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Interaction of electron vortices and optical vortices with matter and processes of orbital
angular momentum exchange
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The quantum processes involved in the interaction of matter with, separately, an electron vortex (EV) and an
optical vortex (OV) are described, with matter modeled in terms of a neutral two-particle atomic system, allowing
for both the internal (electronic-type) motion and the gross (center-of-mass-type) motion of matter to be taken
into account. The coupling of the atomic system to the EV is dominated by Coulomb forces, while that of the OV
is taken in the p · A canonical form which couples A, the transverse vector potential of the optical vortex, to the
linear momenta of the two-particle system. An analysis of the dipole active transition matrix element is carried
out in each case. The electron vortex is found to be capable of exchanging its orbital angular momentum (OAM)
with both the electronic and the center-of-mass motions of the atomic system in an electric dipole transition. In
contrast, for electric dipole transitions the optical vortex is found to be capable of exchanging OAM only with
the center of mass. The predictions are discussed with reference to recent experiments on electron-energy-loss
spectroscopy using EVs traversing magnetized iron thin-film samples and those involving OVs interacting with
chiral molecules.
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I. INTRODUCTION

Vortices are now well-established phenomena in a num-
ber of physical contexts, most notably in condensed-matter
physics, where they are known to play an important role in
the dynamics of superfluid flow [1] and, more recently, in
dilute-gas Bose-Einstein condensates [2]; in optics as optical
vortices in the form of Laguerre-Gaussian and Bessel light
beams [3–6]; and, very recently, in electron microscopy
as electron vortices [7–9]. Broadly, a vortex field has a
propagating wave front endowed with a screw dislocation.
The distinctive feature throughout is the presence of a phase
factor exp (ilφ), where φ is the azimuthal angle about the beam
axis and l, an integer taking positive and negative values, is the
winding number, such that the field possesses orbital angular
momentum (OAM) of lh̄. Over the last two decades or so, much
work has been carried out on optical vortex (OV) beams, so
much so that optical vortex physics has now been established
as a new branch of modern optics. The area began with the
seminal work by Nye and Berry [10], who put forward the
suggestion of beams endowed with the vortex property, and
the work by Allen et al. [11], first reported in 1992, which
set the scene for the subsequent research into optical vortices
and their interaction with matter. Optical vortex physics is rich
in both fundamental considerations and applications and has
led to key applications in the manipulation of matter, both in
the bulk and at the level of basic constituents. This impact
is envisaged to continue in interdisciplinary areas, including
quantum information processing.

The phenomenon of electron vortices (EVs) is a very recent
addition to the growing catalog of vortex physics, essentially
arising from the concept of OVs. The suggestion for their
existence was first made by Bliokh et al. [12]. Like an OV, an
EV also carries the key property of quantized OAM of lh̄ per
electron. Following Bliokh et al.’s suggestion, experimental
work led to the creation of EVs, first by Uchida and Tonomora
[7] using a stepped spiral phase plate, followed by Verbeeck

et al. [8], who used a binary holographic grating with a Y-like
point defect, and then by McMorran et al. [9], who also used
the holographic plate technique but managed to generate EV
beams with winding numbers as high as l = 100. It is now
clear that EVs can be readily generated inside an electron
microscope. More recent advances include the creation of
EV beams of cross sections in the atomic scale [13] and the
realization that they can also be generated using spiral phase
plates [14]. EV beams are predicted to lead to important new
advances in the physics and potential interdisciplinary applica-
tions of electron beams, revolutionizing electron microscopy
and spectroscopy with atomic-scale resolution in the imaging
of materials, including those with low absorption contrast such
as biological specimens [15].

Since OAM is a well-defined quantized property of both
OVs and EVs, it is natural to expect it be exchanged when either
type of vortex beam interacts with matter in the form of atoms,
molecules, or solids. Both optical spectroscopy using OV
beams and electron-energy-loss spectroscopy (EELS) using
EV beams are expected to involve an exchange of quantized
OAM with matter, especially in the normally dominant
electric dipole transitions. The exchange must involve both
the “electronic-type” motion and the “center-of-mass-type”
motion of matter. The purpose of this paper is to systematize
the theory appropriate for the processes of OAM exchange
in the interactions of OVs and EVs separately, with a model
system of matter in the form of a neutral two-particle system.
The main aim is to find out whether and, if so, in what
manner EVs differ from OVs in the processes of exchange of
OAM. This is done by extracting information residing in the
respective transition matrix elements leading to the selection
rules associated with OAM transfer.

This paper is organized as follows. In Sec. II we outline
the basic formalisms for the OVs and EVs in the forms
of free Bessel modes, define the model atomic system, and
emphasize the necessity of separating the matter motion
into internal (electronic-type) and gross (center-of-mass-type)
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motions. We write down the total Lagrangian of the system
relative to the laboratory frame and follow canonical steps
to determine the conjugate momenta, leading to the total
Hamiltonian, including the respective interactions, which we
then restrict to the dipole approximation. Finally, we determine
the unperturbed quantum states participating in a typical
transition. In Sec. III we consider OVs in interaction with the
model atomic system and proceed to discuss the selection rules
governing the dipole transition matrix element. We also discuss
the experimental results emerging from work by Araoka et al.
[16] which conforms with the theoretical prediction for this
case. In Sec. IV we consider the corresponding theory for
EVs interacting with the model atomic system and deduce
the selection rules governing the dipole transitions in this
case as well. In Sec. V we discuss the predictions of our
theory in relation to the results of the recent experiment on
EELS by Verbeeck et al. [8], who reported the observation
of dichroism in electron-energy-loss spectroscopy of thin-film
magnetized iron samples using EVs. Section VI contains a
summary of the main conclusions regarding the comparison
between the two vortex interactions with matter and pro-
vides further comments. Some details are consigned to the
appendices.

