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Strong-field approximation for the wavelength scaling of high-harmonic generation
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We derive analytic expressions for the spectral amplitude of high-order harmonic generation from a single atom
using the strong-field approximation (SFA). We demonstrate good agreement with time-dependent Schrödinger
equation calculations, including the dependence on the drive wavelength across the range 566–2260 nm. Previous
claims of a discrepancy in the drive wavelength scaling ignore changes in the timing of trajectories corresponding
to a fixed harmonic photon energy. Under this condition, tunnel ionization is shown to play the most important
role for the short trajectories. The established agreement enables us to use the SFA to predict that the intensity at
the classical cutoff scales inversely with the ninth power of the drive wavelength in the high photon energy limit
when the Coulomb singularity dominates the recombination amplitude.

DOI: 10.1103/PhysRevA.86.023813 PACS number(s): 42.65.Ky, 42.65.Re, 42.55.Vc

I. INTRODUCTION

In the semiclassical picture of high-harmonic generation
(HHG), the electric field of a strong laser pulse pulls an
electron away from an atom or molecule before driving it
back into the resulting ion, all within a single optical cycle
[1]. The resulting collision produces extreme ultraviolet and
soft-x-ray radiation with near-perfect spatial coherence [2] and
subfemtosecond temporal structure [3] and is thus an attractive
and compact source for extreme time-resolved spectroscopy
and microscopy. For these applications, HHG is limited by its
overall weak intensity and the achievable range of photon
energies with which useful radiation can be generated —
typically below 100 eV for common Ti:sapphire laser systems.

The well-verified three-step model [1] predicts that the
maximum photon energy is ωc = Ip + 3.17Up, where Ip is
the ionization potential, Up = E2

L/(4ω2
L) is the ponderomotive

energy, EL is the laser field amplitude, and ωL is the laser
frequency (all in atomic units). The laser intensity cannot
be arbitrarily increased due to the phase mismatch caused
by the free-electron plasma [4], as well as depletion of the
ground state [5]. Therefore, much consideration has been
given to extending the cutoff energy ωc by increasing the
laser wavelength [6]. By doing so, the cutoff can be extended
into the biologically significant water window (284–540 eV)
and beyond while preserving a sufficiently low free-electron
density to retain phase matching [7]. The chirp of the
attosecond bursts, a barrier to pulses shorter than the atomic
unit of time, is also reduced [8].

In this context, the wavelength scaling of the yield is
paramount. Although general yield calculations are complex, a
simple upper bound which is also experimentally approachable
is the case of phase-matched generation up to the absorption
limit [9], in which the yield is the ratio of the single-
atom response to the single-atom absorption. The decreasing
absorption of helium and neon above 100 eV is the key for the
generation of usefully bright harmonics in the x-ray region [7].
The scaling of the single-atom response is, however, still under
investigation. Time-dependent Schrödinger equation (TDSE)
calculations of the spectral intensity as a function of drive
wavelength λL at constant harmonic frequency ω, constant
laser intensity, and constant number of laser optical cycles,

conditions we henceforth refer to as fixed absolute energy
(FAE), have shown rough agreement with a power law λ−ε

L
[10,11] where 4.8 < ε < 6, depending on the intensity and
choice of model atom. Measurements of the same quantity
have given 6.3 < ε < 6.6 [12]. However, the quantum version
of the three-step model, or strong-field approximation (SFA)
[13], is commonly taken to imply that the same quantity
goes as λ−3

L around the cutoff region [14–16] or λ−4
L in the

plateau [14]. These factors follow from dimensional analysis
of the transverse and longitudinal spreading of the electron
wave packet as it undergoes a trajectory of a duration which
scales as λL and, in the plateau, the attosecond chirp [14].

The apparent discrepancy [15,17] between the TDSE and
the SFA is troubling, given the latter’s ability to intuitively
and accurately describe other aspects of HHG such as the
time-frequency distribution [10]. The SFA remains the primary
theoretical tool for designing new sources with longer drive
wavelengths [7]. For the latter, predicting the performance of
new systems requires knowledge of the scaling of the harmonic
intensity at (varying) frequencies corresponding to a constant
fraction of the ponderomotive energy, i.e., with fixed relative
energy (FRE) ω̄ = (ω − Ip)/Up, where 0 < ω̄ < 3.17 is the
interval below the classical cutoff.

