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Photonic properties of one-dimensionally-ordered cold atomic vapors under conditions
of electromagnetically induced transparency
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We experimentally study the photonic properties of a cold-atom sample trapped in a one-dimensional optical
lattice under the conditions of electromagnetically induced transparency. We show that such a medium has two
photonic band gaps. One of them is in the transparency window and gives rise to a Bragg mirror, which is
spectrally very narrow and dynamically tunable. We discuss the advantages and the limitations of this system.
As an illustration of a possible application we demonstrate a two-port all-optical switch.
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I. INTRODUCTION

Atomic vapors can be used for studying many original
or useful optical phenomena. Based on the atomic nonlin-
earity, one can produce and study bistability [1], squeezing
[2], various nonlinear magneto-optical effects [3], all-optical
switching [4], gain and lasing [5], and four-wave mixing [6],
which allows the production of twin beams [7,8] and optical
parametric oscillation [9]. Another useful property is the
atomic coherence, that can be used to produce electromag-
netically induced transparency (EIT) [10,11], slow or fast
light [12,13], and quantum memories [14]. Finally, the large
atomic scattering cross section allows studying effects related
to multiple scattering of light in disordered media, for example
Lévy flights in hot vapors [15], radiation trapping [16,17], and
coherent backscattering in cold atoms [18,19]. In the opposite
regime, cold atoms can be trapped in an ordered fashion,
which gives rise to Bragg scattering [20–22] and photonic
band gaps (PBGs), which have been recently observed in
the one-dimensional (1D) case [23] and predicted in three
dimensions [24,25].

Combining a control over the atomic spatial arrangement
(external degrees of freedom) and the atom polarizability
(internal degrees of freedom) allows a complex engineering
of the propagation properties of light. In this spirit, radiation
trapping under condition of EIT has been studied in [26,27],
the combination of multiple scattering and gain gives rise to
random lasing [28], and it was recently demonstrated that the
combination of a 1D PBG with four-wave mixing leads to
distributed feedback optical parametric oscillation [29].

In this paper, we experimentally investigate the combina-
tion of EIT and a 1D PBG formed by cold atoms trapped in a
1D lattice, like in [23]. As already shown in a theoretical paper
by Petrosyan [30], such a system creates a new band gap, in
the transparency window, which is spectrally very narrow and
which is dynamically tunable. We report measurements of the
transmission and reflection spectra and their dependence with
experimental parameters, and we discuss the limitations of
such a system. We finally demonstrate a two-port all-optical
switch as a possible application.

It should be noted that various configurations of electro-
magnetically induced gratings have already been discussed in
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the literature with hot or cold atoms (see [31] for theoretical
proposals and [32] for experiments). In all these cases,
however, the grating is due to the spatial modulation of the
control field. On the contrary, in our experiment, the Bragg
mirror relies on the periodic spatial modulation of the atomic
density. The controls over the internal and external degrees of
freedom are thus decoupled.

The paper is organized as follows. The next section is
devoted to the theoretical description of our system. The
dispersion relations and expected reflection and transmission
spectra are computed for ideal parameters. In the following
part, we present our experimental setup. Then, in Sec. IV, we
present our measurements. Finally, in Sec. V, we demonstrate
the use of our system as an all-optical switch.

II. THEORETICAL DESCRIPTION

We consider three-level atoms, as shown in Fig. 1(a), with
two low-energy levels, which we call the ground state |g〉
and the metastable state |m〉, and one excited state |e〉. The
atoms are initially in the ground state, and we are interested
in the photonic response of the sample at optical frequencies
in the vicinity of the transition |g〉↔|e〉(wavelength λ0), when
the states |m〉, |e〉 are coupled by an external field. We thus
consider a probe beam with a detuning δ = ω − ωge from
the atomic transition and a coupling beam with a detuning
� = ωC − ωme. The probe beam has a very low intensity and
we consider only the atom’s linear response, described by the
atomic polarizability [Fig. 1(b)]

α = 2|dge|2
ε0h̄�

−�

2δ + i� − 	2/[2(δ − � + iγ )]
, (1)

where � is the spontaneous emission rate of the excited state,
γ the dephasing rate between the two ground states (we
suppose γ << �), 	 = |dme|2E/h̄ is the Rabi frequency of
the coupling field of amplitude E, and dij is the dipole moment
of the transition |i〉 ↔ |j 〉 [30]. In this equation, EIT is induced
by the last term of the denominator [33].