II. OPTICAL AND ELECTRON VORTEX
MODE FUNCTIONS

A. Bessel modes

For both types of vortices we shall concentrate on the
simplest type of vortex function, namely, the Bessel mode. As
a solution to both the Helmholtz and Schrödinger equations the
Bessel beam is a suitable carrier for orbital angular momentum
for both optical and electronic systems; choosing solutions
involving only Bessel functions of the first kind gives a mode
with zero intensity along the optical axis, as required to
support the phase singularity arising from the vortex phase
factor eilφ .

In the first case of the optical vortex the mode function
is characterized by a transverse electric field which is a
solution of the electromagnetic vector Helmholtz equation.
In cylindrical polar coordinates r = (ρ,φ,z) the optical vortex
mode function is

E(r,t) = E0Jl(k⊥ρ)eikzzeilφe−iωtε̂εε, (1)

where E0 is the mode amplitude and the unit vector ε̂ denotes
the wave polarization vector. Since we are mainly concerned
with orbital angular momentum, we shall assume that ε̂ stands
for linear polarization, unless stated otherwise. The radial
function Jl(k⊥ρ) is the Bessel function of the first kind of
order l, where l is the winding number. The wave vectors
k⊥ and kz stand for in-plane and axial wave vector variables,
respectively, such that k2 = k2

⊥ + k2
z , and ω is the frequency of

the light. For the optical case, the transverse vector potential
is related to the vortex electric field of Eq. (1) by

A(r,t) = − i

ω
E(r,t). (2)

The electron vortex mode is characterized by a wave
function ψ(r,t), which is a solution of the scalar Helmholtz
equation emerging from the free Schrödinger equation in

cylindrical polar coordinates. For convenience and for ease
of comparison we retain the same symbols, including wave
vector and frequency variables. We have

ψ(r,t) = NJl(k⊥ρ)eikzzeilφe−iωt , (3)

where N is a suitable normalization constant and ω = E/h̄,
with E being the mode energy. For both types of vortex mode
the vorticity resides in the phase factor eilφ . Note that the two
vortex functions described above are similar in appearance
and formally have the same spatial and temporal distributions;
however, their physical characteristics differ markedly, first in
the scales of variation, and second, since they describe very
different phenomena, their respective interactions with matter
differ significantly. For the optical vortex case, the coupling is
via the minimal coupling prescription, leading to interaction
terms of the form p · A(r,t), representing the interaction of
the transverse vortex vector potential with the momentum
p of each of the atomic particles. In contrast, the leading
interaction of the charged electron vortex is a coupling to
the two-particle atomic system via the Coulomb interaction,
with scalar potential �(r′) coupling to each of the atomic
constituents. We have

�(r′) = − e

4πε0

1

|rv − r′| (4)

as the Coulomb potential at r′ due to the electron vortex with
position variable rv .

The main task is to explore, by direct analysis, in each case
how the transfer of OAM can occur in transitions between
states of the vortex beam and the two-particle system and
deduce the selection rules governing those processes. To
this end we use a rigorous canonical theory based on the
Lagrangian which leads us to the total Hamiltonian of the
unperturbed states and their interactions.

B. Total Lagrangian and Hamiltonian

With the laboratory coordinate system taken to be centered
at the vortex origin, as shown in Fig. 1, we shall assume
that the two-particle system is hydrogenic, consisting of an
electron of charge −e, mass me, position vector re, and
momentum pe, and a nucleus of mass mp, charge e, position
vector rp, and momentum pp, all relative to the (laboratory)
coordinate system in which the vortices are defined with
position variable rv and such that all position vectors are
in cylindrical coordinates rα = (ρα,φα,zα). In this frame of
reference the two-particle system possesses a total charge
density given by

ρ̃(r) = eδ(r − rp) − eδ(r − re). (5)

The Lagrangian of the two-particle system in the presence of
the interaction with both vortex beams can be written as

L = L0
atomic + L0

vortex + Lint. (6)
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FIG. 1. (Color online) The relevant coordinate frames in the
description of the interaction between a two-particle neutral system
and a Bessel-type optical or electron vortex beam (schematic). The
vortex position variable rv relative to the laboratory frame is given
in cylindrical coordinates; R is the position variable of the atomic
center of mass, and q stands for the position variable of the internal
(electron-type) motion. The projections of the three position vector
variables on the xy plane are seen to have azimuthal angular positions
φv , φR , and φq respectively.

Explicitly, we have (following standard Lagrangian techniques
as in, for example, [17])

L0
atomic = 1

2
meṙ2

e + 1

2
mp ṙ2

p + e2

4πε0

1

|rp − re| , (7)

L0
vortex = ε0

2

∫
{Ȧ2(r,t) − c2[∇ × A(r,t)]2}d3r + 1

2
meṙ2

v,

(8)

Lint = eṙp · A(rp) − eṙe · A(re) −
∫

ρ̃(r′)�(r′)d3r ′. (9)

Thus L0
atomic is simply the sum of the kinetic energies minus the

interparticle Coulomb potential energy of the atomic particles,
and L0

vortex is the zeroth-order energies of the optical and
electron vortices. Lint contains the interaction of the optical
vortex vector potential with each of the atomic particles, as
well as the interaction of the electron vortex Coulomb potential
with the charge density of the atomic particles.

