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Direct conversion of slow light into a stationary light pulse
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Analysis on direct transforming the slow light into the stationary light pulse (SLP) is presented. Without
the process of turning the slow light into the coherence between the lower levels, the generation of SLP
is more efficient. The Maxwell-Liouville equations are employed to study the light pulse dynamics in the
samples coherently driven by a bichromatic standing wave. The solution indicates that the forward and backward
components of the SLP approach to each other exponentially. Such property is described by introducing a
quantity called characteristic length, which appeared to be the ratio of the optical coherence decay rate and
the coefficient of the driving term in Maxwell equation. The necessary length for completing the conversion
can be estimated as five times the characteristic length. Several materials are analyzed here, including the 87Rb
atoms with different densities, Pr3+-doped yttrium orthosilicate (Pr:YSO), and nitrogen-vacancy color centers in
diamond (N-V centers). The values of the characteristic length for the corresponding materials are calculated, as
well as the necessary length.
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I. INTRODUCTION

In the presence of a strong coupling field, an optically
dense medium can become transparent and highly dispersive
for a weak probe light pulse. Such a phenomenon has been
named electromagnetically induced transparency (EIT) [1].
The propagation dynamics of probe pulse depends on how the
coupling field is arranged. In the case of the constant-amplitude
coupling field, the probe pulse which is usually called slow
light, travels with a quite low group velocity due to the steep
dispersion in the narrow EIT window [2,3]. If the coupling
field is adiabatically switching off, the probe pulse can be
stored in the medium. During the storage, the electromagnetic
component of the pulse completely disappears whereas the
quantum state is transformed into the ground-state coherence
of the medium. The stored light can be subsequently retrieved
by turning the coupling field back on. Such a phenomenon
has been explained elegantly using the theory of dark-state
polaritons [4], and demonstrated in cold sodium cloud [5],
vapor of 87Rb atoms [6], and Pr:YSO crystals [7,8].

Instead of the single coupling field, the EIT medium driven
by two counterpropagating coupling fields can actually stop the
light to create a stationary light pulse (SLP). Unlike the stored
light, a SLP is trapped in the medium with the relatively stable
electromagnetic components, and can be released by switching
one coupling field off. The idea of the SLP is first proposed
by André and Lukin [9], and later on the phenomenon was
observed in 87Rb vapor maintained at a temperature of 90 ◦C
with the atom number density around 1012–1013 cm−3, and
the lifetime of SLPs is for about 7 μs [10]. Since the potential
application of SLP on nonlinear optics [11–14], Bose-Einstein
condensation [15], relativistic effect [16], Tonks-Girardeau gas
transition [17], and effective gauge potential [18], SLP has
attracted the great attention [19,20]. SLPs can significantly
increase the interaction time between the media and the
light, therefore, they are very promising for few-photon
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nonlinear optics [21–24] and quantum information processing
[25–27]. The physics underlying of SLP can be understood
as the result of balanced multiwave mixing processes [28],
ωp+ − ωc− + ωc+ → ωp−, and ωp− − ωc− + ωc+ → ωp+. It
means that under the effect of forward and backward coupling
fields (ωc+ and ωc−), SLP can be created as long as the
opportunities for the forward and backward photons (ωp+
and ωp−) to transform into each other are equal. Such theory
has been supported by the experimental observation of the
bichromatic SLP in a cloud of cold 87Rb atoms produced by a
magneto-optical trap (MOT) [29], and the SLP lasts for about
1.8 μs before converted back into a slow light. The solids such
as Pr:YSO and N-V centers are the promising materials for
establishing SLPs as well, due to the advantages of the high
density of atoms, compactness, absence of atomic diffusion,
and simplicity and convenience in preparation and usage. The
theoretical prediction of the lifetime of SLP can be 5 μs and
5.7 μs for Pr:YSO and N-V centers, respectively [30]. The
formation of SLPs in the medium of nonstationary atoms of
low optical depth is also reported [31].

Usually the generation of the SLPs involves the creation of
the slow light and the stored light. First, the forward coupling
field is on, and the probe pulse travels in the medium as the slow
light. Then, the coupling field is switched off and the slow light
is converted into the spin coherence of the ground states, which
is, as we mentioned before, the stored light. Subsequently, both
the forward and backward coupling fields are simultaneously
switched on, and the SLP is created. Actually, the creation of
the stored light is not necessary for generating the SLP. In other
words, the slow light can be converted into SLP directly [32].
To distinguish from the SLP created by building the stored
light, we refer to the SLP generated directly from the slow light
as direct stationary light pulse (DSLP). To our knowledge,
there is no particular and detailed investigation that has been
done on this phenomenon.