An additional concern raised by this apparent discrepancy
is that the SFA, combined with the quantum path picture
or equivalently the use of stationary phase approximations
(SPAs), provides the framework for interpreting HHG spectra,
as well as closely related photoelectron spectra. These spectra
encode information on the dynamical structure of the target
with subfemtosecond temporal resolution and sub-Angström
spatial resolution. The signatures of ultrafast nuclear mo-
tion [18,19], electron rearrangement, and molecular orbital
rearrangement [20] have all been decoded using the SFA.

Here, we show by direct comparison that the SFA accurately
reproduces TDSE results for the drive wavelength scaling of
HHG. Using stationary phase approximations, we present a
form of the SFA that makes all scaling mechanisms explicit.
This enables us to use the SFA to predict that the spectral
intensity under the FRE condition goes as λ−7

L times the dipole
acceleration matrix element, whose additional contribution
tends towards λ−2

L in the high photon energy limit. The
discrepancy occurs because the dimensional argument ignores
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FIG. 1. (Color online) Classical electron position x (bottom
row) in sinusoidal electric fields (top row) of unit amplitude and
frequencies ωL = 1 a.u. (blue dashed lines) and ωL = 0.5 a.u. (red
solid lines). The left (right) column shows short (long) trajectories of
the red field; both columns show the cutoff trajectory of the blue field.
For the purposes of illustration, we choose the relative phase of the
fields (whose periods differ by a factor of 2) so that the recombination
times of the trajectories coincide. The trajectories of the red field are
chosen to have recombination kinetic energy equal to the cutoff of
the blue field. Electron birth events are indicated by dots.

timing changes of the classical trajectories relative to the
optical cycle which occur under the FAE condition:

(1) The trajectory duration, which determines the amount
of wave-packet spreading, does not vary linearly with drive
wavelength. Instead, the situation is as depicted in Fig. 1,
which shows classical trajectories of identical recombination
energy in two sinusoidal fields whose wavelengths differ by a
factor of 2. The duration of the short trajectory (left column)
in the longer-wavelength field (red solid lines) is much less
than twice that in the shorter-wavelength field (blue dashed
lines). The situation is reversed for the long trajectories (right
column); the trajectory duration in the long-wavelength field
is more than double that in the short-wavelength field. To
generalize, with increasing drive wavelength, short trajectories
become shorter relative to the optical cycle, and long trajec-
tories become longer. Wave-packet spreading therefore only
weakly affects the short trajectories, but the long trajectories
suffer an attenuation even greater than λ−3

L .
(2) The phase of electron birth within the optical cycle

also changes. For the long trajectories, it tends slowly towards
peaks of the laser field, while for the short it tends more
rapidly towards zero crossings, as depicted by the dots in
Fig. 1. Therefore, the tunnel ionization rate at the birth of
the short trajectories drops dramatically. This is the primary
scaling mechanism for the short trajectories.

In the following sections of the paper, we develop expres-
sions for the single-atom spectral amplitude using the SFA
(Secs. II and III), the accuracy of which we then establish by
direct comparison with the TDSE across a wide wavelength
range (Sec. IV). Next, we examine the scaling physics under
the FAE energy condition (Sec. V) and present a universal
scaling factor which encapsulates continuum wave-packet
effects for any quasisinusoidal field (Sec. VI). We consider
the FRE condition (Sec. VII) before concluding (Sec. VIII).

II. ANALYTIC SPECTRAL AMPLITUDE

To quantify the observations made in Sec. I, we derive
an expression for the spectral amplitude of the single-atom

response using stationary phase approximations (SPAs). We
consider an arbitrary laser field profile, assuming only that
solutions to the classical recollision equation are known.
We shall work with two levels of approximation. The first,
presented in this section, uses straightforward second- and
third-order SPAs in order to evaluate the contribution to
the spectral amplitude of a short, long, or cutoff trajectory
in isolation. The resulting expressions transparently expose
all the scaling mechanisms. However, for plotting harmonic
spectra they are inadequate because they do not take into
account coalescence of the trajectories at the cutoff. We
rectify this by using the uniform approximation to derive
more complex but generally applicable expressions. These are
derived in Sec. III.