The formalism so far is such that the coordinates of the two
particles forming the atom are expressed entirely relative to the
laboratory frame. However, to be able to discuss transitions
involving the internal states of the atom, we proceed by
expressing the atomic motion in terms of the gross (center-of-
mass-type) motion and the internal (electronic-type) motion.
This is achieved by the following transformation:

q = re − rp, R = mere + mprp

M
, (10)

where M = me + mp is the total mass. We now have q as the
internal coordinate representing electronic-type motion about
the nuclear position rp, while R is the coordinate of the center
of mass in the laboratory frame. In terms of q and R the particle
position variables are given by

re = R + mp

M
q, rp = R − me

M
q. (11)

Substituting for re and rp using Eq. (11), the Lagrangian
becomes

L = 1

2
me

(
Ṙ + mp

M
q̇
)2

+ 1

2
mp

(
Ṙ − me

M
q̇
)2

− e
(

Ṙ + mp

M
q̇
)

· A(re) + e
(

Ṙ − me

M
q̇
)

· A(rp)

+ e2

4πε0

1

|q|+
e2

4πε0

(
1

|rv−rp|−
1

|rv−re|
)

+ L0
vortex,

(12)

where, for convenience at this stage, we have left unchanged
the implicit dependence of the vector potential A(r) on the
original particle coordinates and have evaluated the integral
involving �(r′). We note again that rv denotes the vortex
position variable. We now determine the momenta pR and
pq canonically conjugate to R and q, respectively. We have,
after rearrangements,

pR = ∂L

∂Ṙ
= MṘ − e(δA), (13)

pq = ∂L

∂q̇
= μq̇ − e(A), (14)

where we have introduced the short-hand notation

(δA) = A(re) − A(rp), (15)

(A) = mp

M
A(re) + me

M
A(rp). (16)

The momentum canonically conjugate to rv is pv = meṙv , and
the momentum density canonically conjugate to A is � = ε0Ȧ.
The Hamiltonian representing the two-particle atom in the
presence of the interaction with the two vortices is given by
the standard expression

H = pR · Ṙ + pq · q̇ + pv · ṙv +
∫

(� · Ȧ)d3r − L. (17)

Substituting for all the canonical momenta and momentum
density, we find that a number of terms cancel to yield the
result

H = 1

2
MṘ2 + 1

2
μq̇2 − e2

4πε0

1

|q|

− e2

4πε0

(
1

|rv − rp| − 1

|rv − re|
)

+ H 0
v , (18)

where μ = memp/M is the reduced mass and H 0
v is given

below in Eq. (27). That the Hamiltonian in Eq. (18) incor-
porates the interactions with the two vortices can be seen on
eliminating the particle velocities in favor of the canonical
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momenta using Eqs. (13) and (14). We have

H = [pq + e(A)]2

2μ
+ [pR + e(δA)]2

2M
− e2

4πε0

1

|q|

− e2

4πε0

(
1

|rv − rp| − 1

|rv − re|
)

+ H 0
v . (19)

Expanding the squares in the first two terms, we find

H = p2
q

2μ
− e2

4πε0

1

|q| + p2
R

2M
+ e

μ
pq · (A) + e

M
pR · (δA)

− e2

4πε0

(
1

|rv − rp| − 1

|rv − re|
)

+ H 0
v , (20)

where we have retained only the terms linear in A(r)
since for the optical vortex case our main concern is with
transitions involving single optical vortex photons. Finally, we
concentrate on the electric dipole approximation and expand
the functions of (R − me

M
q) and (R + mp

M
q) in Eq. (20) about

the center-of-mass coordinate R to find

1

|rv − rp| − 1

|rv − re| ≈ q · (rv − R)

|rv − R|3 + O(q2), (21)

A(re) ≈ A(R) + mp

M
(q · ∇)A(R) + O(q2), (22)

A(rp) ≈ A(R) − me

M
(q · ∇)A(R) + O(q2). (23)

Retaining only those terms up to first order in q, as is consistent
with the dipole approximation, we can then write

H = H 0
q + H 0

cm + H 0
v + H

int(q)
OV + H

int(R)
OV + H int

EV, (24)

where the individual terms are expressed as

H 0
q = p2

q

2μ
− e2

4πε0

1

|q| , (25)

H 0
cm = p2

R

2M
, (26)

H 0
v = ε0

2

∫
{Ȧ2(r) + c2[∇ × A(r)]2}d3r + p2

v

2me

, (27)

H
int(q)
OV = e

μ
pq · A(R), (28)

H
int(R)
OV = e

M
pR · (q · ∇)A(R), (29)

H int
EV = e2

4πε0

q · (rv − R)

|r − R|3 (30)

to dipole order. We can now write the overall Hamiltonian of
the system as the sum

H = H 0 + H int
OV + H int

EV, (31)

where H 0 = H 0
q + H 0

cm + H 0
v is the zeroth-order Hamiltonian

of the overall system, while H int
OV and H int

EV are the interaction
Hamiltonians of the two-particle system with the optical
vortex (including the Röntgen interaction given by Eq. (29);
cf. [18]) and the electron vortex, respectively. The total zeroth-
order Hamiltonian H 0 consists of four separate zeroth-order
Hamiltonians representing the distinct subsystems, namely,
H 0

q representing the internal (electronic-type) motion and H 0
cm

representing the gross (center-of-mass-type) motion, while,

as mentioned above, H 0
v = H 0

OV + H 0
EV represents the zeroth-

order Hamiltonian of the free optical vortex and the electron
vortex, respectively. We have

H 0 = H 0
q + H 0

cm + H 0
OV + H 0

EV. (32)

In this paper we will be dealing with only one vortex at a
time interacting with the model atomic system, so that in
applications of Eq. (32) only three zeroth-order Hamiltonians
are required. For the optical vortex case H 0

EV is excluded, while
in the electron vortex case H 0

OV is excluded.