The purpose of the present article is to present a detailed
investigation on the creation of DSLP. The general equations
for describing the interaction of the laser and the medium are
given in Sec. II. Without losing the generality, the bichromatic
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coupling fields are chosen to interact with the four-level double
� atomic system of 87Rb. We proceed by giving the numerical
and analytic solution of the Maxwell-Liouville equations in
Sec. III. The density of the atoms is assumed to be 1.0 ×
1010 cm−3 which is lower than that in MOT, and the Doppler
effect is not considered here. Under several assumptions,
the formation process of DSLP is shown as a mathematical
expression. The analysis in Sec. III leads to an important
property of the medium, namely characteristic length for the
conversion, which is discussed in Sec. IV. In Sec. V we present
our concluding remarks and a brief outlook.

II. THEORETICAL MODE AND BASIC EQUATIONS

We consider an ensemble of double-�-type four-level
atoms comprising two excited states |3〉, |4〉 and two
lower states |1〉 and |2〉, which represent the hyperfine
states |5P3/2,F

′ = 1〉, |5P3/2,F
′ = 2〉, |5S3/2,F = 2〉, and

|5S3/2,F = 1〉 of the 87Rb, respectively. As shown in Fig. 1, the
coupling field �c+ (�c−) drives the optical transition |4〉 ↔ |2〉
(|3〉 ↔ |2〉), and the probe filed �p+ (�p−) drives the optical
transition of |4〉 ↔ |1〉 (|3〉 ↔ |1〉). The symbol �x±(x = c,p)
defined as μijEx±/2h̄ stands for the Rabi frequencies of the
corresponding fields. μij is the matrix element of the dipole
moment between level |i〉 and |j 〉. Ex± are the amplitudes of
the corresponding fields. We assume that �c+ and �c− are
two counterpropagating fields. The probe field �p+ travels in
the same direction as �c+. Generally, the traveling direction
of �p− is determined by the phase matching condition. In our
case, it is the same as the direction of �c−. The sequences
of the coupling fields are shown in Fig. 2. The amplitude of
forward coupling field �c+ maintains constant value, and the
backward coupling field �c− is switched on at 2 μs. Before
switching �c− on, the probe pulse �p+ travels in the sample as
a slow light. When �c− is turned on, the probe field �p− with
the opposite wave vector of �p+ is generated by four-wave
mixing, and the DSLP is created.

Before proceeding with our calculations, we would like to
present several assumptions to simplify our model: (i) Based
on the energy levels shown in Fig. 1, we assume that the wave
vectors of the four fields have the same amplitudes. (ii) Most
atoms are on the lowest level |1〉 since the coupling fields are

FIG. 1. Schematic level diagram of an ensemble of four-level
atoms interacting with two weak probe pulses (�p+,�p−) and two
strong coupling beams (�c+,�c−).

FIG. 2. Sequence of the coupling fields �c± and the probe field
�p+. The forward coupling field �c+ is always on, and the backward
coupling field �c− is switched on at 2 μs to form a bichromatic
standing wave in the sample.

much stronger than the probe pulses. (iii) The coupling field
�c− is supposed to be temporally modulated smoothly, and
the probe field �p+ has a slowly varying envelope. Under
assumptions (i) and (ii), the following equations can be used
in the studies of stationary light pulse [30], EIT, as well as
slow light and stored light:

∂tσ41 = i[σ41(�p+ + iγ41) + σ21�c+ + �p+]; (1)

∂tσ31 = i[σ31(−�c+ + �c− + �p+ + iγ31)

+ σ21�c− + �p-]; (2)

∂tσ21 = i[σ21(−�c+ + �p+ + iγ21)

+ σ41�
∗
c+ + σ31�

∗
c−]; (3)

(∂t + c∂z)�p+ = i cγ41α+σ41/2; (4)

(∂t − c∂z)�p− = i cγ31α−σ31/2, (5)

where α+ = 
μ2
41kp+/γ41, α− = 
μ2

31kp−/γ31, and 
 =
N0/ε0. The parameter γij denotes the coherence decay rate
of the transition |i〉 ↔ |j 〉, and �x±(x = c,p) denote the
detunings of the corresponding fields as shown in Fig. 1.
In addition, we have adopted the phase matching condi-
tion �p− =−�c++�c−+�p+ in Eqs. (1)–(3). Notice that
Eqs. (1)–(3) are not all of the density element equations. This
is because the off-diagonal density elements σ43, σ32, and σ42

are neglectable according to assumption (ii).

