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We analyze nonlinear surface modes supported by a metal-dielectric nanostructured metamaterial with a
nonlinear surface layer. We demonstrate that such a semi-infinite structure can support both TE and TM polarized
surface modes with the subwavelength localization, which can be regarded as an optical analog of the electronic
Tamm states. Such nonlinear Tamm states may appear even in the cases when linear surface modes do not exist.
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I. INTRODUCTION

Surface modes appear in different problems of physics as
a special type of mode localized near an interface separating
two different media. In optics, linear electromagnetic surface
waves are known to exist on metal surfaces at an interface
separating homogeneous and periodic dielectric media [1] as
well as in layered structures containing thin metal films [2–4].

The interest in the study of nonlinear electromagnetic
surface waves has been renewed recently, and it was shown the-
oretically [5–7] and experimentally [8–11] that nonlinearity-
induced self-trapping of light may become possible near
the edge of a one-dimensional waveguide array leading to
the formation of nonlinear Tamm states (see also [12], the
review [13], and references therein). In particular, it was found
that the surface modes acquire some novel properties in the
nonlinear regime. Such self-trapped nonlinear waves exist
above a certain threshold power, and they may demonstrate
bistability when for the same value of the mode power two
different surface modes coexist.

Recently, it was shown that strongly confined plasmonic
surface modes can exist at the termination of metal-dielectric
metamaterials [14–16]. It is required to employ binary struc-
tures to reduce the lattice symmetry in order to support
surface waves [16]. Such localized modes demonstrate many
properties that can be useful in photonic or plasmonic sources.
Indeed, due to their specific dispersion and hybrid metal-
dielectric nature of the structures that support such surface
modes, they allow coupling either to the optical mode inside the
light cone or directly to the plasmon mode. More importantly,
such surface modes are associated with lower losses than
conventional plasmons, and they can be controlled and laterally
confined by a simple patterning of the metal layer. In addition,
the surface metallic layer can also allow a simple electrical
injection scheme for the realization of plasmonic or photonic
integrated sources.

In this paper we demonstrate that the terminated metal-
dielectric nanostructured metamaterials, the so-called plas-
monic metamaterials, can support a variety of TE and TM
polarized surface modes in the nonlinear regime, and we
analyze the properties of the nonlinear Tamm states in such
structures, including their stability. We also demonstrate how
to generate both linear and nonlinear surface modes by an
incoming electromagnetic radiation.

The paper is organized as follows. In Sec. II A we discuss
the TE polarized nonlinear surface modes which generalize the
familiar linear surface modes, but may acquire some unusual
properties. Section II B is devoted to the study of the TM
polarized surface modes in both linear and nonlinear regimes.
In Sec. III we demonstrate, for the simpler example of the TE
polarized modes, how to generate nonlinear surface modes by
incoming radiation coupled to the periodic structure. Finally,
Sec. IV concludes the paper.

II. NONLINEAR SURFACE MODES

Two possible geometries of the terminated metal-dielectric
structures under consideration are shown in Figs. 1(a) and 1(b)
where we assume that all layers have subwavelength thickness.
In what follows, we consider separately the cases of TE and
TM polarizations.

A. TE polarized modes

For the case of TE-polarized waves and isotropic non-
saturable Kerr nonlinearity, dielectric permittivity of a thin
nonlinear layer can be written as

ε = εlin + χ3|Ey |2. (1)

We look for the electric and magnetic fields in the following
form: (Ey,Hx) ∼ ei(βz−ωt). In this case, Maxwell’s equations
read

Hz = i

k0

∂Ey

∂x
, Hx = β

k0
Ey,

∂Hz

∂x
= iβHx − ik0εEy,

(2)

where k0 = ω/c. From Eqs. (2) we derive the nonlinear
differential equation for the field amplitude:

∂2Ey

∂x2
+ (

εk2
0 − β2

)
Ey = 0. (3)

Now we take into account that the nonlinear layer is thin.
We assume that the nonlinear permittivity is constant across
the layer, and the nonlinearity is weak: δεnl/ε � 1. In this
case, we write down the formal solution of Eq. (3) in the thin
layer as

Ey = A sin[q(x + d)] + B cos[q(x + d)], (4)
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FIG. 1. Geometries of the structure under consideration: (a) metal
layer terminates the structure; (b) dielectric layer terminates the
structure.

where q =
√

εk2
0 − β2, and d is the thickness of the nonlinear

layer. We then formulate the continuity boundary conditions
at the layer interfaces. For this, it is convenient to introduce
a surface admittance for the metal-dielectric nanostructure:
YT E = Hz/Ey . Surface admittance can be expressed through
the components of the transfer matrix for the period of the
metal-dielectric nanostructure:

YT E = eiKD − T T E
11

T T E
12

, (5)

where K and D are the Bloch wave vector and period of the
structure, respectively. Expressions for the components of the
transfer matrices are textbook values, and they can be found,
e.g., in Ref. [1].