The atoms are trapped in a one-dimensional optical lat-
tice formed by a red-detuned retroreflected laser beam of
wavelength λlat, thus forming an atomic density grating of
periodicity λlat/2 [Fig. 1(c)]. The modulation contrast depends
on the temperature T of the atomic sample, which is usually
related to the trapping depth U0 of the optical potential by a
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FIG. 1. (Color online) (a) Atomic levels and laser configuration.
(b) Real part (blue, bottom curve) and imaginary part (red) of the
dimensionless atomic polarizability α̃ = α × ε0h̄�/2|dge|2 for a two-
level atom (dotted lines) and with EIT (solid lines), with � = 0 and
	 = � [Eq. (1)]. (c) Scheme of the system under consideration: the
atoms are trapped in a 1D optical lattice of periodicity λlat/2.

constant factor η = U0/kBT . We will take η = 3.5, the value
observed in our experiment [23]. The density distribution of
each period is then a Gaussian of rms width along the lattice
axis z σz = λlat/(2π

√
2η).

Since the laser forming the lattice must have a wavelength
λlat > λ0 to create a dipole trap, the Bragg condition can
only be fulfilled with a nonzero propagation angle θ between
the probe and the lattice beams, such that cos θ ∼ λ0/λlat.
In practice, it is easier in experiments to tune the lattice
wavelength to adjust the Bragg condition. We can thus define
�λlat = λlat − λlat0 as the shift from the “geometric” Bragg
condition λlat0 = λ0/ cos θ . The complete Bragg condition
must take into account the fact that the probe wavelength in the
medium is λ = λ0/n, where n is the average refractive index,
which strongly depends on the probe detuning δ. The Bragg
condition can then be rewritten in the simple following form:

n(δ) − 1 = −�λlat

λlat
, (2)

where the right-hand side of the equation depends only on the
lattice wavelength and the left-hand side depends on the real
part of the atomic polarizability and on the average atomic
density ρ, with n − 1 = ρ/2 × Re(α) for a dilute vapor. The
imaginary part of the atomic polarizability plays also an
important role since it is responsible for scattering losses [23].

Considering these losses together with Eq. (2) is sufficient
to qualitatively explain the photonic properties of the system
(see [23] for the simple case of two-level atoms): a band
gap will appear when Eq. (2) is fulfilled at a detuning δ

where the imaginary part of the atomic polarizability is small
enough. With the EIT polarizability [Eq. (1) and Fig. 1(b)],
one can easily see that the Bragg condition (2) can be
fulfilled at four different detuning δ [crossing points between
Re(α) and a straight horizontal line given by −�λlat/λlat].
However, for two of these frequencies, the imaginary part
of the polarizability is near its maximum, indicating a large

amount of losses and preventing any efficient Bragg reflection.
Therefore, we expect two band gaps, one for a large detuning,
which also appears with two-level atoms [23], and another one,
narrower, in the transparency window, which is due to EIT.

A more precise description of the photonic properties of
such a periodic atomic structure can efficiently be obtained
by simulating light propagation in the medium with the
transfer matrix method [34–36]. It is a one-dimensional model,
whose use is justified when the transverse extension of the
atomic layers is large compared to the probe beam size and
when the incident angle is small, which is the case in our
experiment (see [37] for an extended discussion on this issue).
The nonzero propagation angle can be taken into account by
changing the probe wave vector from k0 = 2π/λ0 to k0 cos θ .
A detailed description of this method in the context of ordered
atomic samples has been given in previous papers [38–40].
In brief, the first step is to construct the transfer matrix
M of one single period. To do so, one has to decompose
the atomic layer in several sublayers of thickness δz. The
transfer matrix of each sublayer is the product of a propagation
matrix with a discontinuity matrix whose coefficients are given
by the Fresnel coefficients, see [36]. Besides the density
distribution, the only ingredient entering the model is the
atomic polarizability. Therefore, extending the results obtained
with two-level atoms [23] to driven atom under EIT conditions
is simply made by replacing the atomic polarizability. Once
the matrix M is obtained, we can use it to derive analytical
formula that allow us to compute the dispersion relations and
the reflection and transmission coefficients through N layers
(see, e.g. [35,36,38]). The matrix M is related to the elementary
reflection r and transmission t coefficients of one single
period by