III. THE GENERATION OF DIRECT STATIONARY
LIGHT PULSE

In this section, we use the theoretical approach developed in
the previous section to investigate the DSLP generation in the
cold thermal 87Rb sample where the residual Doppler broad-
ening is negligible. The atomic polarizations can be written as
σ

(1)
41 = i (A1�p+ + A2�p− + A3�̇p+ + A4�̇p−) and σ

(1)
31 =

i (B1�p+ + B2�p− + B3�̇p+ + B4�̇p−), calculated in the
appendix. The superscripts (1) stand for the first order solutions
of the off-diagonal density elements which are good enough
for describing the polarization of the atoms [4]. Then the wave
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FIG. 3. Numerical calculation of the time-varying components
of the parameter A1: f (t) and g(t). All of the detunings are set
as zeros, and the other parameters are γ = 2π × 6 MHz and γ0 =
2π × 1 kHz. The forward coupling Rabi frequency is set as �c+ =
20 MHz, and backward coupling Rabi frequency is chosen to be
�c−(t) = 20/π arctan[8 × 106(t − 2 × 10−6)] MHz.

equations can be written as

(1 + cβA3) ∂t�p+ + c∂z�p+
= −cβ(A1�p+ + A2�p− + A4∂t�p−), (6)

(1 + cβB4) ∂t�p− − c∂z�p−
= −cβ(B1�p+ + B2�p− + B3∂t�p+). (7)

The parameter β is given by the expression,

β = 
μ2k/(2h̄). (8)

Note that the β we introduced here is related to the assumption:
kp+ � kp− = k and μ41 � μ31 = μ. In our case β = 9.27 ×
109 m−1 s−1. For the 87Rb atoms, the coherence decay rates
of the optical transitions are of the same order of magnitude
(2π × 6 MHz); so are the coherence decay rates of the spin
transitions (2π × 1 kHz). Regarding the above characteristic
of the system, we introduce two parameters γ and γ0 for
simplification:

γ = γ41 = γ31 = γ42 = γ32, (9)

γ0 = γ43 = γ21. (10)

However, the coefficients Ai,Bi(i = 1,2,3,4) are still quite
complex. Considering that �c± 	 �p±,γ 	 γ0, the terms of
Ai,Bi which are proportional to ∂t�c−(t) can be neglected.
For example, after treating all the detunings as zero, and all
Rabi frequencies real numbers, the expression of A1 can be
written as

A1 = γ −1 [1 − f (t) + g(t)] , (11)

where

f (t) = �2
c+

γ γ0 + �2
c+ + �2

c−(t)
, (12)

g(t) = γ�2
c+�c−(t) · ∂t�c−(t)[

γ γ0 + �2
c+ + �2

c−(t)
]3 . (13)

As shown in Fig. 3, g(t) is much smaller than f (t) for all
the values of t , so it is neglectable. Based on our calculation,
such an operation can be applied to the other coefficients

Ai,Bi(i = 2,3,4) as well. The physical reason of g(t) 
 f (t)
is that �c−(t) varies slow and smooth enough to avoid the
nonadiabatic coupling of the “dark” and “bright” states [33].
Actually, this condition is quite weak: As we can see from
Eq. (13) g(t) ∼ ∂t�c−/8�2

c+. This means that the backward
coupling field can jump up from zero to 20 MHz in 0.05 μs
without violating the condition. Therefore, Ai,Bi(i = 1,2,3,4)
can be rewritten as

A1 = iγ −1 − i�2
c+γ −2ξ−1;

A2 = −i�c+�c−γ −2ξ−1;

A3 = i�2
c+γ −2ξ−2;

A4 = i�c+�c−γ −2ξ−2;

B1 = −i�c+�c-γ
−2ξ−2;

B2 = iγ −1 − i�2
c−γ −2ξ−1;

B3 = i�c+�c−γ −2ξ−2;

B4 = i�2
c−γ −2ξ−2.