Field outside the structure should decay exponentially,
so it is convenient to write the field amplitude as Ey ∼
exp[κ(x + d)], where κ =

√
β2 − k2

0. If we then exclude all
the amplitudes using boundary conditions, we end up with the
following equation:(

κ

k0
+ iYT E

)
= k0d

(
ε − β2

k2
0

− iYT E

κ

k0

)
. (6)

We note that if we set the right-hand side of Eq. (6) to
zero, we obtain the dispersion of the surface states without
the nonlinear layer. These equations are somewhat analogous
to the boundary conditions for thin layers widely used in
microwave theory (see, e.g., Ref. [17]).

A nonlinear correction to the dielectric permittivity ε reads

ε − εlin = χ3|Ey |2 = χ3I0, (7)

where I0 is the wave intensity at the nonlinear layer boundary.
The sign of χ3 defines the type of nonlinearity: positive χ3 cor-
responds to focusing nonlinearity, while negative corresponds
to defocusing nonlinearity. We consider focusing nonlinearity,
and the field amplitude normalized such that χ3 = 1. As a
result, we derive the expressions relating the propagation
constant β, frequency ω, and field intensity I0. If we fix the
frequency and change β then for each value of the propagation
constant we obtain the corresponding field intensity. If the field
intensity vanishes then the propagation constant and frequency
usually correspond to the linear solution.

To calculate the energy flow, we integrate the Poynting
vector across the structure. For the TE polarization, the energy

flow reads

P =
∫ ∞

−∞
dxSz = 1

2

∫ ∞

−∞
Re(EyH

∗
x )dx

= β

2k0
|Ey(0)|2

∫ ∞

−∞
|u(x)|2dx, (8)

where u(x) is the wave amplitude normalized on the intensity
of the field at the nonlinear layer interface. Energy flow for
the vacuum half space is found in the form

∫ 0
−∞ |u(x)|2dx =

[2Im(k1x)]−1. Integration over the periodic structure can be
expressed as a sum over periods of the structure. If we apply
Bloch’s theorem for the Poynting vector we get

∫ ∞
0 |u(x)|2 =

I′/{1 − exp[−2Im(K)D]}. The integral over the period I′
can be calculated numerically using the transfer-matrix
method.

Now we can evaluate the energy flow per unit length P as
the function of the frequency ω and propagation constant β. In
our calculations, we consider the structure with the period
D = 62.5 nm, where the dielectric layer is twice as thick
as the metal one. Metal-dielectric structures can operate in
several different regimes: isotropic, anisotropic, or mixed [18].
We chose the parameters in such a way that our structure
exhibits all possible regimes as we change the frequency.
Dielectric is defined by the constant permittivity εd = 4, and
the permittivity of metal is described within the Drude model
as εm = 1 − ω2

p/ω2 with plasma frequency ωp = 10 eV. The
width of the nonlinear layer is set to 2 nm and its linear
dielectric permittivity to unity. We consider two cases where
the structure is terminated with either dielectric or metal layer,
respectively. Figure 2 shows the dependence of the mode P

vs propagation constant β for different frequencies in the
case of the TE polarization. We can see that there exist no
linear modes for low frequencies. The linear surface state
[see Fig. 2(d)] is formed by an array of coupled dielectric
waveguide modes in the metamaterial, and as any asymmetric
waveguide mode it has a cutoff frequency. The nonlinear
modes which do not originate from linear Tamm states have
a finite energy flow threshold. The presence of the power
threshold for the nonlinear waves was observed for a range
of waveguiding structures [5–11]. We would like to mention
that in more exotic waveguides, where the energy flows in
different parts of the structure in opposite directions, there
may exist nonlinear modes without power flow threshold [19],
but having some minimum required total-energy circulation.
In the shaded regions of Figs. 2(a) and 2(b) the modes are
delocalized either in air or in the periodic structure, and
the integral of the Poynting vector diverges. In addition,
the derivative of the energy flow can change sign. This can
potentially be an indication of the modulation instability
of the surface states along the y direction. Profiles of the
electric field of the surfaces states are depicted in Figs. 2(c)
and 2(d).