M = 1

t

[
t2 − r2 r

−r 1

]
. (3)

Then, using the property det(M) = 1, the eigenvalues of M

are e±i� with

cos(�) = cos

(
keff

λlat

2

)
= Tr(M)

2
. (4)

This relation gives the effective wave vector (or Bloch wave
vector) keff in the medium, i.e., the dispersion relation, which
describes the photonic properties of the medium in the limit
where it is infinite.

To compute the transmission and reflection coefficients
through N periods, we first introduce the matrix A such that

M = ei�A = cos(�)I + i sin(�)A, (5)

where I is the 2 × 2 identity matrix. Then, the transfer matrix
of N periods writes

MN = eiN�A = cos(N�)I + i sin(N�)A. (6)

To get the transmission coefficient T = |tN |2 and reflection
coefficient R = |rN |2 from MN , we just need to know
the coefficients of A, which are obtained by Eq. (5) and
identification with Eq. (3). After some algebra, we get

rN = r

1 − t[cos(�) − sin(�) cot(N�)]
, (7)

tN = t sin(�)/ sin(N�)

1 − t[cos(�) − sin(�) cot(N�)]
. (8)
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FIG. 2. (Color online) Photonic properties of the medium, valid
for an infinitely long lattice. (a) Dispersion relation: the frequency
(detuning δ) is plotted as a function of the effective wave vector in the
medium Re(keff ). Only the edge of the first Brillouin zone keffλlat/2 =
π is shown. A first band gap (BG) is visible. Right panel: zoom in the
transparency window, where a second BG appears. (b) Same as (a)
with the imaginary part of keff . (c) Density of states (DOS) normalized
to the one in a bulk medium of the same susceptibility [Eq. (10)]. In
all plots, the gray solid lines correspond to a homogeneous atomic
medium of the same average density ρ = 7 × 1011 cm−3 and the
dashed blue lines correspond to atoms trapped in a lattice with η =
3.5, �λlat = 0.25 nm, and coupling-field parameters 	 = 2� and
� = 0.

For an infinite medium, and with Im(�) > 0, we obtain

r∞ = r

1 − t ei�
. (9)

We applied these results with the F = 1 → F ′ = 2 tran-
sition of the D2 line of rubidium 87 and with the optimum
parameters of [23] (ρ = 7 × 1011 cm−3, η = 3.5 [41], and
�λlat = 0.25 nm) and with the coupling-beam parameters
� = 0, 	 = 2�. We introduce a dephasing rate γ = 0.008�,
similar to the one of the experiment [12]. We obtain the
dispersion relation [ω vs Re(keff)] shown in Fig. 2(a). As
expected from the previous qualitative discussion, it exhibits
two band gaps (BGs), which appear at the edge of the first
Brillouin zone keffλlat/2 = π , i.e., where the Bragg condition
(2) is fulfilled. It is characterized by a reduced variation of
Re(keff) with ω, corresponding to a reduced density of states.
One of the band gap, which we label “BG 1” in Fig. 2(a), is
not influenced by EIT and is the same as the one studied in our

previous experiment [23]. The second one (“BG 2”) appears on
the contrary in the electromagnetically induced transparency
window. It is very much narrower and its width increases with
the coupling-beam intensity.

The band gaps manifest themselves also in the imaginary
part of keff . In a lossless medium, keff acquires an imaginary
part only in band gaps. In our system, since the atomic
polarizability is complex, the wave vector has always an
imaginary part leading to the wave attenuation when it
propagates in the medium. This attenuation is due to scattering
losses. In this case, we see in Fig. 2(b) that the BGs add
an extra component of Im(keff), which is responsible for the
formation of an evanescent wave that leads to the reflection of
the incoming light.