Here we introduce a parameter ξ = γ0 + �c+γ −1 +
�c−γ −1 to simplify the above expressions. To solve partial
differential Eqs. (6) and (7), we assume that the forward
and backward pulses can be written as �p+ = T (t)f+(z), and
�p− = T (t)f−(z). The solution will strongly depend on the
initial and the boundary condition. However, we set the time
derivative of T (t) to be zero which means that the pulses are
treated as the plane wave. In other words, we assume that the
bandwidth of the pulse is very narrow. The consequence of
this assumption is that the model does not include the decay
and the diffusion process any more. Then the wave equations
can be easily obtained:

a+a−βγf− − β(γ0 + a2
−γ )f+

γ (γ0 + (a2+ + a2−)γ )
= ∂f+

∂z
, (14)

a+a−βγf+ − β(γ0 + a2
+γ )f−

γ (γ0 + (a2+ + a2−)γ )
= ∂f−

∂z
. (15)

Here a+ = f+/γ , a− = f−/γ . By introducing two parameters
M = a+a− and R = a−/a+, the above equations can be
changed into the form,

β

γ
× γf− − (

γ0

M
+ γR

)
f+

γ0

M
+ (R + R−1)γ

= ∂f+
∂z

, (16)

β

γ
× γf+ − (

γ0

M
+ γR−1

)
f−

γ0

M
+ (R + R−1)γ

= ∂f−
∂z

. (17)

Equations (16) and (17) are our main result and can be used
to analyze the DSLP. Here we would like to give a careful
discussion on these two equations. First, the equations can
only describe the situation when the backward coupling field
is switched at 2 μs shown in Fig. 2. Otherwise, R−1 → ∞
and the equations become unreasonable. Second, when the
amplitudes of the two coupling fields are identical (R = 1),
f+ and f− can become stable with respect to z if the following
algebraic equations are satisfied.{

γf− − (
γ0

M
+ γ

)
f+ = 0,

γf+ − (
γ0

M
+ γ

)
f− = 0.

(18)
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FIG. 4. Numerical simulation of the DSLP in 87Rb. The coupling
fields sequences are shown in Fig. 2. The incident probe pulse is
assumed to have a Gaussian profile Ip = Ip0 exp[− (t − t0)2 /τ 2]
with t0 = 1 μs and duration τ = 0.375 μs. The probe and cou-
pling detunings are set as �p± = �c± = 0. The other common
parameters are γ41 = γ31 = 2π × 6 MHz, γ21 = 2π × 1 kHz, d31 =
1.465 × 10−29 C m, N0 = 1.0 × 1010 cm−3, kp = 2π/ (780 nm).

If the DSLP is created, f+ and f− should be equal for
all values of z, so it must be true that γ0/M 
 γ . This is
just another way to write the condition of �± 	 √

γ γ0 which
is required in the EIT demonstration, creation of the slow
light, and stored light. When the term of γ0/M is neglected
in Eqs. (16) and (17), it is clear that the ratio of the coupling
field amplitudes plays an important role in the propagation
dynamics of the pulse. Such a characteristic is quite similar
with the dark-state polaritons [4] and the pulse matching
phenomenon [38].

Before proceeding to the next section, we would like
to present the numerical solution of the DSLP by solving
Eqs. (1)–(5); the results of �p+ and �p− are given in Fig.
4. As we can see that the pulses stop in the medium when
the backward coupling is turned on at 2 μs. One special
characteristic is that the stationary light pulse is not formed
immediately when the backward coupling field �c− is turned
on. As we can see the �p+ and �p− are not exactly the
same after 2 μs. The two components deviate from each other
at about 0.4 cm in the medium. This is because when the
�c− is just switched on, the number of forward photons is
larger than that of the backward ones, therefore �p+ is still
moving forward until the numbers of the forward and backward
photons are equal.