We begin with the temporal dipole response under the SFA
[13,21], given by D(t) = a(t) exp[iS(t)] where

a(t) = g(tb(t))f (tb(t))
[

2πi

τ (t)

]3/2

g∗(t)d(v(t)). (1)

Here, g(t) is the ground-state amplitude at time t , and
tb(t), τ (t), and v(t) are the respective birth time, trajectory
duration, and recombination electron velocity corresponding
to recombination at time t , obtained from solving the classical
recollision equation with zero birth velocity. The solutions
are real-valued and coalesce at the cutoff. The corresponding
action S(t) is given by

S(t) = −
∫ t

tb(t)

v(tb(t),t ′)2

2
+ Ipdt ′, (2)

where v(tb,t) is the velocity at time t of an electron born with
zero velocity at time tb.

The zero-transverse-momentum component of the launched
wave packet is [21]

f (t) = − (2Ip)1/4

|E(t)|

√
w(t)

π
, (3)

where Ip is the ionization potential, E(t) is the laser electric
field, and w(t) is the instantaneous ionization rate. For this
we use the Yudin-Ivanov model [22] to take into account
multiphoton and quasistatic tunneling, finding that this gives
better agreement than the Ammosov-Delone-Krainov formula,
especially for Keldysh parameters above 0.5. For the dipole
transition element d(v), we begin with the acceleration form
for accuracy [21] but transform to dipole velocity because the
latter is what produces the observed field [23]; the result is
d(v) = i(v2/2 + Ip)−1〈0| − ∂xV |v〉.

We evaluate the Fourier transform D̃(ω) of D(t),

D̃(ω) = (2π )−1/2
∫

a(t)eiφ(t)dt, (4)

using a stationary phase approximation (SPA). Here φ(t) =
S(t) + ωt is the action including the photon phase. We
emphasize that |D̃(ω)|2, the modulus squared of the Fourier
transform of the dipole velocity (as opposed to that of the
dipole acceleration), is the definition of the spectral intensity
adopted throughout this work. Solutions to the stationary
action condition dφ(t)/dt = 0 are denoted t[ω]. For brevity,
we use τ [ω] to denote τ (t(ω)) and likewise for the other
quantities which are dependent on the recombination time t .
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Below cutoff, short and long trajectories are distinct and a
second-order SPA applies; the result is

D̃(ω) =
(

i

φ′′[ω]

)1/2

a[ω] exp(iφ[ω]). (5)

Note that the primes indicate derivatives with respect to time,
i.e., φ′[ω] = dφ(t)/dt evaluated at t[ω]. Through manipula-
tion of the classical recollision equations, the second derivative
of the phase may be shown to equal

φ′′(t) = −dω(t)

dt
= v(t)[v(t) + E(t)τ (t)]

τ (t)
. (6)

The spectral intensity is therefore inversely proportional to
the attosecond linear chirp −dω(t)/dt , which may be simply
evaluated given the recombination velocity, electric field at
recombination, and trajectory duration.

Around recombination times t ≈ t[ωc] corresponding to
the cutoff frequency ωc, the phase φ(t) has a cubic shape,
and a third-order SPA is necessary. To obtain the same level
of accuracy as the second-order SPA combined with the
uniform approximation, the first-order behavior of the slowly
varying amplitude a(t) must be considered at the cutoff.
The resulting expression is of similar form to the uniform
approximation, and is deferred until Sec. III. However, by
taking a(t) as constant around the cutoff, a simpler expression
for the amplitude, which contains all the scaling factors, is
obtained:

D̃(ωc) =
√

2π

32/3	(2/3)

(
2

φ′′′[ωc]

)1/3

a[ωc] exp(iφ[ωc]).