Finally, PBGs appear also as a reduction of the density
of states (DOS), which can be computed, following [42] and
considering a position in the middle of the structure, from the
reflection coefficients of the two surrounding semilattices of
reflection coefficients r1 and r2, via

D = Re

[
2 + r1 + r2

1 − r1r2
− 1

]
. (10)

This can be applied for a finite length lattice in order to compute
the local DOS [23] or with an infinite lattice using Eq. (9). The
result in that case is shown in Fig. 2(c) and demonstrates a
strong DOS reduction in the two BGs. It should be noted
that, despite the assumption of an infinite medium, the DOS
does not completely vanish because of the scattering losses. It
reaches a minimum value of 0.12 (normalized to the DOS in
the bulk medium of the same susceptibility).

For a finite-size medium, the most relevant quantities are the
transmission and reflection spectra, obtained from Eqs. (7) and
(8). They are shown in Fig. 3, where the two band gaps appear
as two reflection bands. With the above-mentioned parameters
and a lattice length L = 3 mm, corresponding to N ∼ 7700
periods if λlat ∼ 781 nm, the reflection coefficient reaches R ∼
0.73. Note that this is slightly lower than what is reported
in [23], because the considered transition strength is weaker
than the closed transition used in [23], which we cannot use
for EIT.

To summarize, the use of EIT makes a new PBG appear in
the transparency window, in addition to the one that already
appears with two-level atoms. This result was already reported
in [30]. However, there is an important and natural question
that has not been explicitly answered in [30] (even if the result
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FIG. 3. (Color online) (a) Computed transmission T (dashed blue
line) and reflection R (red solid line) spectra with a lattice composed
of N ∼ 7700 periods. All other parameters are the same as for Fig. 2.
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is visible in Fig. 4 of that paper): is the electromagnetically
induced band gap (BG 2) of better quality than the other one
(BG 1)? It was shown in [23] that scattering losses were the
main limitation for achieving low DOS or high reflectivity, and
one could thus hope that EIT improves the band gap quality.
As it can be seen in Fig. 2(c), where the DOS does not reach a
lower value in the BG 2 than in the BG 1, and in Fig. 3, where
the reflection coefficient is not higher in the BG 2 than in the
BG 1, the answer to this question is that the EIT band gap is
not of better quality. The explanation for this behavior is that
even with a perfect EIT (γ = 0), where complete transparency
is reached [Im(α) = 0], it is reached precisely at a detuning
δ where the real part of the atomic polarizability is also
zero, thus suppressing any refractive-index grating. To build
a PBG, one needs a nonzero refractive index, and the Bragg
condition (2) can only be fulfilled slightly off the condition of
perfect transparency. Moreover, the subsequent losses, given
by Im(α), are exactly the same for both PBG. Taking into
account an unperfect EIT (γ > 0) leads even to slightly more
losses.

Nevertheless, the EIT band gap has other advantages.
The most important is that it is tunable, and dynamically
controllable via the coupling-beam parameters. Moreover, it
is very narrow and has a very sharp transition with a good
transmission band [Fig. 3(b)]. These are interesting properties
for practical applications, which motivate our experimental
study, described in the following.

III. EXPERIMENTAL SETUP

In this section, we present briefly our experimental appara-
tus, which has already been described in [23].

We trap and cool 87Rb in a magneto-optical trap (MOT)
loaded from a background vapor. The optical lattice is
generated by a homemade titanium-sapphire laser [43] of
maximum power ∼ 1.3 W with a tunable wavelength λlat.
The beam is focused on a waist (1/e2 radius) wlat = 220 μm
at the MOT position (Rayleigh length zR 	 0.2 m) and then
retroreflected [Fig. 4(a)]. After stages of compression and
molasses, the MOT is switched off and a waiting time of
a few ms allows the untrapped atoms to fall down. The
sample can then be characterized by absorption imaging or
used for measuring transmission and reflection spectra. In this
series of experiment, the typical atom number in the lattice is
N ∼ (1–2) × 107 [44].