IV. CHARACTERISTIC LENGTH OF MEDIUM

As we mentioned before, during the formation process of
the DSLP, the two components deviate from each other for a
small distance, which is called the characteristic length of the
medium in the following discussion. The analytic solutions
of the ordinary differential Eqs. (16) and (17) can be used to
reveal such a property of the medium. And they can be easily
obtained:

f+(z) = 1

R + R−1
e
− t2

τ2 − zβ

γ [R−1E(R,M) + R], (19)

f−(z) = 1

R + R−1
e
− t2

τ2 − zβ

γ [E(R,M) − 1]M, (20)

where

E(R,M) = exp

[
(R + R−1)βz

γ0

M
+ (R + R−1)γ

]
. (21)

FIG. 5. The amplitude peaks of the two components (�p±) as
the function of z. z0 = 1.5 cm is the position of the forward pulse
peak when the backward coupling field is switched on. L is the
characteristic length of the medium, which equals 4.07 mm. L11 can
be considered the distance that the two components must travel to
become equal to each other. The parameters used here are identical
with those in Fig. 4.

The terme−t2/τ 2
is brought in as the constant respecting to z

by solving the differential Eqs. (16) and (17). Here, τ can be
regarded as the pulse width of slow light when the backward
coupling field is switched on. We would like to discuss a typical
situation here: Without violating the condition of g(t) 
 f (t),
the backward coupling field is quickly turned on, and it
“covers” the medium immediately because the coupling field
travels much faster than the slow light pulse. Anyway, the
above discussion leads to R = 1 for t > 2 μs. We further
change M into Mε to represent the production of the two equal
coupling field amplitudes. Then, the expressions for the two
components become

f+(z) = 1
2e

− t2

τ2 − βz

γ

{
1 + exp

[
βz

(γ0/2Mε) + γ

]}
, (22)

f−(z) = 1
2e

− t2

τ2 − βz

γ

{
exp

[
βz

(γ0/2Mε) + γ

]
− 1

}
. (23)

Figure 5 shows the peaks of pulse amplitudes as a function
of z. The data are obtained from Eqs. (22) and (23). The
parameter z0 (shown in Fig. 5) stands for the position of
the forward pulse’s peak when the backward coupling fields
are just switched on, in our case, z0 = 1.5 cm. The time
dependence of the pulses is hid to emphasize the relation
between the peaks of the pulses and z. As we can see the two
components travel about 2 cm through the medium and become
equal to each other. To describe such behavior, we try to solve
the equation f+(z) = f−(z). Based on our calculation, the
above equations can be reduced to exp (−βz/γ ) = 0, which
indicates that the characteristic length of the medium is

L = γ

β
. (24)

Using the parameters listed in Fig. 4, we estimate that the
characteristic length of 87Rb vapor is about 4.07 mm which
is consistent with the numerical simulation. It is necessary to
emphasize that such a result highly depends on the density of
the atoms which is 1.0 × 1010 cm−3 here.

As we can see the characteristic length of the medium
depends on the coherence decay rate of the optical transition
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and the coefficient of the driving term in the Maxwell equation.
To our knowledge, the experimentally supported [29] model
where SLPs can be understood is the multiwave mixing
process [12,28]. Establishing SLPs is actually the process
of forcing the forward and backward photons to transform
into each other, for example, in our case, the photons of �p+
can take the path of |1〉→|4〉→ |2〉→|3〉→|1〉 to become
the photons of �p−, and the backward photons can take the
reverse way to transform into the forward ones. Apparently,
the coherence decay rate γ plays an important role in such a
process. The large γ will cause the longer characteristic length
of the medium.

The parameter β is the coefficient of the polarization in the
Maxwell equations [see Eqs. (6)−(8)]. The larger β indicates
that the interaction between the laser and atoms is stronger
and the laser fields seem more animated to interact with the
atoms. This also means that the transformation of the forward
and backward photons proceed more quickly which leads to
the smaller characteristic length.

Note that the characteristic length is quite similar to the
optical depth τod, quantitatively, L = τ−1

od V/A. Where V

denotes the volume that the laser beam occupies in the sample,
and A is the cross section of the beam. As a measure of
transparency, optical depth is defined by the negative natural
logarithm of the fraction of radiation that is not scattered or
absorbed on a path. In other words, optical depth describes how
strong the atoms can absorb or interact with the light. Clearly,
the larger optical depth will lead to the smaller characteristic
length when the medium is not absorbing the light but only
changing the direction of the light propagation. Although
the pulses are treated as the electromagnetic wave here, the
characteristic length can still be interpreted from the quantum
view: If the initial number of the forward photons is n, then
only ne−1 photons are not converted into the backward ones
after traveling the distance L. So L can be regarded as a
measure of such conversion.

