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Interactive model of Purcell-Dicke enhancement
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We compute the design parameters that maximize the cooperative decay rate (CDR) from a nanosphere of
identical two-level atoms phased to radiate coherently (Dicke enhancement), encased in a shell of a noble
metal (Purcell effect), the whole suspended for mechanical support in a dielectric medium extending to infinity.
Both the radiating core and the metallic shell are described internally by their respective frequency-dependent
dielectric functions. (In previous papers one or the other medium was given a fixed dielectric constant.) The
solution is noticeably altered, and the enhancement increased, when both media respond interactively to one
another.
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I. INTRODUCTION

In 1946, Purcell [1] pointed out that the spontaneous rate
of an atom should be enhanced if the atom were coupled to a
macroscopic resonant circuit of high quality and small volume.
In 1954, Dicke [2] introduced the idea of superradiance, in
which a large number N of atoms radiate coherently when
suitably phased, like an array of tuning forks or the parts
of an antenna. The two phenomena have been extensively
discussed [3] over the intervening decades, but as separate
fields of physics; even when an extended radiating source
is studied for the Purcell effect, the atoms are supposed to
radiate independently so that the Dicke effect is not included.
In this paper we study a system in which the two effects are
combined.

Both the Purcell and the Dicke effect have been studied in
many geometries. To obtain a clean calculation, we choose a
particular scenario with spherical symmetry: the active atoms
are distributed uniformly in a spherical core surrounded by a
spherical shell of metallic composition. This makes it possible
to treat both regions with a similar formalism. The cooperative
effect described by Dicke is captured by giving the core region
an electric permittivity depending on the frequency, with a
pole at the isolated atom frequency. The behavior of the
metal is described by using the Drude formula [4] for the
permittivity.

We then seek an interactive eigenmode in which the fields
in both regions share a common eigenfrequency, from which
the index of refraction of each material is computed as the
square root of its permittivity. By eliminating the frequency, we
obtain a relation between the wave numbers of the two regions.
A second relation is obtained by coupling the two regions
through boundary conditions at their common interface. In
this way the eigenfrequency is determined to be one of the
discrete solutions of a transcendental equation. The complete
description of the eigenmode is then obtained in terms of
spherical Bessel functions.
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In such treatments of the Dicke problem, the eigenfre-
quency comes out with a negative imaginary part, representing
the decay rate. This results in a negative imaginary part for
the wave number, so that the magnitude of the field grows
as one travels in the direction of wave propagation. Thus the
Dicke cooperative effect is represented by the active core being
an amplifying, not an absorptive, medium. This is actually a
more accurate description of coherent radiation, for general
geometries, than the one given in Ref. [2].

We are interested here in optical transitions in the radiating
atoms. To achieve the Purcell condition of one (or a few)
macroscopic mode(s), we take the radius of the sphere to be
smaller than the wavelength of the atomic transition. It has
been shown in a different context [5] that with two boundary
interfaces (inner and outer radius of the shell) there are just two
modes that have a wavelength greater than or equal to that of
the resonant light. All other modes have shorter wavelengths
and are weakly coupled to the radiation.

At the same time we let the medium outside the shell,
which is needed for mechanical support and has its own (fixed)
dielectric constant, stretch out very far, so that we may take its
radius to be infinite in our equations. Thus outgoing boundary
conditions are imposed at the outer radius of the shell.

In two previous papers, this problem was explored by giving
one of the two regions a fixed permittivity (dielectric constant)
and treating the other by its proper intrinsic equation. In
Ref. [6], the pole formula was used for the radiating core
but the complex permittivity of the metal was held fixed.
The main finding of the paper was that it is possible to
adjust the resistivity of the metal so that, on the one hand,
the Q value of the cavity is high enough to produce large
Purcell enhancement, but on the other hand, the Q value is
low enough so that the radiation is not trapped inside the
sphere. It was noted in Ref. [6], however, that no account was
taken of the dependence of the metallic permittivity on the
frequency.

In Ref. [7], the Drude formula was used for the metal but the
core was given a fixed real dielectric constant. This treatment
simply explored the two long-wavelength modes of a metallic
cavity with a passive core, as a function of geometry (thickness
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of shell). It was found that the higher-frequency branch has a
frequency whose real part is nearly independent of geometry,
while the lower-frequency branch has a frequency that covers
a wide range as the geometry is altered. Thus the attainable
frequencies fall into two bands, a narrow upper band and a
wide lower band.