To acquire spectra, we shine a weak (P ∼ 3 nW) and small
(waist w0 = 35 μm) probe beam onto the lattice under an
angle of incidence θ 	 1.5◦, which is small enough to allow
the beam to interact with the lattice over its entire length.
The transmitted and reflected beams are then recorded with
avalanche photodiodes (APDs). The probe detuning δ is swept
in the vicinity of the atomic resonance by using an acousto-
optical modulator in double-pass configuration. We use the
F = 1 → F ′ = 2 transition of the D2 line (λ0 = 780.24 nm,
linewidth �/2π = 6.1 MHz). The other hyperfine levels are
far enough to be negligible. The presented data are the result of
an average of typically 250 cycles (the duration of each cycle
is ∼ 1 s).

EIT is induced by a coupling beam tuned in the vicinity
of the F = 2 → F ′ = 2 transition [Fig. 4(b)]. The beam has a

TR

Lattice beam

APD

θ

APD

Probe beam

Coupling beam

(a)
MOT coil

MOT coil

(b) (c)

F =2

F=2
F=1

σ+
σ+

mF = -2    -1    0     1    2

-2    -1    0     1    2

mF = -1    0     1 -4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

δ/Γ

T

´

FIG. 4. (Color online) (a) Scheme of the experimental setup.
(b) Atomic levels and laser configuration. The probe (orange) and
coupling field (blue) drive the transition F = 1 → F ′ = 2 and
F = 2 → F ′ = 2, respectively. (c) Transmission spectrum showing
EIT with a disordered sample. The dashed black line is a fit to the
data [Eqs. (1) and (11)], yielding the parameters γ = 7 × 10−3�,
	 = 0.8� and optical thickness b0 = 21. The slight asymmetry is
due to the cloud expansion during the sweep and is taken into account
in the fit.

diameter of about 5 mm and makes an angle with the lattice axis
of about 8◦, small enough to ensure a homogeneous coupling
strength over the whole lattice. The probe and coupling beams
have both the same circular polarization, which yields to
complete EIT, since all Zeeman substates of the excited states
are coupled to the metastable state [45,46]. In addition, both
lasers are phase-locked together via standard phase-locking
techniques [47] in order to fully exploit the coherence of
the EIT process. To characterize the quality of the achieved
EIT, we acquire a transmission spectrum with a disordered
atomic sample by suddenly switching off the optical lattice and
letting the atoms expand a few microseconds before sweeping
the probe frequency in 200 μs. The ordered pattern has then
disappeared and the transmission is given by

T = exp [−b0Im(α̃)] , (11)

where b0 is the on-resonance optical thickness (b0 =
σ0

∫
ρ(z)dz for a medium of density ρ and with an on-

resonance scattering cross section σ0) and α̃ is the dimension-
less atomic polarizability, whose value is one at resonance (see
its definition in the caption of Fig. 1). Fitting a transmission
spectrum by Eqs. (11) with the polarizability (1) allows us
to measure the on-resonance optical thickness, the effective
dephasing rate γ and to calibrate the Rabi frequency 	. With
the recorded spectrum of Fig. 4(c), we obtain γ ∼ 7 × 10−3�,
giving for example a transmission of 81% with an optical
thickness b0 = 21 and with only 	 = 0.8� [Fig. 4(c)]. The
effective decoherence rate γ mainly comes from the residual
phase noise between the probe laser and the coupling lasers.
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Note also that the transparency increases with the coupling
strength 	.

IV. MEASUREMENTS

We now turn to our experimental characterization of
the photonic properties of the cold-atom sample trapped in
the lattice under EIT conditions. From now on, all spectra
are taken with the lattice beam on. To begin with, let us
examine an example of transmission and reflection spectra,
shown in Fig. 5(a), recorded with �λlat = 0.13 nm and with
the coupling-beam parameters 	 = 1.3�, � = 2.5�. The
coupling field is in fact almost resonant with the atomic
transition, because the lattice trapping induces a light shift.
This shift is slightly inhomogeneous because of the finite
extension of the atomic cloud in each well, but at the potential
minimum, where most atoms are, the light-shifted atomic
resonance is at δ ∼ 2.5�. This effect is taken into account
in our simulations. Note that the light shift is the same for both
transitions so that the two-photon resonance condition leading
to EIT is not affected.