(7)

The third derivative φ′′′(t) of the action is the attosecond
quadratic chirp −d2ω(t)/dt2 At the cutoff, the following
analytic expression follows from the recollision equations:

d2ω(t)

dt2

∣∣∣∣
t=t[ωc]

= E(t){E(t)[Eb(t) − E(t)] + τE′(t)Eb(t)}
Eb(t)

,

(8)

where Eb(t) = E(tb(t)) for brevity.
Equations (5) and (7) contain all the scaling mechanisms

discussed throughout this paper. However, as mentioned above
they do not smoothly cover the coalescence of the long and
short trajectories, nor do they describe frequencies above
the cutoff. For the calculation of complete harmonic spectra,
one needs to employ the uniform approximation, which is
presented in the next section.

III. UNIFORM APPROXIMATIONS APPROACHING THE
CUTOFF AND BEYOND

This section derives the form of the uniform approximation
[24] used to calculate the combined amplitude of the long
and short trajectories at harmonic frequencies approaching the
cutoff from below, as well as a form valid for the cutoff and
above. Previous applications of the uniform approximation to
high-harmonic generation [25] and above-threshold ionization
[26] have treated the case of complex-valued birth and return
times which arise when the stationary phase condition at birth
is solved exactly, i.e., v(tb)2/2 + Ip = 0. In this situation, the

two saddle points do not intersect, and methods of contour
integration are required. Here, we use the stationary phase
condition v(tb) = 0. Although the final result for the uniform
approximation is similar to the complex-valued case, there are
some differences in the derivation and so we present it here.

In the uniform approximation, one rewrites the Fourier
transform integral Eq. (4) such that it takes the form of
Airy’s integral, which involves a cubic phase function, but
reduces exactly to the sum of two second-order SPAs when
the stationary points are far apart. An appropriate form is

D̃(ω) ≈
√

2u

∫ [
ā+ + ā−

u
t ′
]

exp

[
i

(
t ′3

3
− u2t ′ + φ+

)]
dt ′,

(9)

where

ā(t) = a(t)√
2πφ′′(t)

, u =
(

3φ−
2

)1/3

, (10)

2ā+ = ā(t1) + ā(t2), 2ā− = ā(t1) − ā(t2), (11)

2φ+ = φ(t1) + φ(t2), 2φ− = φ(t2) − φ(t1). (12)

Here t1 and t2 are the two stationary points of the phase, labeled
such that φ(t2) > φ(t1), i.e., φ− > 0. The phase in Eq. (9) has
stationary points at t ′ = ±u. The pre-exponential factor in Eq.
(9) varies linearly from ā(t2) to ā(t1) between the stationary
points. Scaling a(t) by the inverse square root of its second
derivative ensures that applying the SPA to Eq. (9) recovers the
sum of the second-order SPAs Eq. (5) for the two trajectories.
However, Eq. (9) may also be evaluated exactly using Airy
functions to yield

D̃(ω) ≈ 2π
√

2u

[
ā+Ai(−u2) − iā−

u
Ai′(−u2)

]
eiφ+ . (13)

Application of Eq. (13) to Eq. (4) therefore provides a
convenient way of evaluating the dipole amplitude which
smoothly covers all of the plateau.

Approaching the cutoff where the roots coalesce, numerical
errors begin to limit the accuracy of the finite differences ā−
and φ̄−, and one must switch to a method which explicitly
includes the third derivative of the phase and, to obtain the
same order of accuracy as the uniform approximation, the
first-order variation of a(t). The integral to be evaluated is
therefore

D̃(ω) ≈ (2π )−1/2
∫

[a0 + a1t] exp

[
i

(
φ0 + φ1t + φ3t

3

6

)]
dt,

(14)

where an and φn are the nth-order derivatives of a(t) and φ(t) at
the cutoff recombination time, here denoted t0. Equation (14)
may again be evaluated using Airy functions; the result is

D̃(ω) ≈ b
√

2π [a0Ai(x) − ia1bAi′(x)] exp(iφ0), (15)

where b = (2/φ3)1/3 and x = φ1b. We shall refer to Eq. (15)
as the augmented third-order stationary phase approximation;
by ignoring the first-order dependence of the integrand, i.e.,
setting a1 = 0, we obtain the third-order stationary phase
approximation. The difference is of order 0.1% for the cases
studied here. At the cutoff, φ1 = 0 and using the third-order
stationary phase approximation we obtain Eq. (7).
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FIG. 2. (Color online) Comparison of the various stationary phase
approximations to the spectral intensity for λL = 566 nm. Below
the classical cutoff at ωc = 2.64 a.u., second-order stationary phase
approximations are shown for short and long trajectories (thin dark
blue solid lines), sum of long and short contributions (thin dark blue
dashed line), and uniform approximation (thin light red solid line).
Above the cutoff, third-order stationary phase approximations are
shown with (thick dark blue solid line) and without (thin light red
dashed line) first-order behavior of the integrand. Inset: zoomed-in
view around the cutoff.