In the present paper, there is competition between the
metallic region, described by the Drude model, and the active
region, described by its pole formula, to determine the actual
frequency of the mode. For the range of numerical values
used here, the metallic constraint is stronger so that the actual
frequency falls approximately into either of the two bands
found in Ref. [7]. Thus the Purcell effect is weak or absent
unless the resonance frequency of the active atoms falls into
one of these plasmonic bands, and the geometry is also tuned
so as to bring the actual frequency close to the resonance
frequency.

When this tuning is achieved, the mode corresponding to
the selected branch develops a decay rate, represented by
the imaginary part of the actual eigenfrequency, considerably
larger than the Dicke prediction for cooperative radiation. By
substituting this complex value of frequency into the Drude
formula, one finds a permittivity whose imaginary part is less
than that found at the (real) resonance frequency. This change
further enhances the decay rate, which again feeds into the
Drude formula. In our calculation, these mutual effects of
the two regions (active core and metallic coating) on one
another are taken into account simultaneously rather than
iteratively, so that we obtain a Purcell enhancement that can
substantially exceed that obtained by simply combining the
results of Refs. [6] and [7].

For a very small sphere with no resistive losses, the
boundary value problem may be solved electrostatically [8].
The present paper improves on that treatment (a) by including
resistive losses through the Drude formula; (b) by including
radiative losses [9] through the outgoing boundary conditions;
and (c) by including the finite size effects and radiation reaction
effects through the use of Bessel functions in the field equation
solution.

The results of this paper are the following: (a) a sizable
enhancement in the cooperative decay rate (CDR, or short-
ening in the superradiant lifetime) is observed because of the
presence of the metallic shell, (b) the CDR enhancement is
maximized when the value of the atomic transition frequency
falls within the allowed bands of the eigenfrequencies of the
metallic shell, (c) the maximum enhancement is noticeably
greater than if the permittivity of the metal were not allowed
to be affected by the amplifying nature of the radiative core,
and (d) the maximum enhancement is actually reached within
a narrow range in the value of the ratio of the inner to outer
radius of the metallic shell.

The paper is organized as follows: In Sec. II, we define our
notation in this paper and relate it to notations in our previous
works. In Sec. III, we review the constitutive equations in each
region of space. In Sec. IV, we give the form of the eigenmodes
in spherical configuration, the boundary conditions, and
the secular determinant relating the wave numbers of the
different regions. In Sec. V, we summarize the results that
we obtain for different values of the parameters. We conclude
in Sec. VI.

II. NOTATION

We use Gaussian units throughout. We designate the three
regions by the letters A, B, and C from the outside in, thus

A (passive dielectric) : r � R, (1)

B (metal) : βR � r � R, (2)

C (active core) : r � βR, (3)

where 0 � β � 1. Thus R is the outer radius of the shell, and
βR is the inner radius. (This follows the usage of Ref. [7], but
in Ref. [6] R is the inner radius, and the outer radius is αR

with α � 1.)
The eigenmodes of Maxwell’s equations in spherical

geometry [10–12] are designated by angular indices l and m

(corresponding to the spherical harmonics Ym
l ) and a radial

index s as well as a binary choice (E or M), where E and
M refer, respectively, to the electric and magnetic modes.
We limit our attention to the cylindrically symmetric electric
dipole modes, El,m,s = E1,0,s . Accordingly we suppress the
subscripts l = 1 and m = 0 and keep only the subscript s.
Hence the common (complex) eigenfrequency for a decay
mode is called ωs and the associated wave numbers are
kA
s , kB

s , and kB
s . The resonant frequency of the active atoms

in the core (when isolated) is ω0, and the corresponding wave
number in the vacuum is k0 = ω0/c.

III. CONSTITUTIVE EQUATION IN EACH REGION

In each region there is a constitutive equation, specific to
the material occupying that region, that links the wave number
in that material to the complex eigenfrequency.

In region A, (the passive dielectric) we have simply

(
kA
s

)2 = εA ω2
s /c

2, (4)

where εA is a fixed (real) number, independent of the mode.
In region B (the metal shell) we have

(
kB
s

)2 = εB
s ω2

s /c
2, (5)

where εB
s is given by the Drude formula,

εB
s (ωs) = εB

∞ − ω2
p

ω2
s + iγ ωs

, (6)

where ωp is the bulk plasma frequency of the metal, determined
from the density of free electrons in the metal and the effective
mass of the electron, γ is the electron collision frequency in
the bulk metal, and ε∞ is a phenomenological parameter called
the high-frequency part.