C. Unperturbed quantum states

The selection rules can be deduced from a careful analysis
of the transition matrix element evaluated between appropriate
final and initial states |�f 〉 and |�i〉 of the vortex plus the
two-particle system. These are eigenstates of the unperturbed
Hamiltonian H 0. For the optical case the initial and final
states are products of the atomic electron and center-of-mass
eigenstates and the number state of the optical vortex field:

|�i,f 〉 = ∣∣ψi,f
q (q); ψi,f

R (R); ni,f
〉
. (33)

The number states |ni,f 〉 are eigenstates of the optical vortex
Hamiltonian for which the vector potential operator is written
in terms of annihilation and creation operators, âk⊥,kz

and â
†
k⊥,kz

,
as follows:

Â(r,t) = A(r,t)âk⊥,kz
+ A∗(r,t)â†

k⊥,kz
. (34)

For the electron vortex case, the initial and final states
are written as product states of the electron vortex wave
function and the atomic internal electron and center-of-mass
eigenstates, given as

|�i,f 〉 = ∣∣ψi,f
q (q); ψi,f

R (R); ψi,f
v (rv)

〉
. (35)

The internal states of the atom |ψq(q,θq,φq)〉 = |nq ; �; m〉
are eigenstates of Ĥ 0

q and can be formally identified as the well-
known hydrogenic states, here given in spherical coordinates
(q,θq,φq). Explicitly, we have

|ψq(q)〉 = |ψq(q,θq,φq)〉 = Nn,�,mQn(q)P m
� ( cos(θq))eimφq ,

(36)

where the integer � is the internal atomic orbital angular
momentum (not to be confused with l, the vortex OAM
quantum number about the beam axis), m is the internal atomic
magnetic quantum number (such that −� � m � �), and n is
the principal quantum number of the internal atomic motion.

The eigenstates of the center of mass are taken to be product
states of both its translational and rotational motion,

|ψR(R)〉 = |ψR(ρR,φR,zR)〉 = R(ρR)eiKRρReiKzzR eiLφR ,

(37)

where the subscript R indicates center-of-mass coordinates
relative to the laboratory frame. KR and Kz are center-of-mass
wave vectors for the in-plane translational motion and motion
along the z axis, such that the total linear momentum of the
center of mass is given by K2 = K2

z + K2
R . L is the orbital

angular momentum quantum number of the center of mass
about the beam axis.
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The vortex states of both the optical vortex and the electron
vortex are described above by Eqs. (1) and (3) respectively;
vectors and their components relating to the vortex beams
will henceforth be denoted with the subscript v. In Eqs. (33)
and (35) and also in what follows, initial and final values
of functions or constants are respectively denoted by the
superscripts i and f , while final values of quantum numbers
are indicated by the presence of a dash.

We seek to determine the orbital angular momentum
selection rules in processes involving dipole active transitions
due to the interactions between the vortices and the atom
such that an exchange of orbital angular momentum occurs
between the three subsystems. This will be done separately
for the optical vortex and the electron vortex, in each case by
analyzing the complex matrix element 〈�f |Ĥ int

O(E)V|�i〉 and its
modulus square; the latter enters the well-known formula for
Fermi’s golden rule, leading to the evaluation of the transition
rate. Note, however, that the orbital angular momentum is
described by the azimuthal features of the optical vortex field
and electron vortex wave function. For this reason only these
azimuthal angular components in the matrix elements need
to be explicitly evaluated. In this way, the orbital angular
momentum selection rules will be made apparent, and the
question of transfer of orbital angular momentum between the
vortex and the atomic internal dynamics will be answered.

III. THE OPTICAL VORTEX CASE

The two terms identified as dipole order interaction
Hamiltonians for the OV are given by Eqs. (28) and (29). It
can be shown that H

int(R)
OV is in fact the same as the so-called

Röntgen interaction Hamiltonian [18] which couples the
center-of-mass motion and the internal motion via the optical
vortex magnetic field B. We shall not consider the effects of
this Röntgen interaction Hamiltonian any further here, as it
is typically much smaller, as regards internal atomic motion,
than the direct coupling with the vector potential, given by
H

int(q)
OV [19]. We now write H

int(q)
OV in operator form:

Ĥ
int(q)
OV = − e

μ
pq · Â(R). (38)

The interaction is proportional to the linear momentum opera-
tor pq of the internal atomic motion, and it should be noted that
the vector potential operator is evaluated at the center-of-mass
coordinate R, expressed in the laboratory frame of reference
(see Fig. 1). The transition matrix element is given by

Mf i

OV = 〈
ψf

q (q); ψf

R (R); nf
∣∣Ĥ int(q)

OV

∣∣ψi
q(q); ψi

R(R); ni
〉
. (39)

That the interaction Hamiltonian contributes to the electric
dipole transition by virtue of the presence of internal momen-
tum operator pq can be seen using the commutator identity

pq = iμ

h̄

[
Ĥ 0

q ,q
]
. (40)

In the context of the matrix element we have the standard result〈
ψf

q

∣∣pq

∣∣ψi
q

〉 = iμ

h̄

〈
ψf

q

∣∣[Ĥ 0
q ,q

]∣∣ψi
q

〉
(41)

= iμ(Wf − Wi)

h̄

〈
ψf

q

∣∣q∣∣ψi
q

〉
, (42)

where Wi and Wf are hydrogenic-type eigenenergies of
the initial and final hydrogenic-type states participating
in the transition, such that h̄−1(Wf − Wi) = ω. It is clear that
the interaction in the dipole approximation involves only the
center-of-mass cylindrical coordinates (ρR,φR,zR). Substitut-
ing this into the transition matrix element, we can write

Mf i

OV = i(Wi − Wf )

h̄

〈
ψf

q

∣∣ε̂εε · d
∣∣ψi

q

〉
× 〈

ψ
f

R (R); nf | Â(R) | ψi
R(R); ni

〉
, (43)

where we have replaced q by d = eq, the electric dipole
moment vector, and Â(R) is the scalar operator of the
vortex vector potential, the optical polarization vector ε̂εε

being incorporated into the dipole matrix element 〈ε̂εε · d〉f i .
Evaluation of the integral of this scalar vortex potential over
the initial and final states yields

Mf i

OV = iμ(Wf − Wi)

h̄

〈
ψf

q

∣∣ε̂εε · d
∣∣ψi

q

〉
× [Aδ(L,L′−l)δ(ni ,nf +1)δ(K ′

z − Kz − kz)