The results of the various approximations for λL = 0.56 μm
are shown in Fig 2. The second-order stationary phase
approximations for the long and short trajectories, given by
Eq. (5) and shown as solid dark blue lines, diverge at the cutoff.
Their sum, shown as a dashed dark blue line, exhibits quantum
path interference but also diverges at the cutoff. The uniform
approximation, given by Eq. (13) and shown as a solid light
red line, agrees with the individual trajectory results below the
cutoff but does not diverge. Above the cutoff, the third-order
stationary phase approximations, given by Eq. (15), continue
on from the uniform approximation.

The inset shows a zoomed-in view around the cutoff which
illustrates the typical behavior of the different approximations.
The uniform approximation smoothly connects with the
augmented third-order stationary phase approximation, shown
as a thick dark blue line. However, because the uniform
approximation requires two distinct roots, numerical errors
arise approaching the cutoff from below. Therefore, some
judgment is required in choosing the transition frequency. The
third-order SPA, shown as a dashed light red line, does not
connect with the uniform approximation, even with perfect
numerical accuracy.

IV. COMPARISON BETWEEN SFA AND TDSE

To verify the accuracy of the analytic results of the previous
two sections, we performed a set of TDSE calculations with
a laser of intensity 5 × 1014 W/cm2 and with wavelength
varying over the range 566–2263 nm. The temporal profile
was a 1.5 cycle flat-top pulse, proportional to cos(ωLt) in the

interval −π/(2ωL) < t < 5π/(2ωL) and zero elsewhere. We
thereby obtained the response from electrons born during a
single laser half cycle. The atomic potential was of a helium
atom shielded by the 1s state:

V (r) = −1

r

[
1 +

(
2r

a
+ 1

)
exp

(
−4r

a

)]
, (16)

where a = 1.184 a.u. to give a matching ionization potential.
We applied temporal windows to the dipole velocity to separate
the contributions from the long and short trajectories. We used
a cylindrical coordinate system with rotational symmetry about
the laser polarization.

For spatial discretization we used the second-order
finite differencing scheme with carefully softened Coulomb
potential given in Ref. [27]. We used a perfectly matched layer
[28,29] to truncate the mesh, which provided substantial
improvements in computational efficiency, particularly in the
direction transverse to the laser polarization where imaginary
absorbing potentials would have caused significant reflections
of the diffracting wave packet. Temporal integration was
performed using the split-operator method. All results were
checked for convergence in the grid size, the mesh truncation
distance, and the damping parameter of the perfectly matched
layer.

Figure 3(a) compares the spectrum, decomposed into short,
long, and cutoff contributions, from the TDSE and SFA for a
drive wavelength of 2263 nm. The agreement, for both long
and short trajectories, is excellent down to photon energies of
just a few multiples of the ionization potential. The oscillations
in the TDSE spectra are artifacts of the temporal windowing
used to isolate the trajectories. The gap just below the cutoff in
the SFA spectrum is an artifact of the trajectory separation and
is removed by the uniform approximation. Figure 3(b) presents
the same information for a drive wavelength of 566 nm.
Despite having a Keldysh parameter of 0.9, there is agreement
in the overall amplitudes to within a factor of 2.

We now present comparisons of the SFA and TDSE results
for the drive wavelength scaling. Figure 4(a) shows the spectral
intensity as a function of drive wavelength under the FAE con-
dition ω = 4 a.u. (109 eV). There is good agreement between
the TDSE and the SFA over the full range of wavelengths and
for both trajectories, except for the artifacts around the cutoff

SFATDSE

L

S

(b) 566 nm

ω (a.u.)

| D̃
(ω

) |2
(a

.u
.)

