2)][fm−2 + (m + 2)(m + 1)fm+2]

+ [(u2 + v2)m + v2 + 2guv(2m + 1) − E]fm

− �

2
em = 0.

Thus we have built a one-to-one relation for coefficients em

and fm:

em = �

2
[

m−v2

u2+v2 − E
]fm, (40)

which will considerably simplify the problem. The reclusive
relation is then obtained as

(m + 2) (m + 1) fm+2 = −fm−2 + �(m)

uv + g(u2 + v2)
fm,

(41)

where

�(m) = (u2 + v2)m + v2 + 2guv (2m + 1)

−E − �2

4
(

m−v2

u2+v2 − E
) .

The Hamiltonian can also be expressed in terms of the other
Bogoliubov operator c:

H =
(

H ′
11 −�

2

−�
2

c†c−v2

u2+v2

)
, (42)

with

H ′
11 = (v2 + u2 + 4guv)c†c

+[uv + g(v2 + u2)][(c†)2 + c2] + 2guv + v2.

The wave function then can be expanded in the Fock space of
the c operator in the form

| 〉 =
( ∑

n=0 il
√

n!f ′
n |n〉c∑

n=0 il
√

n!e′
n |n〉c

)
, (43)

where l = n for n = 2k and l = n + 1 for n = 2k + 1.
Therefore only two values of il = ±1 are possible.

Similarly, by the Schrödinger equation, we can obtain the
following relations for the coefficients:

e′
m = �

2
[

m−v2

u2+v2 − E
]f ′

m, (44)

and the reclusive relation

(m + 2) (m + 1) f ′
m+2 = −f ′

m−2 + �′(m)

uv + g(u2 + v2)
f ′

m,

(45)

with

�′(m) = v2 + (u2 + v2)m + 2guv(2m + 1)

−E − �2

4
(

m−v2

u2+v2 − E
) .
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Note that the two sets of coefficients in the two wave functions
have the same form.

Similarly, the two wave functions with the same eigenvalue
should be in principle proportional to each other for the
nondegenerate state,( ∑

n=0

√
n!en |n〉b∑

n=0

√
n!fn |n〉b

)
= r

( ∑
n=0 il

√
n!f ′

n |n〉c∑
n=0 il

√
n!e′

n|n〉c

)
. (46)

Left-multiplying 〈0| on both equations gives∑
n=0

√
n!en〈0|n〉b = r

∑
n=0

il
√

n!f ′
n〈0|n〉c,

∑
n=0

√
n!fn〈0|n〉b = r

∑
n=0

il
√

n!e′
n〈0|n〉c.

By using Eqs. (38) and (39), we always have

il
√

n!〈0 |n〉c =
√

n!〈0 |n〉b = Le,o
n , (47)

where

Le
n=2k = (2k)!(uv)k

2k

k∑
j=0

( − v2

u2

)j

j !(k − j )!
, (48)

Lo
n=2k+1 = (2k + 1)!v(uv)k

2k

k∑
j=0

22j j !
( − v2

u2

)j

(2j + 1)!(k − j )!
, (49)

for even and odd particle numbers in the Bogoliubov operators
b and c, respectively. Then we have∑

n

enL
e,o
n = r

∑
n

f ′
nL

e,o
n ,

∑
n

fnL
e,o
n = r

∑
n

e′
nL

e,o
n .

Now the summation
∑

n is taken for the series with either even
or odd number n. Eliminating the constant r yields∑

n

�

2
(

n−v2

u2+v2 − E
)fnL

e,o
n

∑
n

�

2
(

n−v2

u2+v2 − E
)f ′

nL
e,o
n

=
∑

n

f ′
nL

e,o
n

∑
n

fnL
e,o
n , (50)

with the use of Eqs. (40) and (44). Setting fn = f ′
n and −x =

−v2 − E(u2 + v2), we finally have

G±
e,o =

∑
n

fn

[
1 ± �(u2 + v2)

2(n − x)

]
Le,o

n = 0, (51)

where the coefficient fn is initiated from f0 = 1 (f1 = 1)
for the case of the even (odd) n in the recurrence scheme
Eq. (41), and ± denotes the parity. Thus, G functions for the
two-photon QRM have been obtained. The zeros of the G
functions give the exact eigenvalues, as shown in Fig. 2. It
should be straightforward to extend to the biased two-photon
QRM, but it is not shown here.