−Bδ(L,L′+l)δ(ni ,nf −1)δ(K ′
z − Kz + kz)], (44)

where the factors A and B arise from the integration and
are not the same. The conservation of OAM is indicated by
the presence of Kronecker deltas δ(L,L′−l) and δ(L,L′+l), such
that there is an exchange of orbital angular momentum of
magnitude lh̄. The first term indicates the process of absorption
of a vortex photon by the center of mass, increasing the orbital
angular momentum of the center of mass about the z axis by
lh̄ and decreasing the occupancy of the photon field by 1. The
second term describes the reverse process, that of emission of
a vortex photon by the center of mass. Equation (44) embodies
conservation of linear as well as angular momentum. The
Dirac δ functions δ(K ′

z − Kz − kz) and δ(K ′
z − Kz + kz)

exhibit the exchange of linear momentum between the optical
vortex and the center of mass, such that by absorbing or
emitting a vortex photon the linear momentum of the center
of mass changes by ±h̄kz.

Thus we conclude that it is possible to transfer orbital
angular momentum only between the optical vortex and
the center of mass, as previously shown by [18,20]. The
internal electron-type motion is involved in the process of
OAM transfer only if the optical vortex beam is circularly
polarized, as can be seen by evaluation of the dipole matrix
element 〈ψf

q |ε̂ · d|ψi
q〉, but this has nothing to do with the

orbital angular momentum of the light field due to the vortex
factor eilφR . In the dipole approximation, it is not possible
to transfer orbital angular momentum from the vortex to
the internal degrees of freedom of the electron-type motion.
This is in agreement with the results of the experimental
investigations by Araoka et al. [16]. In their work, these authors
demonstrated that OV light is not specific in its interaction
with chiral matter and that orbital angular momentum may
only be exchanged between the optical vortex and the center
of mass of the system. The experimental results also confirm
the theoretical predictions of earlier investigations using the
Power-Zienau-Woolley (PZW) Hamiltonian approach [20].
Further experimental results have confirmed that OAM may
be transferred between an OV and the rotational motion of an
atom [21].
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IV. THE ELECTRON VORTEX CASE

For the case of the electron vortex interacting with the
two-particle system we have the total Hamiltonian

Ĥ = Ĥ 0 + Ĥ int
EV, (45)

where here the zeroth-order Hamiltonian contains only those
terms relevant to the two-particle system and the electron
vortex:

Ĥ 0 = Ĥ 0
q + Ĥ 0

cm + Ĥ 0
EV. (46)

The interaction Hamiltonian Ĥ Int
EV is given by the Coulomb

interaction, expanded to dipole order:

Ĥ int
EV = e2

4πε0

q · (rv − R)

|rv − R|3 , (47)

as derived above. The relevant matrix element in this case is

Mf i

EV = 〈
ψf

q (q); ψf

R (R); ψf
v (rv)

∣∣Ĥ int
EV

∣∣ψi
q (q); ψi

R(R); ψi
v(rv)

〉
,

(48)

which can be rewritten as the following dot product of matrix
elements:

Mf i

EV = e2

4πε0

〈
ψf

q (q)|q|ψi
q(q)

〉
·
〈
ψf

v (rv); ψf
p (R)

∣∣∣∣ rv − R
|rv − R|3

∣∣∣∣ψi
v(rv); ψi

R(R)

〉
. (49)

The first term can be expressed as the dipole matrix element
〈ψf

q | d | ψi
q〉, where, as before, the atomic electron dipole

moment is given by d = eq. The second term in Eq. (49),
when evaluated, yields〈

rv − R
|rv − R|3

〉
f i

= C
(

x̂ + iŷ
2

)
δ[(L+l),(L′+l′+1)]

+D
(

x̂ − iŷ
2

)
δ[(L+l),(L′+l′−1)]

+ I ẑδ[(L+l),(L′+l′)], (50)

where C, D, and I are functions which do not contain angular
variables and the carets indicate Cartesian unit vectors (see
Appendix B for details). When the dot product in Eq. (49)
is straightforwardly evaluated, the relevant matrix elements
of the dipole moment components between internal states are
those of the form (qx ± iqy)/2 and qz. These would result in
the familiar selection rules in optical dipole transitions. The
overall matrix element has the form

Mf i

EV =Qδ[(L+l),(L′+l′+1)]δ[m,m′−1] +Sδ[(L+l),(L′+l′−1)]δ[m,m′+1]

+Uδ[(L+l),(L′+l′)]δ[m,m′]. (51)

The first term in Eq. (51) indicates the possibility of a single
unit of orbital angular momentum being transferred from either
the center-of-mass or the electron vortex to the atomic electron,
decreasing the total OAM of the combined vortex–center-of-
mass system by one unit and increasing the magnetic quantum
number of the atomic electron by one unit. The second term de-
scribes the reverse process, that of a unit of OAM being trans-
ferred from the internal atomic motion to the vortex–center-
of-mass system; the third term indicates the possibility of an
interaction in which no OAM is transferred between the three

subsystems. This is clearly different from the case involving
the optical vortex, in which only a transfer between the vortex
and the center of mass is possible, unless the beam itself is cir-
cularly polarized. This result was previously reported in [22].

V. DICHROISM IN EELS

Predictions of the OAM selection rules for the EV case
can be readily put to the test by consideration in relation to
a very recent experiment by Verbeeck et al. [8], who set out
to measure the dichroic signal in the case of L2 and L3 edges
in a magnetized iron thin film. Their experiment essentially
involves a single-particle transition matrix element, so only the
m-selection rule is of importance, and it is easy to see that the
same OAM selection rules would apply if the single-particle
internal atomic wave function in the model system discussed
here is replaced by the many-particle electron wave functions
of the transition-metal atom [23]. This is accomplished by
replacing |ψi

q〉 = |n; �; m〉 by |2p63dn; j ; mj 〉 and |ψf
q 〉 =

|n; �′; m′〉 by |2p53dn+1; j ′; m′
j 〉, where j and mj are the total

angular momentum quantum number and associated magnetic
quantum number of the many-particle transition-metal atom
in which the 2p core electrons and 3d valence electron states
are involved in the transition [24].