We clearly observe two reflection bands, as expected,
corresponding to the two band gaps described in Sec. II. The
wide one is the band gap already studied in [23], while the
narrow one, never observed before, appears in the transparency
window and is due to EIT. We observe also that the reflection
of the EIT band gap is lower than the reflection of the two-
level-atom band gap. This is due to the finite dephasing rate γ ,
which explains also why the transparency is not complete in
the transmission spectrum. However, taking into account this
parameter in the simulation still leads to an overestimation
of the reflection coefficient [48]. Apart from this discrepancy,
whose origin remains unclear, the simulated spectra are in
good agreement with the experimental ones [Fig. 5(b)].

The simulations shown here and in the following are more
complicated than what has been described in Sec. II because
they take into account a number of experimental effects.
Besides the above-mentioned light shift, the most important
effect is the longitudinal atomic density distribution along
the lattice, which is roughly Gaussian and can be precisely
characterized by absorption imaging. This inhomogeneous
distribution prevents the use of Eqs. (7) and (8). Instead,
we have to compute a different elementary matrix for each
position, following the measured atomic density distribution,
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FIG. 5. (Color online) Experimental (a) and simulated (b) trans-
mission [blue (dark grey)] and reflection [red (light grey)] spectra,
with �λlat = 0.13 nm, N = 1.5 × 107 atoms, η = 3.5, and EIT
parameters 	 = 1.3�, � = 2.5�, and γ = 0.015�.

and multiply them. Note that having a sample without sharp
boundaries makes the usual dips and bumps at the band edges
[Fig. 3(a)] disappear, inducing a kind of smoothing of the
band edge. Another experimental effect that is included in
the simulations is the inhomogeneous broadening due to the
finite transverse sizes of the atomic sample and of the probe
beam. The transfer-matrix formalism is a 1D model, but an
approximate method to account for the transverse-size effects
is to consider a distribution of probed densities corresponding
to the overlap of the probe beam with the atomic lattice, and to
average the subsequent spectra with the appropriate weighting.
Since a finite probe size induces also some divergence and
that the spectra are very sensitive to the incident angle, we
average also over the corresponding angle distribution [49].
This procedure leads to a good agreement with the experiment
(Fig. 5).

In the following, we will focus on the properties of the EIT
reflection band and for clarity we will only show spectra in the
corresponding, narrower spectral range. We will investigate
the tunability of this reflection band, i.e., how it evolves with
the coupling-beam parameters, and its dependence with the
lattice wavelength via the Bragg condition (2). Both aspects
are related because the Bragg condition involves the atom
polarizability, which is modified by the EIT parameters.
However, for simplicity, we separately present these two
dependencies.

A. Dependency on the EIT parameters

To illustrate the tunability of the reflection and transmission
bands, we show in Fig. 6(a) a series of spectra for different
coupling-field detuning � with fixed intensity (	 = 1.8�)
and lattice wavelength (�λlat = 0.11 nm). As expected, the
frequency giving the maximum transmission follows the two-
photon resonance δ 	 �, while the reflection band is slightly
shifted on the δ < � side. The corresponding simulations are
in fair agreement with the experimental data, apart from the
overestimated reflection in the EIT band gap [Fig. 6(b)].