Travěnec [17] has extended Braak’s approach to solve this
two-photon model, but a concise G function as in Eq. (51) was
not obtained. The coefficients are entangled in the two coupled
equations, which may prevent such a simple description for
the G-functions. In the present Eqs. (40) and (44), the two
coefficients are related one-to-one with the same index n,
which facilitates the derivations. This is also the advantage
of Bogoliubov operators, which result in free-particle number
operators.
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−1

0

1

2

3

4

5

g

E
n

Exact

Roots of G±
e

Roots of G±
o

Δ=1.0

FIG. 2. (Color online) Spectrum of the two-photon quantum Rabi
model as zeros of G functions in Eq. (51). The numerical solutions
are also shown with solid lines.

The Juddian solution to the two-photon QRM has been
studied by Emary and Bishop [32]. With these G functions
at hand, we can also discuss the Juddian solution readily in
an alternative way, similar to the one-photon model [18]. The
G function is also not analytic in x but has simple poles at
x = 0,1,2, . . .. For special values of the model parameter g,
there are eigenvalues which do not correspond to zeros of
Eq. (51); these are the exceptional solutions. All exceptional
eigenvalues are given by the positions of the poles:

E = (
n + 1

2

)
β − 1

2 , (52)

which is exactly the isolated solution obtained in Ref. [32].
The necessary and sufficient condition for the occurrence of
the eigenvalue is fn(x = n) = 0, which provides a condition
on the model parameters g and �. They occur when the pole
of G±

e,o(x) at x = n is lifted because its numerator in Eq. (51)
vanishes. The condition can be obtained readily by Eq. (41) as
follows for n = 2, 3, and 4, respectively:

2 − 6β2 +
(

�

2

)2

= 0, 6 − 10β2 +
(

�

2

)2

= 0,

8(3 − 30β2 + 35β4) + 2(7 − 17β2)

(
�

2

)2

+
(

�

2

)4

= 0,

which are exactly the same as those in Ref. [32]. These
constraints on the model parameters for the Juddian solutions
have not been derived in the direct extension of the Braak’s
approach to the two-photon model [17]. From Eq. (50), we
know that the proportionality is justified only for even or
odd photonic numbers, respectively. The Juddian solutions
correspond to those states which are degenerate, and therefore
are excluded within this proportionality, so the level crossing
points of lines from G+

e and G−
e and those from G+

o and G−
o

correspond to Juddian solutions.

IV. SUMMARY

In this paper, by using extended coherent states, Braak’s
exact solution in the QRM is recovered explicitly in an
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alternative more physical way. In a fully analogous way,
the two-photon QRM is also exactly solved with the use
of extended squeezed states. The corresponding G functions
with a similar form to Braak’s G function are derived. The
isolated Juddian solutions can also be discussed analytically
via the properties of degeneracy. Both models can be treated
in a unified way by the expansion in the Fock space of
the Bogoliubov operators. Further extensions to other more
complicated systems, such as the multilevel, even multimode,
spin-boson model, are straightforward, although perhaps a
little tedious sometimes.

For a multilevel spin-boson model, such as the finite-sized
Dicke model [33], quantum chaos has been discussed [34].
We have expanded the wave function in N + 1 Bogoliubov
operators for the Dicke model with finite-N two-level atoms,
and obtained numerically exact solutions previously [21].

According to the above discussion and the link with Braak’s
solutions, exact solvability is ensured without doubt in this sys-
tem. The quasi-integrability and quantum chaos in this system
should be very interesting. On the other hand, the multimode
QRM has also been realized experimentally in circuit QED
systems [9]. Extensions to these systems are in progress.
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