By Fermi’s golden rule, the azimuthal angular dependence
of the transition rate �±l for the transition process involving
an EV mode having l = ±1 is such that

�±l ∝ ∣∣Ml=±1
EV

∣∣2
ρ̂f , (52)

where ρ̂f is the density of final states. As before, we need only
consider the angular dependence since the primary purpose
is to examine the role of the OAM of the EV mode in the
transition process. From Eq. (51) the internal atomic dipole
transitions in question are those for which m′

j = mj ± 1, for
application to the result obtained by Verbeeck et al. [8]. These
transitions can occur accompanied by the transfer of one unit
of OAM of l = ±1, either gained or lost by the EV mode. Since
this interaction takes place within iron thin films, a first approx-
imation is to assume that the atomic centers are fixed, ensuring
L = L′ = 0, so that all OAM exchange occurs only between
the vortex and the internal motion. The dichroism signal is
proportional to the difference between the transition rates for
the scenario involving the vortex with OAM equal to l on one
hand and that involving the vortex with OAM equal to −l on the
other. Relaxing the fixed atom approximation would involve
center-of-mass states in the form of phonons endowed with
OAM, which would then participate in the OAM exchange.

By examining the possible transitions in the L2 and L3

edges we can determine whether or not we expect to see
dichroism based on the transitions the l = ±1 beams may
excite (without, at this point, taking into account the density
of the available final states). We deal here with many-electron
wave functions, and the magnetic quantum number involved
here is the total angular momentum magnetic quantum number
mj . The iron L edge corresponds to transitions from the 2p

states to 3d states. This satisfies the selection rule �� = +1,
and interaction with the beam requires �mj = ±1. Since we
deal with the dipole approximation, we have the restriction that
�s = 0. Using a very simple model in which the angular part
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of the many-electron wave function is expressed in terms of
spherical harmonics of the form Y

mj

j [25], we have now a set of
12 allowed transitions, six each allowed for the different beam
orbital angular momentum polarizations, with these six further
subdivided into two from the L2 edge and four from the L3

edge for both senses of rotation of the beam (see Appendix B).
Each possible transition in the interaction of the Fe atom with
the l = +1 beam has a corresponding transition induced by
the l = −1 beam, and the strengths of these two interactions
are the same (full details are given in Appendix B). The total
transition rate �±1 for the L edge is given by the sum of
the matrix elements over the set of possible initial and final
states, from L2 and L3, multiplied by the densities of the final
states. Thus, since each l = +1 transition has a corresponding
l = −1 transition and the strengths are the same, the modulus
sqared of the matrix elements will be the same for interactions
with EVs with l = ±1. The dichroic signals will arise from
the difference in the m-level occupancy. It should be noted
that here the m-level occupancy does not refer to that of the
3d levels of the transition metals but to the multiplet states
of the 2p53dn+1. Because of the strong spin-orbit coupling
between the core hole and the rest of the electronic systems,
these signals will be sensitive to the spin magnetization as
well [24].

Verbeeck et al. measured a clear dichroism signal in
their experiment [8]. Using the analysis above, this can be
explained as being due to the difference in the density of states
such that ρ̂f 	= ρ̂f . Since these processes are dominated by
dipole active transitions, the dichroism signal can be detected
using small-angle scattering. Clearly, this is advantageous
when compared with the electron-energy-loss magnetic chiral
dichroism technique used by Schattschneider et al. [26], which
operates using large scattering angles and where the cross
section for energy loss is much reduced and experiments are
more susceptible to noise.

VI. COMMENTS AND CONCLUSIONS

We have demonstrated by explicit analysis that a transfer of
OAM can indeed occur between an EV mode and the internal
electronic-type dynamics of matter involving an electric dipole
transition. This contrasts sharply with the case of optical
OAM exchange in the interaction of an OV mode with similar
systems. Our predictions that optical vortices cannot exchange
OAM with the internal dynamics of an atom in the leading
electric dipole interaction are consistent with the experimental
finding of Araoka et al. [16], who demonstrated that OVs are
not specific in their interaction with chiral molecules. This is
also consistent with earlier theoretical predictions by Babiker
et al. [20], who used a complicated Power-Zienau-Woolley
technique to analyze the interaction. This significant finding
implies that the EV beam should play a more effective role
in magnetic energy-loss spectroscopy than that played by
ordinary electron beams and, equally significantly, than the
role played by light beams. It is well recognized that the
dipole transition is often the dominant process in most physical
systems. In particular, it should now be possible for EV beams
to be used to detect circular dichroic activity in proteins and
other biological molecules, allowing useful information to be
gained about their secondary structures [27,28]. It is expected

that the sensitivity and spatial resolution will be high, provided
that radiation damage effects can be mitigated.

In view of the similarities of EVs and OVs it is clearly
natural to contemplate whether an experiment similar to that by
Araoka et al. [16] on the handedness of processes involving the
possibility of OAM exchange with internal dynamics should
be carried out for the EV case. As far as the authors are aware,
the only experiment to date involving the transfer of OAM of
electron vortices is that by Verbeeck et al. [8], who specifically
dealt with the case l = ±1 to investigate the electron-energy-
loss spectroscopy signals from magnetized Fe films using EV
beams. The transitions involved are those by core electrons
participating in electric dipole allowed transitions between
discrete atomic energy levels within a rigid condensed-matter
background of essentially fixed Fe atoms. The expectation was
that the two EELS signals, one from l = 1 and the other from
l = −1, would be different, suggesting that the EELS revealed
an intrinsic chirality of the medium. This was indeed the case
in the experiment by Verbeeck et al. The question, however,
arises as to the theoretical basis for the observed dichroism.