The characteristic length cannot be taken as the necessary
length that the two components have to travel before they equal
each other. Based on our calculation, the necessary distance
can be obtained by solving the following equation:

11∑
n=1

[
∂n−1
ξ e−ξ/L]

ξ=L (x − L)n−1

(n − 1)!
= 0. (25)

For the parameters listed in Fig. 4, the above equation
leads to z = L11 = 0.0199 m for 87Rb with density of
1.0 × 1010 cm−3, which is nearly five times of the charac-
teristic length.

Normally, when the phenomena based on EIT, including
SLP, are investigated, the probe and coupling beams intersect
at the small crossing angle, for example, 0.3◦ in Ref. [29], about
30 mrad in Ref. [36]. Clearly, only the laser overlapping part of
the medium contributes to the interaction. The characteristic
length gives us a standard of how the crossing angle can be
arranged. For example, for the 87Rb vapor with the density
of 1.0 × 1010 cm−3, the coupling beam focused to a e−2 full
width D0 of 100 μm, the crossing angle of the coupling fields
and the probe pulse should not be larger than arcsin (D0/L),
which is about 5 mrad.

TABLE I. Parameters for the characteristic length of Pr:YSO,
N-V center crystals, and 87Rb in MOT. The data of 87Rb in MOT
are from Ref. [32] and the data of Pr:YSO and N-V center crystals
can be found in Ref. [35]. The dagger (†) marked values are actually
not calculated directly from the given value of γ and β. For such
solid materials, the inhomogeneous broadening must be taken into
account. If the lineshape of the distribution of the ions is modeled
as the Lorentzian function, the total decoherent rate can be written
as the sum of the broadening width and γ [30]. Considering the
optical repump scheme is used in the experimental demonstration,
the broadening width should be replaced by the laser linewith, which
is chosen as 1 MHz here. The ion density is also affected. The details
can be found in Ref. [35].

γ /2π (Hz) β (m−1s−1) L (mm)

87Rb 3.0 × 106 7.27 × 109 2.5
Pr:YSO 9.0 × 103 1.35 × 109 0.75†

N-V centers 3.0 × 108 1.05 × 1012 0.29†

If the wave vectors of all the fields are parallel, the length
of the medium should be considered carefully, because the
spatial pulse length of the slow light should be smaller than
the length of the medium. Assuming that the light pulse with
the width τt can be delayed for δd in the sample of which the
length is l, in order to generate the DSLP, the sample should
have the length larger than

L = cl

l + cδd

τt + L11. (26)

Next, we would like to extend our calculation into some
other materials, such as 87Rb in MOT, Pr:YSO, and N-V
center crystals. Table I shows the characteristic lengths of
those mediums for establishing SLPs. For the 87Rb in MOT,
the atomic density, normally 1.3 × 1011 cm−3 [29,34], is much
larger than the atomic vapor that we focus on before; therefore,
the characteristic length is shorter than the atomic vapor.

For the solid materials, the inhomogeneous broadenings
should be take into account and lead to a large coherence
decay rate [30]. In addition, the density of the ions depends on
the laser linewidth [35] which is assumed to be 1 MHz in the
calculation for both Pr:YSO and N-V centers. In Pr:YSO, the
value of L11 is about 3.68 mm, and D0 is normally 100 μm;
the crossing angle of the coupling and probe beams should
not be larger than 27 mrad. If the parallel traveling fields are
used, the sample length should not be less than 6.9 mm.1 For
N-V centers, with the same D0, the maximal cross angle of
the fields is 75 mrad. Because of the lack of experimental
data on the group velocity, the minimal length of the crystal is
not calculated. However, based on the work of Scully and
coworkers [35], the group velocity in N-V center crystals
should be less than that in Pr:YSO. Such a result indicates
that the sample length of N-V center crystals can be smaller
as compared with that in Pr:YSO.