S
L

(a) 2263 nm

ω (a.u.)
0 2 40 10 20 30

10−8

10−6

10−12

10−10

FIG. 3. (Color online) (a) and (b) Harmonic spectrum computed
using TDSE (dark blue lines) and SFA (light red lines, second-order
SPA below cutoff, augmented third-order SPA above cutoff) with
drive wavelength at (a) 2263 nm and (b) 566 nm. The contributions
from the long and short trajectories are displayed separately below
the cutoff.
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FIG. 4. (Color online) (a) Dipole spectral intensity at harmonic
frequency ω = 4 a.u. versus drive wavelength for a single laser
half cycle of intensity 5 × 1014 W/cm2 in helium; SFA (light red
solid lines) and TDSE (dark blue dots) for short (S) and long (L)
trajectories; power law fits to the TDSE results for λL > 800 nm
(dashed dark blue lines). (b) Peak value of the dipole spectral
intensity near the cutoff versus drive wavelength, otherwise identical
parameters to (a).

which occur at λL = 750 nm. Figure 4(b) shows the maximum
spectral intensity around the cutoff—the FRE condition—with
good agreement between the TDSE and SFA.

V. SCALING AT FIXED ABSOLUTE ENERGY

Having shown the consistency of the TDSE and the SFA,
we now use the latter to examine the wavelength scaling
under the FAE condition. The trajectory duration τ , taken
by dimensional arguments to scale as λL, is plotted for
ω = 4 a.u. in Fig. 5(a). The duration of the long trajectory
increases slightly faster than the drive wavelength, and the
short trajectory increases much less rapidly, in concordance
with point 1 made in the Introduction. We conclude that
trajectory lengthening is much less significant for the short
trajectories than previously believed.
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FIG. 5. (Color online) Drive wavelength dependence of electron
spatial and temporal spreading for short (S, dark blue solid lines),
long (L, dark blue solid lines), and cutoff (C, light red solid lines)
trajectories; parameters equal to Fig. 4(a). (a) Trajectory duration;
lines proportional to λL (light red dashed lines) are shown as a guide
to the eye. (b) Attosecond linear temporal chirp. (c) Full scaling due
to wave-packet spreading and attosecond chirp with power-law fits
for λL > 800 nm (dashed dark blue lines).

The attosecond linear chirp φ′′, taken from dimensional
analysis to scale linearly with λL [6,14], is plotted versus drive
wavelength in Fig. 5(b) and in fact increases in magnitude
rapidly from zero at the cutoff to a near-constant value for
both long and short trajectories. This is explained through
consideration of the self-similar shape of the attosecond burst
in the (ω,tr) domain [30], the slope of which is the attosecond
linear chirp. Relative to the cutoff, the point of emission
moves to lower harmonic frequencies where the slope is lower,
counteracting the overall horizontal and vertical stretching
with drive wavelength which forms the dimensional argument.

Combining the effects of the trajectory duration and the at-
tosecond chirp, we obtain the full scaling Cp = (2π/τ )3|φ′′|−1

associated with wave-packet dynamics of the continuum
electron in the plateau. It is plotted in Fig. 5(c) for the long and
short trajectories, along with power-law fits for λL > 800 nm.
The long trajectory has stronger scaling as expected from the
trajectory durations, which give the main contribution to Cp:
λ−1.2

L and λ−3.8
L for the short and long trajectories, respectively.

For the long trajectory the continuum wave-packet effects
nearly reproduce the numerically observed scaling in Fig. 4(a).
However, their influence upon the short trajectory is a factor
of λ−7.3

L weaker than that which is observed, implying the
existence of a strong additional scaling mechanism besides
that of continuum wave-packet dynamics. As we will show
in the next section, these results are general and apply to any
harmonic frequency and laser intensity, with the exponents
depending only on the interval chosen for the power-law fits.