Our task in this paper has been twofold. First, we set
out to construct the basic theory underlying the coupling of
an OV and an EV to matter represented by a two-particle
atom as a neutral bound system of two charged particles.
The basic theory has been carried out in a manner which
incorporates both types of vortex, and as far as the atom is
concerned, it was necessary to distinguish internal (electronic-
type) and gross (center-of-mass-type) degrees of freedom of
the atomic system. Second, we proceeded to consider each
vortex separately in its interaction with the atomic system. We
have shown that, contrary to the case of OVs, the theory for
EVs allows the transfer of OAM to the internal dynamics for
electric dipole transitions, as in the experiment by Verbeeck
et al. It turns out that this crucial difference between EVs and
OVs is attributed to the distinct interaction mechanisms of the
vortex with matter.

Our results suggest that the matrix elements involving the
orbital angular momentum transfer has the general vector
product form of 〈eq〉f i · 〈fv(r)〉f i , where 〈eq〉f i is the dipole
transition matrix element between internal atomic states and
fv(r) is the effective field seen by both the internal motion
and center of mass of the atomic system. It turns out that
the condition for the transfer of orbital angular momentum
between the vortex beam and the internal motion of the atom is
for fv(r) to exhibit chirality. In the case of EVs, the longitudinal
Coulomb interaction couples the dipole moment of the internal
motion of the atom to the electric field of the vortex beam, in
a similar manner to that in which atomic electrons couple
to the optical field of circularly polarized light. In the case
of OVs, in which the vortex is characterized by a linearly
polarized transverse vector potential carrying orbital angular
momentum, the transition matrix element only depends on
the value of the transverse vector potential at the atomic site;
hence the dot product is not chiral specific, and no OAM
transfer to the internal dynamics is allowed to accompany an
electric dipole transition. A transfer of OAM to both parts of
the atomic system in higher multipolar transitions than the
dipolar is, however, possible for both types of vortex.

Additionally, we note that the transfer of OAM from the
EV to the atom may proceed independent of the dynamics
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of the atomic center-of-mass due to the long-range Coulomb
interaction involved. This is in contrast to the case involving
OV beams that requires the center of mass of the atom to be a
dynamical variable, free to rotate about the beam axis [18].

We have analyzed the theory for the general case of topo-
logical charge l. However, for the specific case of the Verbeeck
et al. experiment, we have demonstrated that although OAM
exchange can occur between the EV and matter in electric
dipole transitions for the opposite helicities l = ±1, there is no
intrinsic difference in the EELS absorption between the two
helicities. We have shown that the experiment by Verbeeck
et al. displays a dichroism effect via a similar mechanism
to the analogous X-ray magnetic circular dichroism (XMCD)
experiment [24].
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APPENDIX A: EV MATRIX ELEMENT

Starting from

Mf i

eV = e2

4πε0

〈
ψf

q (rq) | q | ψi
q (rq)

〉
·
〈
ψf

v (rv); ψf

R (R)

∣∣∣∣ rv − R
|rv − R|3

∣∣∣∣ψi
v(rv); ψi

R(R)

〉
, (A1)

we seek to fully evaluate this matrix element by considering
it as the product of two matrix elements, the first being the
dipole matrix element between hydrogenic wave functions and
the second being that of the Coulomb potential between the
center-of-mass states and vortex wave functions. The dipole
matrix element is well known, so we will first concentrate on
this second, Coulombic matrix element. This is best evaluated
using Cartesian coordinates so as to compare the result with
the known dipole result and compute their scalar product.
Thus,

(rv − R)

|rv − R|3 = [ρv cos(φv) − ρR cos(φR)]x̂ + [ρv sin(φv) − ρR sin(φR)]ŷ + (zv − zR)ẑ

[F(ρv,zv,ρR,zR) − G(ρv,ρR) cos(φv − φR)]
3
2

. (A2)

Evaluating this as the matrix element between
|ψf,i

v (rv); ψf,i

R (R)〉 requires the use of the substitution
y = (φv − φR) in order to express the integral in Eq. (A1) in
terms of generic integrals of the form

Yα =
∫ 2π

0

ei(l−l′+α)y

[F − G cos(y)]
3
2

dy, (A3)

where α is an integer taking the values 0 and ±1. The result,
after making this substitution, may be written as〈

rv − R
|rv − R|3

〉
f i

= C
(

x̂ + iŷ
2

)
δ[(L+l),(L′+l′+1)]

+D
(

x̂ − iŷ
2

)
δ[(L+l),(L′+l′−1)]

+ I ẑδ[(L+l),(L′+l′)], (A4)

where

C = κY−1 − λY0, (A5)

D = κY+1 − λY0, (A6)

I = ηY0, (A7)

with κ , λ, and η being factors arising from the integration over
the remaining (nonazimuthal) degrees of freedom of ψv(rv)
and ψR(R).

Combining the two parts involved in the dot product of the
overall transition matrix element, we have〈

rv − R
|rv − R|3

〉
f i

· 〈q〉f i

= C
2
〈qx + iqy〉f iδ[(L+l),(L′+l′+1)] (A8)

+D
2

〈qx − iqy〉f iδ[(L+l),(L′+l′−1)] + I〈qz〉f iδ[(L+l),(L′+l′)].

The evaluation of each of the dipole component matrix
elements 1

2 〈qx ± iqy〉if and 〈qz〉if is standard and leads to
the usual m-selection rules. The overall matrix element can be
written as

Mf i

EV = Qδ[(L+l),(L′+l′+1)]δ[m,m′−1]+Sδ[(L+l),(L′+l′−1)]δ[m,m′+1]

+Uδ[(L + l),(L′ + l′)]δ[m,m′], (A9)

where Q, S, and U are factors containing the normalization
constants and integrals not involving azimuthal angles.