We follow some authors in calling εB
s a permittivity rather

than a dielectric function, in that the equation �D = εB
s

�E
requires a physical picture in which the conduction current
is regarded as a movement of bound charge with no restoring
force. In this picture the term 4π �J in Maxwell’s equations is

included in �̇D so that �J no longer appears explicitly; instead
the divergence of �D is now zero (rather than 4πρ), and the curl

of �H is simply �̇D, rather than 4π �J + �̇D.
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In our illustrations in Sec. V, we adopt, for the optical
regime, Sonnichsen’s values for gold [13], namely,

Au : ε∞ = 9.8 , λp = 136 nm , and


 = γ /ωp = 6.94 × 10−3.

In region C (the active atoms) we have
(
kC
s

)2 = εC
s

(
ωs

)
ω2

s /c
2, (7)

where εC
s (ωs) is given by the resonance pole formula,

εC
s (ωs) = 1 − C

ωs − ω0 + ωL + iγT

. (8)

Here C = 4π℘2n/h̄, n is the atomic number density, ℘ is
the reduced dipole matrix element for the two-level transition,
ωL = 1

3C is the Lorentz shift due to the Clausius-Mossotti
local field correction, and γT is the collisional half-width of
the line (γT

∼= 0.6C) [14].
It is to be noted that the Kramers-Kronig relation, which

requires only causality for its validity, allows the susceptibility
and consequently the dielectric function to be analytically
continued in the lower half of the complex-frequency plane.
This allows us to use the same functional form of εC for
complex ωs as the familiar one for real ω. Since Im (ωs) is
negative for a decaying system, it is possible for Im (ωs + iγT )
to be negative, so that Eq. (8) may represent an amplify-
ing medium, although it would be absorbing if ωs were
real.

IV. EIGENMODES IN SPHERICAL CONFIGURATION

A. Fields and boundary conditions

For a cylindrically symmetric dipole mode E1,0,s , the
expressions for �B and �E in any one of the three regions
depend on two constant coefficients specific to that region, but
otherwise have the same form in each region. Letting Fi stand
for Ai , Bi , or Ci in each respective region, where i = 1 or 2,
we have

�B(r, θ, ϕ ) = [
F1 j1

(
kF
s r

) + F2 n1
(
kF
s r

)]
P 1

1 [cos(θ )] êϕ

(9)

and

�E (r, θ, ϕ)

= − i k0

(kF
s )2 r

(
2

[
F1j1

(
kF
s r

) + F2n1
(
kF
s r

)]
P1[cos(θ )] êr

+ {
F1

[(
kF
s r

)
j0

(
kF
s r

) − j1
(
kF
s r

)] + F2
[(

kF
s r

)
n0

(
kF
s r

)
− n1

(
kF
s r

)]}
P 1

1 [cos(θ )] êθ

)
, (10)

where P1[cos(θ )] = cos(θ ) and P 1
1 [cos(θ )] = − sin(θ ) are the

Legendre polynomial and the associated Legendre function,
and j0,j1 and n0,n1 are, respectively, zeroth- and first-order
spherical Bessel and Neumann functions.

To avoid a singularity at r = 0, we must have

C2 = 0, (11)

and to have a pure outgoing wave in r > R, we must have

A2 = iA1. (12)

In addition, Maxwell’s equations require continuity of Bφ

and Eθ at the boundaries r = βR and r = R:

C1j1
(
kC
s βR

) = B1j1
(
kB
s βR

) + B2n1
(
kB
s βR

)
, (13)

(
kC
s βR

)−2
C1

[
kC
s βRj0

(
kC
s βR

) − j1
(
kC
s βR

)]
= (

kB
s βR

)−2{
B1

[
kB
s βRj0

(
kB
s βR

) − j1
(
kB
s βR

)]
+B2

[
kB
s βRn0

(
kB
s βR

) − n1
(
kB
s βR

)]}
, (14)

and
B1j1

(
kB
s R

) + B2n1
(
kB
s R

) = A1h
(1)
1

(
kA
s R

)
, (15)

(
kB
s R

)−2{
B1

[
kB
s Rj0

(
kB
s R

) − j1
(
kB
s R

)] + B2
[
kB
s Rn0

(
kB
s R

)
−n1

(
kB
s R

)]}= (
kA
s R

)−2
A1

[
kA
s Rh

(1)
0

(
kA
s R

) − h
(1)
1

(
kA
s R

)]
,

(16)

where h
(1)
l (u) = jl(u) + inl(u).