We now consider the drive wavelength dependence of
the ionization rate at birth. The phase of electron birth for
ω = 4 a.u. is plotted in Fig. 6(a). With increasing wavelength,
the birth phase of the long trajectory tends slowly towards
a peak of the field, whereas that of the short trajectory
tends towards −π/2, i.e., a zero-crossing of the cosinusoidal
field. Through its impact on the tunnel ionization rate, this
effect has profound consequences for the scaling. Figure 6(b)
shows the modulus squared of the launched wave packet
[Eq. (3)]. For the long trajectory this quantity decreases
slightly with drive wavelength due to the counteracting effects
of the slowly increasing electric field and the decreasing
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FIG. 6. (Color online) Dependence on drive wavelength of
(a) laser field phase at moment of electron birth (in units of π ), and
(b) amplitude squared of the zero-transverse-momentum component
of the launched wave packet for short (S, dark blue solid lines), long
(L, dark blue solid lines), and cutoff (C, light red solid lines)
trajectories. The dark blue dashed lines show power-law fits for λL >

800 nm. (For the long trajectory, the power-law fit is indistinguishable
from the data at this scale.) The parameters are equal to those of
Fig. 4(a).
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multiphoton contribution. However, for the short trajectory
it drops dramatically, in this case as λ−8.4

L , due to the extreme
sensitivity of tunnel ionization to the instantaneous electric
field. This effect is the dominant contribution to the scaling
of the short trajectory. We attribute the discrepancy between
the observed scaling [Fig. 4(a), λ−8.5

L ] and that predicted by
the combination of wave-packet dynamics and the ionization
rate [λ−(1.2+8.4)

L ] to the effect of the cutoff and imperfect
modeling of the ionization rate, both in the analytics and
in the TDSE model atom. As an aside, the significant role
of the subcycle ionization rate suggests that careful yield
comparisons between different wavelengths will constrain
models of strong-field ionization.

VI. UNIVERSAL SCALING DUE TO CONTINUUM
WAVE-PACKET DYNAMICS

The previous section examined the FAE scaling for the
particular case of the harmonic at ω = 4 a.u. with a laser field
of 5 × 1014 W/cm2. In this section we attempt to generalize
this result where possible. In particular, we show that the
scaling factors due to continuum wave-packet dynamics, i.e.,
wave-packet spreading and attosecond chirp, can be expressed
in terms of normalized functions which are universal for all
frequency and amplitude scalings of a given electric-field
profile (e.g., a sinusoid). We use an overbar to denote values for
the scaled case ωL = EL = 1. For example, E(t) = ELĒ(t̄)
where t̄ = ωLt . For the analytical results, the scaled field
profile remains arbitrary, although we focus on the sinusoidal
field case when discussing the results. The ionization rate,
recombination element, and ground-state amplitudes depend
on the details of the atom, and in general such a factoriza-
tion will not be possible. However, for the factors arising
from the continuum, one obtains τ = τ̄ /ωL, φ′′ = E2

Lφ̄′′/ωL,
and φ′′′ = E2

Lφ̄′′′. The product of continuum-related scaling
factors, introduced in the previous section, therefore scales
as Cp = ω4

LE−2
L C̄p, C̄p = (2π/τ̄ )3|φ̄′′|−1 in the plateau, and

Cc = ω3
LE

−4/3
L C̄c, C̄c = (2π/τ̄ )3|φ̄′′′|−2/3 = 3.48 at the cutoff.

The laser frequency and amplitude factors in Cp and Cc lead
to the dimensional arguments for the yield scaling, whereas
C̄p incorporates the effect of changing timings with respect to
the optical cycle. Figure 7(a) shows C̄p plotted as a function
of the relative photon energy ω̄ = (ω − Ip)/Up. Across the
range 0.5 < ω̄ < 2.5, C̄p decreases approximately tenfold for
the short trajectories and approximately doubles for the long
trajectories.

We now obtain an expression for the overall wave-packet-
related scaling Cp which makes explicit the drive wavelength
scaling under the FAE condition. We define ωLC and λLC as
the laser frequency and wavelength which at laser amplitude
EL result in ω being at the cutoff. Then, we have

Cp =K̄p(ωL/ωLC)ω4
LCE−2

L , (17)

where K̄p(ε) = C̄p(ω̄Cε2)ε4 and ω̄C = 3.17 is the normalized
harmonic frequency at cutoff. Similar to C̄(ω), the function
K̄(ε) incorporates the influence of the subcycle trajectory
timings on the continuum wave-packet dynamics but is
expressed in terms of the ratio ε = ωL/ωLC of the laser
frequency to that which would result in the harmonic in