APPENDIX B: APPLICATION OF THE SELECTION RULES

So as to compare our results with the experimental results
of [8], we now apply the selection rules derived for the electron
vortex interaction with the two-particle system by considering
transitions between certain initial and final states. The tran-
sitions involved are those of core electrons participating in
electric dipole allowed transitions between discrete atomic
energy levels within a rigid condensed-matter background of
essentially fixed Fe atoms at equilibrium. If the center of mass
of the atoms in the lattice is allowed to participate in the angular
momentum transfer, the motion would involve phonon states
endowed with OAM. The factors Q and S in Eq. (A9) can be
written as follows:

Q = K′C = K′(κY−1 − λY0),

S = KD = K(κY+1 − λY0),

where K and K′ arise in the evaluation of the dipole matrix
elements 1

2 〈qx − iqy〉if . From the definition of Yα we can
compare these intensity factors for a specific transition.
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TABLE I. Allowed transitions in the L2 and L3 edges for interaction with an electron vortex beam with l = +1 and l = −1.

l = +1 l = −1

L2 2p1/2(mj = −1/2) → 3d3/2(mj = +1/2) L2 2p1/2(mj = +1/2) → 3d3/2(mj = −1/2)
2p1/2(mj = +1/2) → 3d3/2(mj = +3/2) 2p1/2(mj = −1/2) → 3d3/2(mj = −3/2)

L3 2p3/2(mj = −3/2) → 3d5/2(mj = −1/2) L3 2p3/2(mj = +3/2) → 3d5/2(mj = +1/2)
2p3/2(mj = −1/2) → 3d5/2(mj = +1/2) 2p3/2(mj = +1/2) → 3d5/2(mj = −1/2)
2p3/2(mj = +1/2) → 3d5/2(mj = +3/2) 2p3/2(mj = −1/2) → 3d5/2(mj = −3/2)
2p3/2(mj = +3/2) → 3d5/2(mj = +5/2) 2p3/2(mj = −3/2) → 3d5/2(mj = −5/2)

Choosing l = ±1 and l′ = 0, we can write

C=
(

κ

∫ 2π

0

e0

[F−G cos(y)]
3
2

dy−λ

∫ 2π

0

ei(y)

[F−G cos(y)]
3
2

dy

)
,

(B1)

D=
(

κ

∫ 2π

0

e0

[F−G cos(y)]
3
2

dy−λ

∫ 2π

0

e−i(y)

[F−G cos(y)]
3
2

dy

)
,

(B2)

from which it can be seen that C = D∗. This choice of l and
l′ suggests m′ = m + 1 for l = 1 and m′ = m − 1 for l = −1,
from some initial magnetic state m. This information can be
used to find the factors K, K′ for each case. This now needs
generalizing to the many-electron wave function of the model
iron atom. In the LS coupling regime, the angular part of
the wave function is given by the product of the spherical
harmonics of the occupied states. The total orbital angular
momentum of the atom is J = L + S, and the associated
magnetic quantum number mj is the quantity that will be
affected by the absorption or emission of a unit of OAM from
the electron vortex. We can express the angular part of the
many-electron wave function in terms of spherical harmonics
of the form Y

mj

j (neglecting numerical and phase factors that

arise from the coupling of the constituent electrons) [25]. The
spherical harmonics are normalized such that

(−1)�−mY−m
� = Ym∗

� , (B3)

and this also applies to our many-electron spherical harmonics
Y

mj

j . For our purposes, we seek to explain the dichroism of
the L-edge transitions of magnetized iron thin films observed
in EELS using electron vortex beams by Verbeeck et al. [8].
To do this, we first look at the possible transitions that can be
excited in the model iron atom by the two beams of opposite
orbital angular momenta, l = ±1. These are summarized in
Table I. As can be seen, each transition in the l = +1 case has
a corresponding, similar transition in the l = −1 case, having
m

(−1)
j = −m

(+1)
j and m

′(−1)
j = −m

′(+1)
j . It is clear that, due

to Eq. (B3), the dipole matrix elements of the corresponding
transitions will have the same magnitude (due to the symmetry
properties of the Wigner 3-j symbols used to calculate the
coupled spherical harmonics, the strengths for the forward
and reverse transitions for l = ±1 remain the same [23], so the
numerical factors can be safely neglected, as stated above).

The total transition rate (as observed in [8]) of the L2 and
L3 edges will be given by the sum of the transition rates of
the individual transitions in each edge. So for the L2 edge we
have

�l=+1
L2

= 2π

h̄
|C|2(|〈2p1/2,mj = −1/2 | q | 3d3/2,mj = +1/2〉|2ρ̂3d3/2(mj =+1/2)

+ |〈2p1/2(mj = +1/2) | q |3d3/2,mj = +3/2〉|2ρ̂3d3/2(mj =+3/2)) (B4)

and

�l=−1
L2

= 2π

h̄
|D|2(|〈2p1/2,mj = +1/2 | q | 3d3/2,mj = −1/2〉|2ρ̂3d3/2(mj =−1/2)

+ |〈2p1/2,mj = −1/2 | q | 3d3/2,mj = −3/2〉|2ρ̂3d3/2(mj =−3/2)), (B5)

which will be equal as long as ρ̂3d3/2(mj =+1/2) = ρ̂3d3/2(mj =−1/2) and ρ̂3d3/2,mj =+3/2 = ρ̂3d3/2,mj =−3/2, as we have already established
that |C|2 = |D|2. The same argument applies to the L3 edge. Thus we conclude that the observed dichroism is due solely to the
distribution of electrons in the magnetized iron and not due to the mechanism of the interaction with the electron vortex.
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