It is through Eqs. (13) and (14) that the radiating atoms in
C are coupled to the “resonant circuit” provided by the metal
in B.

B. Dimensionless notation

Before proceeding further, we replace the wave numbers
by dimensionless equivalents:

u0 = k0R, (17)

uA
s = kA

s R, (18)

uB
s = kB

s R, (19)

uC
s = kC

s R. (20)

In the previous two papers, Refs. [6] and [7], different
nomenclatures were used for these dimensionless parameters.
In each there was only one “responsive” region—that is, where
ε was ω dependent—and for this region the letter “u” was
replaced by “v.” Thus vs was used for region C in Ref. [6]
and for region B in Ref. [7]. Also, in Ref. [6] the radius R

pertained to the B-C boundary, whereas here and in Ref. [7]
it describes the A-B boundary. A comparison of the notation
used in these three papers is given in Table I.

C. Secular determinant

Equations (13)–(16) are a set of four linear homogeneous
equations in the four unknowns: A1, B1, B2, and C1. For a
solution to exist, the characteristic secular determinant for

TABLE I. Comparisonof notation used here with that in Refs. [6]
and [7].

Ref. [6] Ref. [7] This paper

R βR βR

αR R R

α−1 β β

u0 βu0 βu0

vs βuc βuC
s

u βvs βuB
s

w βum βuA
s
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this system must vanish; in terms of the dimensionlesswave numbers introduced above,

det

⎛
⎜⎜⎜⎜⎜⎝

j1
(
uC

s β
) −j1

(
uB

s β
) −n1

(
uB

s β
)

0(
uB

s

)2
jV

(
uC

s β
) −(

uC
s

)2
jV

(
uB

s β
) −(

uC
s

)2
nV

(
uB

s β
)

0

0 j1
(
uB

s

)
n1

(
uB

s

) −h
(1)
1

(
uA

s

)
0

(
uA

s

)2
jV

(
uB

s

) (
uA

s

)2
jV

(
uB

s

) −(
uB

s

)2
h

(1)
V

(
uA

s

)

⎞
⎟⎟⎟⎟⎟⎠

= 0, (21)

where we have written jV (u) for uj0(u) − j1(u), and likewise
nV (u) and h

(1)
V (u).

We observe that the constitutive equations from Sec. II
have played no part in the reasoning leading to Eq. (21).
Hence this reasoning, apart from notation, is identical to
that given in Refs. [6,7]. The reader may verify (using
Table I) the complete correspondence between Eq. (21) and the
(4 ⊗ 4) matrices given in each of those papers. Equation (21),
however, is not sufficient to determine the eigenfrequencies
and wave numbers because it contains three unknowns:
uA

s = kA
s R, uB

s = kB
s R, and uC

s = kC
s R. It is now necessary

to obtain two more equations between these quantities. We
shall use the constitutive equations [Eqs. (4)–(8)] to obtain the
additional two equations required to solve for the three wave
numbers. From Eq. (4) we obtain

(
uA

s

)2 = εAu2
0, (22)

which determines uA
s independently of ωs .

We then solve Eqs. (7) and (8) for ωs , obtaining

ωs = ω0 − i�C, (23a)

where

−i� =
(

u2
0

u2
0 − (

uc
s

)2 − ωL

C
− i

γT

C

)
. (23b)

Then we substitute Eq. (23a) into Eqs. (5) and (6) to get

(
uB

s

)2

u2
0

= ε∞ − 1

(� − i�χ )2 + i
(� − i�χ )
, (23c)

with the dimensionless parameters 
 = γ

ωp
, � = ω0

ωp
, and χ =

C
ωp

.

Equations (23c) and (23b) give us the relation between uB
s

and uC
s , this and Eq. (22) are the additional equations required

to supplement Eq. (21). This gives a transcendental equation
in uC

s which we solve numerically. In our numerical search for
roots we select the two roots with Re(uC

s ) > 0 closest to 0 and
Im(uC

s ) < 0.