(b)

K̄
p

ε−1

λ−3.2
L

λ−1.0
L

longshort
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C̄
p
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100 101
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10−3
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FIG. 7. (Color online) (a) Normalized continuum wave-packet
scaling factors for short (dark blue solid lines) and long (light red solid
lines) trajectories (a) as a function of normalized frequency ω̄ and
(b) as a function of the ratio of laser wavelength to that which results
in cutoff, ε−1 = λL/λLC. Power-law fits are shown for 2 < ε−1 < 10
(dashed lines).

question being at cutoff. It is plotted against ε−1 = λL/λLC

in Fig. 7(b) and is in fact just a scaled and normalized version
of Fig. 3(c). (The differences in the exponents of the power
fits are due to a different fitting interval.) This illustrates
that the analysis of continuum wave-packet effects (but not
of ionization rates) is generally applicable to different laser
wavelengths and intensities and all field profiles which are
sufficiently close to sinusoidal.

VII. SCALING AT FIXED RELATIVE ENERGY

We now consider the scaling under the FRE condition,
in which the trajectory duration and attosecond chirp scale
according to dimensional analysis. Their contribution to the
response therefore goes as λ−3

L in the cutoff and λ−4
L in the

plateau. The birth phase is constant, and hence so is the tunnel
ionization rate. The only other factor is the recombination
amplitude. The conversion from acceleration to velocity gives
an additional λ−4

L scaling of the response for Up � Ip, resulting
in a total of λ−7

L and λ−8
L in the cutoff and plateau, respectively

[14]. However, the acceleration matrix element also varies
with frequency for the atoms (He, Ne) and photon energies
(50–2000 eV) of interest. In our model atom, this brings the
total SFA scaling in the cutoff to λ−7.6

L —close to the TDSE
result in Fig. 4(b). In reality, the recombination amplitude is
an open research topic, particularly with regard to multiple-
electron effects [31] and the use of exact photorecombination
cross sections [32]. However in the single-electron picture and
using the plane-wave (first Born) approximation, customarily
used with the SFA, a general statement is possible here. The
Coulomb singularity dominates the dipole acceleration dipole
matrix element [33] and goes as v−1 for high momenta.
Therefore, while atom-specific behavior is seen at lower
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photon energies, the element reaches a maximum—at 45,
≈250, and ≈450 eV for H, He, and Ne, respectively [14]—and
then tends towards an ω−1/2 decay in amplitude. Through the
≈λ2

L dependence of the cutoff, it therefore adds a λ−2
L scaling

to the intensity in the high photon energy limit. The product
of the contributions from wave-packet spreading (λ−3

L ), the
conversion from the acceleration matrix element to the dipole
velocity (λ−4

L ), and the acceleration matrix element itself (λ−2
L )

gives λ−9
L in the high photon energy limit.

VIII. CONCLUSION

In summary, the drive wavelength scaling of the single-
atom response at constant photon energy and laser intensity
is influenced by the changing timing of the trajectories with
respect to the optical cycle. This point resolves the discrepancy

between the SFA and the TDSE. The SFA predicts that the
yield at the cutoff scales as λ−9

L in the limit of high photon
energy and assuming dominance of the Coulomb singularity
in the recombination amplitude. Incorporating these single-
atom results into macroscopic models will assist the design of
laser-driven sources of bright ultrashort x rays and enable more
straightforward comparisons between theory and experiment.
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C. Le Blanc, F. Salin, and P. Agostini, Phys. Rev. Lett. 82,
1668 (1999).

[10] J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and
L. F. DiMauro, Phys. Rev. Lett. 98, 013901 (2007).

[11] K. Schiessl, K. L. Ishikawa, E. Persson, and J. Burgdörfer, Phys.
Rev. Lett. 99, 253903 (2007).

[12] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet,
D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum,
and D. M. Villeneuve, Phys. Rev. Lett. 103, 073902 (2009).

[13] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B.
Corkum, Phys. Rev. A 49, 2117 (1994).

[14] E. L. Falcão-Filho, V. M. Gkortsas, A. Gordon, and F. X. Kärtner,
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