1The group velocity depends on the laser power of the coupling
field which is about 3 mW here [37].
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V. CONCLUSIONS

In summary, we have presented a detailed study on the
direct transformation of slow light into the stationary light
pulse in a four-level atomic system driven by the bichromatic
standing wave coupling field. By switching on the backward
coupling field, the slow light pulse will interact with the
“dressed” atoms to became the stationary light pulse. Using
the parameters of 87Rb, the numerical simulation is presented
and shows that the stationary light pulse is not established
immediately after the backward coupling field is turned
on. Such a phenomenon is quite understandable using the
multiwave mixing process. By solving the Maxwell-Liouville
equation analytically, the characteristic length of the medium
is introduced to describe such spatial delay. As we can see
from Eq. (24), the characteristic length takes a quit simple
form and only relates to two parameters β and γ . Since the
β is determined by the density of the atoms, the characteristic
length is quite sensitive to the density as well. Four kinds
of medium are studied here, such as cold 87Rb with lower
density, 87Rb in MOT, Pr:YSO, and N-V center crystals, the
corresponding values of the characteristic length are 4.07, 2.5,
0.75, and 0.29 mm, respectively.

The characteristic length has two important implications:
First, the crossing angle of the coupling field and probe
pulses has a limit. Second, the characteristic length can give
us a standard for the medium length to complete the direct
conversion from the slow light into the stationary light pulse.
Based on our analysis, the necessary length (L11) of the
medium can be calculated from Eq. (25). For all the medium
we studied, the value of the L11 is roughly five times the
characteristic length.
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APPENDIX

The numerical solution of the essential density Eqs. (1)–
(3) is presented here. First of all, we treat the ∂tρi1 =
0, (i = 2,3,4) to get the zero order solutions, which are

σ
(0)
41 = iκ41(σ21�c+ + �p+), (A1)

σ
(0)
31 = iκ31(σ21�c− + �p−), (A2)

σ
(0)
21 = κ−1

41 �c+�p+ + κ−1
31 �c−�p−

−κ21 − κ−1
41 �2

c+ − κ−1
31 �2

c−
. (A3)

To simplify the expressions, the space and time dependence
of the Rabi frequencies is not indicated. Three complex
parameters are defined here as κ41 = γ41 − i�p+, κ31 = γ31 +
i(�c+ − �c− − �p+), κ21 = γ21 + i(�c+ − �p+).

The first order solution of σ21 can be obtained by substitut-
ing Eq. (A3) into the left-hand side of Eq. (3), which is

σ
(1)
21 = −

(
κ21 + �2

c+
κ41

+ �2
c−

κ31

)−1

×{
�c+�p+κ−1

41 + �c−�p−κ−1
31

+ {
2κ41�c−(κ31�c+�p+ + κ41�c−�p−)�̇c−

− [
κ31(κ21κ41 + �2

c+) + κ41�
2
c−

]
× [κ31�c+�̇p+ + κ41(�p−�̇c− + �c−�̇p−)]

}
× [

κ31(κ21κ41 + �2
c+) + κ41�

2
c−

]2}
. (A4)

Here �̇ denotes the time derivative of �. Notice that
�̇c+ = 0 as shown in Fig. 2. Then the first-order solution
of σ41 and σ31 can be obtained by substituting Eq. (A4)
into Eqs. (A1) and (A2), which can be written as σ

(1)
41 =

A1�p+ + A2�p− + A3�̇p+ + A4�̇p− and σ
(1)
31 = B1�p+ +

B2�p− + B3�̇p+ + B4�̇p−, where

A1 = i
(
β−φ2 − 2κ2

31κ41�
2
c+�c−�̇c−

)
φ3

; (A5)

A2 = −i�c+
(
�c−φ2 − κ31κ41ϕ�̇c−

)
φ3

; (A6)

B1 = −i�c+�c−
(
φ2 + 2κ31κ

2
41�c−�̇c−

)
φ3

; (A7)

B2 = i
(
β+φ2 + κ2

41�c−ϕ�̇c−
)

φ3
; (A8)

A3 = iκ2
31�

2
c+

φ2
; (A9)

A4 = iκ31κ41�c+�c−
φ2

; (A10)

B3 = iκ31κ41�c+�c−
φ2

; (A11)

B4 = iκ2
41�

2
c−

φ2
. (A12)

Four parameters are introduced here to simplify the above
expressions, which are

φ = κ31
(
κ21κ41 + �2

c+
) + κ41�

2
c−;

ϕ = κ31
(
κ21κ41 + �2

c+
) − κ41�

2
c−;

β+ = κ21κ41 + �2
c+;

β− = κ21κ31 + �2
c−.
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