The coupling field amplitude, parametrized by its Rabi
frequency 	, is also an important parameter since the trans-
parency increases with 	, as shown in Fig. 6(c). This increase
is independent of the chosen detuning �. The maximum
reflection coefficient increases also with 	 but this time with
a strong dependency on the detuning �, as shown in Fig. 6(d).
The interpretation for this behavior is the following. With a
lattice wavelength such that �λlat > 0, the Bragg condition
makes the two-level-atom band gap appear on the blue-detuned
size of the atomic resonance, i.e., for δ � 2 (we recall that the
atomic resonance is at δ ∼ 2 because of the lattice-induced
light shift). As a consequence, with a large �, like the data
with � = 3, the main effect of EIT is to create a dip in
the reflection band, inducing a narrow separation between
the two-level-atom band gap and the EIT band gap. Then,
a small 	 makes the dip smaller but does not reduce much the
reflection of the EIT band gap, and that is why the maximum
reflection is almost independent of 	. On the contrary, with
a red-detuned coupling field (for example with � = 0), the
EIT band gap is farther from the other one, and has a much
lower reflectance. By looking precisely at the corresponding
atomic polarizability, one can see that this is due to a higher
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FIG. 6. (Color online) Dependency on the EIT parameters, with a fixed lattice wavelength �λlat = 0.11 nm. (a) Experimental transmission
[blue (dark grey)] and reflection [red (light grey)] spectra for several coupling-field detuning �, with 	 = 1.8�. (b) Corresponding simulations.
(c) Maximum transmission in the transparency window as a function of the coupling-field Rabi frequency 	, for different detunings �.
(d) Same as (c) with the maximum reflection in the EIT reflection band.

value of Im(α) at the frequency where the Bragg condition
(2) is fulfilled, inducing more losses. However, increasing 	

reduces these losses.
Therefore, this is a strong limitation for practical use of the

band gap tunability: changing the coupling-beam parameters
changes the atomic polarizability, which leads to more or less
favorable parameters via the Bragg condition.

B. Dependency on the lattice wavelength

To study the influence of the Bragg condition, we vary the
lattice wavelength [50] and record transmission and reflection
spectra, for different detunings �. First, a series of spectra
obtained with the same EIT parameters is shown in Fig. 7(a)
with the corresponding simulations in Fig. 7(b). The first
notable feature is the qualitative behavior of the spectra, with
the reflection band going from one side of the transmission
band to the other side when the parameter �λlat changes its
sign. This can be easily understood by looking at the graphical
representation of the Bragg condition in Fig. 7(d): one can see
that the frequency where the Bragg condition is fulfilled goes
from one side of the maximum transparency from the other
side when �λlat changes its sign. Another observation is that
there is a clear optimum �λlat for maximizing the reflection
coefficient; see the complete curves in Fig. 7(c). To understand
this behavior, let us first take the case with the coupling beam
at resonance with the atomic transition [Figs. 7(a) and 7(b)
and � = 2� in Figs. 7(c) and 7(d)] and examine the limiting
cases. When �λlat ∼ 0, the Bragg condition is fulfilled where
the refractive index contrast is almost zero [Eq. (2)], which
leads obviously to an inefficient reflection. In the opposite
limit, when �λlat is large, the Bragg condition is fulfilled

where Re(α) is large, but Im(α) is also large, inducing too
much scattering loss. There is thus an optimum in between,
for both signs of �λlat. With a nonresonant coupling field, like
� = 4� or � = 0 in Figs. 7(c) and 7(d), there is only one
optimum lattice wavelength, for �λlat > 0 (�λlat < 0) with
blue-detuned (red-detuned) coupling beam. This is related to
the observations made in the previous paragraph: for a given
�λlat, there is an optimum �, and, conversely, for each given
� there is a different optimum �λlat. Looking very closely
to a graphical representation of the Bragg condition, such as
in Fig. 7(d), one can always check that the difference comes
from the value of Im(α), giving the amount of scattering losses,
where the Bragg condition is fulfilled.

V. ALL-OPTICAL SWITCHING

Finally, to illustrate a possible application of such an
atom-made tunable Bragg mirror, we demonstrate its use as
an all-optical switch. This is a topic of currently high interest
for the processing of optical information. Standard EIT with
a disordered atomic sample can also act as an all-optical
switch, since the coupling beam allows switching between
transmission and absorption of the probe beam. In our case,
using a periodically ordered sample allows switching between
transmission and reflection, i.e., between two output ports.
Moreover, a small change in the coupling-field frequency is
enough to induce switching so that full intensity modulation
is not needed. In this case, the probe beam must have a fixed
detuning and switching is obtained by changing the detuning
� of the control beam, which induces a shift of the reflection
band, so that for one value of � the probe frequency lies in the
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FIG. 7. (Color online) Dependency on the lattice wavelength, with a fixed coupling-beam Rabi frequency 	 = 1.3�. (a) Experimental
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scattering losses.

reflection band and for the other value it lies in the transmission
band.