B. TM polarized modes

Most of the previous studies of the nonlinear surface waves
dealt with TE polarized waves only. Here we would like to
also study the properties of the TM polarized states, which
have two components of the electric field. Due to this wave
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FIG. 2. (Color online) (a),(b) Energy flow vs propagation constant at the interface of metal-dielectric metamaterial in the case of TE
polarization. Red (grey) lines correspond to the case when a dielectric layer terminates the structure, black lines correspond to the case when the
structure is terminated at a metal layer. Frequency: (a) 2 eV, (b) 4 eV. Shaded rectangles correspond to the areas where the propagating solutions
exist either in metamaterial or in vacuum. (c),(d) Characteristic profiles of the electric-field amplitude for the parameters corresponding to the
points A and B in (a) and (b), respectively.

structure, the nonlinear dielectric permittivity now will now
depend on two components of the electric field:

ε = εlin + χ3(|Ex |2 + |Ez|2). (9)

We then write down the Maxwell’s equations,

Ez = − i

k0ε

∂Hy

∂x
, Ex = − β

k0ε
Hy,

∂Ez

∂x
= iβEx + ik0εHy.

(10)

Nonlinear differential equation for the field amplitude Hy reads

∂2Hy

∂x2
− 1

ε

∂ε

∂x

∂Hy

∂x
+ (

εk2
0 − β2

)
Hy = 0. (11)

Assuming weak nonlinearity and negligibly small thickness
of the nonlinear layer, we assume the dielectric permittivity
to be constant across the layer. In this case the second term
in Eq. (11) vanishes, and we obtain the solution for the field
amplitude in the thin layer:

Hy = A sin[q(x + d)] + B cos[q(x + d)], (12)

where q and d are defined similar to the TE case. Applying
boundary conditions, we use the surface impedance ZT M =
Ez/Hy which reads

ZT M = T T M
12

eiKD − T T M
11

. (13)

The resulting dispersion equation then takes the form(
κ

k0
− iZT M

)
= k0d

(
1 − β2

εk2
0

+ iZT M

εκ

k0

)
, (14)

and

ε − εlin = χ3|Hy |2
(

β2

ε2
+ κ2

)
. (15)

We notice that, contrary to the TE case, Eq. (14) is quadratic
with respect to ε. It means that for each value of frequency and
propagation constant, we have two possible values of ε which
satisfy the dispersion relation. We can illustrate this property
for the example of a nonlinear layer at the boundary of a metal-
dielectric interface. In this case, one of the solutions always
corresponds to the dielectric permittivity while the other
corresponds to the permittivity of metal—in this case we would
have the conventional surface plasmon at the interface.
However, if we evaluate the relative difference between the
roots of Eq. (14), ε1,ε2, δ = (ε1 − ε2)/(ε1 + ε2), we obtain

δ =
⎛
⎝1 −

4Zd2β2
√

β2/k2
0 − 1√

β2/k2
0 − 1 + Z − k0d

⎞
⎠

1/2

. (16)

Due to the fact that d is small, the second term under the square
root is always small, and thus the difference is always close to
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unity. Thus the difference of two roots is always of the order
of the average of two roots. Thus if one of the roots satisfies
the implied condition of weak nonlinearity, δεnl/ε � 1, then
the second root would definitely violate the condition. In what
follows, we choose the root that meets the requirement of
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FIG. 3. (Color online) (a),(b) Energy flow vs propagation con-
stant at the interface of metal-dielectric metamaterial in the case
of TM polarization. Red (grey) lines correspond to the case when
dielectric layer terminates the structure, black lines correspond to the
case when the structure is terminated on the metal layer. Frequencies:
(a) 2 eV, (b) 4 eV. Shaded rectangles correspond to the areas where
the propagating solutions exist either in metamaterial or in vacuum.
(c)–(f) Profiles of the electric-field amplitude for the values depicted
with points A–D in (a) and (b), respectively.

the weak nonlinearity, i.e., the closest to the linear dielectric
permittivity of the nonlinear layer.

The calculation of the energy flow per unit length P for
the case of TM polarization is analogous to the case of TE
polarization:

P =
∫ ∞

−∞
dxSz = −1

2

∫ ∞

−∞
Re(ExH

∗
y )dx

= β

2k0
|Ey(0)|2

∫ ∞

−∞

1

ε(x)
|u(x)|2dx. (17)

Energy flow vs propagation constant for the case of TM
polarization is depicted in Figs. 3(a) and 3(b). We notice
that for the case of TM polarization there are additional
shaded regions corresponding to the propagation solutions in
metal-dielectric layered structure. These propagating solutions
are coupled surface plasmon polaritons of the individual
metal-dielectric interfaces. The existence region for the prop-
agating linear Bloch modes can be found from the inequality
|cos(KD)| = 1

2 |(T11 + T22)| < 1. A detailed analysis of these
modes can be found in Ref. [18].

Profiles of the magnetic field for the surface states are
shown in Figs. 3(c)–3(f). We notice that for the case of TM
polarization some surface states look like coupled surface
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FIG. 4. (Color online) (a) Field map of electric-field distribution
for the case of linear state depicted in Fig. 2. (b) Comparison of the
numerical result for the field profile at the propagation length 2 μm
[red (grey) lines] and the analytical stationary results (black lines).
Excitation frequency is 4 eV.
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plasmons at individual interfaces. We also observe that for
the case of ω = 4 eV there exist neither linear nor nonlinear
states in the structure with dielectric next to the nonlinear
layer.

We should mention that limitations of the approach caused
by the assumption of the thin layer and weak nonlinearity make
us consider only those nonlinear surface states which appear
due to the effective nonlinear change of the impedance of
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of the beam both in vacuum and in metamaterial. (b) The beam
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at the interface forming a nonlinear surface state. (c) Comparison
of numerical results for the field profile z = 2 μm [red (grey) lines]
and analytical stationary results (black lines). Excitation frequency is
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layered structure. This approach does not allow us to consider
the nonlinear states associated with nonlinear guided waves of
the thin nonlinear layer.

III. GENERATION OF SURFACE MODES

To verify our analytical results, we perform the numerical
simulations using the Beam propagation method (BPM) [20].
We consider the case of the TE polarization which is described
with the Helmholtz equation for the electric field,

∂2E

∂x2
+ ∂2E

∂z2
+ k2

0ε(x)E = 0, (18)

where ε includes both linear and nonlinear parts. We then apply
the paraxial approximation, and express the field amplitude
in the form E = A(x,z)eiβz, where A changes slowly along
the propagation direction, i.e., |∂2A/∂z2| � 2β|∂A/∂z|. If we
then substitute this expression into the Helmholtz equation (18)
and introduce new dimensionless variables x̄ = βx,z̄ = βz,
we obtain the familiar nonlinear Schroedinger equation:

2i
∂A

∂z̄
= −∂2A

∂x̄2
+

(
1 − εlin(x̄)

k2
0

β2

)
A − k2

0

β2
S(x̄)|A|2A,

(19)

where

S(x) =
{

1,0 < x/β < d;

0,x/β > d,x/β < 0.
(20)

Equation (19) is solved numerically using the Cranck-
Nikolson scheme. We use the absorbing boundary conditions
and Gaussian beam with the center at the nonlinear layer as
the initial condition at z = 0.

Figure 4(a) shows the results of our numerical simulations
for the linear case, the corresponding mode is depicted in
Fig. 2(b) with marker B. We observe that the input Gaussian
beam generates a linear surface mode as it propagates along
the interface. The profile of the electric field after the certain
propagation distance becomes close to the stationary mode is
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FIG. 6. (Color online) Field map of the electric-field distribution
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2.5k0. Horizontal dashed line shows the threshold power predicted
with the analytical theory.
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described by the analytical theory [shown in Fig. 4(b) by a
black curve].

Figures 5(a) and 5(b) show the propagation of the input
Gaussian beam launched near the nonlinear interface; the
corresponding mode is depicted in Fig. 2(a) (A). Figure 5(a)
corresponds to the case when there is insufficient power to
excite a nonlinear mode, and the wave is diffracted. When the
power of the input beam reaches the threshold [see Fig. 5(b)],
the field localizes at the interface forming the nonlinear surface
state with the profile close to one obtained from the analytical
theory [shown in Fig. 5(c) by a black solid curve].

To compare the power threshold values obtained from the
analytical and numerical calculations, in Fig. 6 we plot the
distribution of the electric field after 2 μm propagation versus
input energy flow. Each horizontal cross section of this figure
corresponds to the electric-field profile for a given input power
of the Gaussian beam. We notice that when the input power
reaches a threshold value, the field localizes at the interface.
The threshold pump power obtained numerically is slightly
larger than that found analytically [shown by dashed horizontal
line on Fig. 6]. This can be explained by the fact that the
Gaussian initial beam profile used in numerical simulations
does not coincide with the stationary surface wave profile, and

a part of the input energy is diffracted from the beam when it
transforms into the surface state.

IV. CONCLUSIONS

We have presented a simplified analytical approach for the
calculation of nonlinear dispersion of surface states in metal-
dielectric nanostructures. We have shown that along with linear
surface states, such terminated structures support nonlinear
states having a finite threshold power. We have shown that, for
the case of TM polarization two types of localized modes may
exist even for the wavelengths much larger than the structure
period. We have revealed that for the case of TM polarization
up to four modes having the same frequency can be supported
by the structure, i.e., the TM modes demonstrate multiple
stability.
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