We report in Fig. 8 the result of such an experiment, with
a probe beam detuning δ = 3�. We switch periodically the
control-beam detuning between � = 3� and � = 3.2� (top
panel of Fig. 8). Following the control beam, the resulting
transmission and reflection are modulated with a very good
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, 

R
Δ/
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FIG. 8. (Color online) Demonstration of a two-port all-optical
switch. The detuning � of the coupling field serves as the control
parameter (top panel). The bottom panel shows the transmission [blue
(dark grey)] and reflection [red (light grey)] coefficients as a function
of time. The control-field Rabi frequency is 	 = 1.5�, the probe
detuning is δ = 3�, and the lattice wavelength is such that �λlat =
0.15 nm.

contrast, that we define by

CT = TH − TL

TH + TL
, CR = RH − RL

RH + RL
, (12)

where the subscripts H, L stand for the high and low levels. This
leads, with the presented data, to CT = 0.76 and CR = 0.88.

Further studies are needed to better characterize the switch,
in particular to determine the maximum switching rate and
the minimum necessary power for the control beam. A way
to achieve better performances is probably to use the four-
level EIT scheme of [51], which is known to produce giant
nonlinearity, with a few photons, or ultimately a single one,
being enough to make the transparency appear or disappear
[52]. This is required to enter the quantum regime, i.e., to make
a quantum all-optical transistor, a key ingredient for quantum
networks [53]. Several technologies are currently investigated
for realizing quantum transistors, such as plasmonic nanostruc-
tures [54], single dye molecules embedded in crystalline ma-
trices [55], ultrahigh quality factor whispering-gallery-mode
microresonators [56], atoms or ions ensembles in hollow-core
fibers [57] or in high-finesse cavities [58,59]. Since our system
does not need any high-quality or microstructured mechanical
elements, it might be simpler to implement.

VI. CONCLUSION

We have presented in this paper a study of the pho-
tonic properties of a sample of cold atom trapped in a
one-dimensional lattice under EIT conditions. In such a
system, as already predicted by Petrosyan [30], EIT creates
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a supplementary band gap, in the transparency window, in
addition to the one already present with two-level atoms
[23]. We have experimentally observed the Bragg reflection
induced by this band gap and characterized its dependency
with the main experimental parameters. It allowed us to
put in evidence and discuss several limitations. First, the
� scheme necessary for EIT prevents the use of a closed
transition, with an optimum transition strength, which reduces
the Bragg reflection efficiency in comparison with what could
be obtained with the same atomic sample by using a closed
transition. In addition, the amount of scattering losses, which
limit the quality of the band gaps, is at best exactly the same
for the EIT band gap as for the two-level-atom band gap, and in
practice slightly larger, so that the EIT band gap is of slightly
lower quality. Finally, the tunability of the EIT band gap is
limited by a complicated interplay between the coupling-beam
parameters and the Bragg condition.

Nevertheless, it is still an interesting system, with also some
advantages, like the dynamic tunability and the sharp transition
between the reflection band and the transmission band. We
have discussed a two-port all-optical switch as a possible
application based on these properties, and we have performed
a first proof-of-principle experiment. This is a promising idea
that deserves further studies.

Another topic of interest is the wave propagation dynamics
in this system. We have only addressed in this paper the
stationary photonic properties, but it would be interesting
to study pulse propagation. Both EIT and photonic band
edges are known to induce slow light [12,60,61] and our
system combines both ingredients. Since a short pulse is
necessarily spectrally large and that, on the contrary, our
system has transmission and reflection bands which are very
narrow, it should induce a very large pulse distortion. This
is surely not appropriate if one wants to slow down pulses
without distortion, but on the contrary, a fine tuning of
the parameters might allow complex and interesting pulse
reshaping functions. Some proposals have recently appeared
in this spirit [62–64].

Finally, the nonlinear regime, which can be investigated by
using a probe beam with a larger intensity, might also reveal
interesting phenomena.
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