Having computed uA
s = kA

s R, uB
s = kB

s R, and uC
s = kC

s R

as functions of u0 and the physical parameters, the quanti-
ties B1/C1, B2/C1, and A 1/C1 are uniquely determined by

solving
⎛
⎜⎝

j1
(
uB

s β
)

n1
(
uB

s β
)

0

j1
(
uB

s

)
n1

(
uB

s

) −h
(1)
1

(
uA

s

)
(
uA

s

)2
jV

(
uB

s

) (
uA

s

)2
nV

(
uB

s

) −(
uB

s

)2
h

(1)
V

(
uA

s

)

⎞
⎟⎠
⎛
⎜⎝

B1/C1

B2/C1

A1/C1

⎞
⎟⎠

=

⎛
⎜⎝

j1
(
uC

s β
)

0

0

⎞
⎟⎠ . (24)

V. RESULTS

As preparation we show in Figs. 1 and 2 some results from
Ref. [7]. In Fig. 1 we plot the real and imaginary parts of the
index of refraction of the metal, as given by the present Eq. (6)
with ωs replaced by a real variable ω. Because of the large
value of ε∞ in gold, the “plasma transition” from near opacity
(low ω) to transparency (high ω) takes place not at the plasma
frequency ωp, but at about one-third that frequency.

Figure 2 shows the actual frequencies of the two modes
of the empty shell, as functions of geometry as represented
by the parameter β. The upper frequency lies in a narrow
band located in the opaque region of Fig. 1, close to the
plasma transition. The lower frequency, sensitive to β, lies
in a wide band reaching down essentially to zero. These are
the “plasmonic bands.”

Figures 3 and 4 exhibit results of the calculations from
Eqs. (21)–(24) in the present paper. Our main concern here
is the decay rate Im (ωs) = CRe (�) (see Eq. (23a). But not
all of this decay rate represents coherent radiation from the
active region. Some of it is loss of coherence due to collision
broadening within that region, measured by the rate γT . The
true superradiant rate is really Im (ωs) − γT = CRe(�̃), where

0.15 0.25 0.35
ω ω p

0.5

1

1.5

Re ∋

(a) (b)

0.15 0.25 0.35
ω ω p

2

4

6

Im ∋

FIG. 1. The (a) real and (b) imaginary parts of the index of
refraction of gold are plotted as functions of the ratio of the light
frequency to the plasma frequency using Sonnichsen’s values for the
parameters of the Drude model.
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0.2 0.4 0.6 0.8
β

0 .15

0 .20

0 .25

0 .30

Re ω pω

FIG. 2. The ratios of the plasmonic resonance frequency to the
plasma frequency in gold are plotted as functions of β ( + is the upper
trace, and – is the lower trace). u0 = 0.2 , nm = 4/3 , and nc = 1
(empty core).

�̃ = � − γT /C. Therefore in Figs. 3 and 4 it is Re(�̃) that we
plot.

The enhancement factor

η = Re(�̃)

�D

(25)

is obtained by dividing CRe(�̃) by the Dicke superradiant
rate which corresponds to the superradiant rate at β = 1 (no
metallic shell). The Dicke rate for a small sphere is [10]

C�D = 2Cn5
m(

1 + 2n2
m

)2 u3
0. (26)

In Figs. 3(a)–3(d) we plot Re(�̃) against β, for four different
values of the atomic resonance frequency ω0: (a) well above the
upper plasmonic band, (b) within the upper band, (c) between
the two bands, and (d) well into the lower band. In all cases
u0 = 0.2 and nm = 4/3, giving �D = 0.00325 from Eq. (26).

We see that in Figs. 3(b) and 3(d) there is Purcell
enhancement [Re(�̃)/�D] exceeding 2 orders of magnitude
at the “best” value of β, whereas in Fig. 3(c) there is only

0.2 0.4 0.6 0.8 1.0
β

β β

β
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

Re

0.2 0.4 0.6 0.8 1.0

0.2
0.4
0.6
0.8
1.0
1.2
Re (b)(a)

(c) (d)

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025
Re

0.75 0.80 0.85 0.90

0.5

1.0

1.5

2.0

2.5
Re

FIG. 3. (Color online) The normalized CDR of the atomic
ensemble is plotted as a function of β for different values of
the ratio of the atomic transition frequency to the metal plasma
frequency. u0 = 0.2 , nm = 4/3 , and χ = 10−4. (a) ω0/ωp = 0.5.

(b) ω0/ωp = 0.315. (c) ω0/ωp = 0.28. (d) ω0/ωp = 0.21.

0.75 0.80 0.85 0.90
β

0.5

1.0

1.5

2.0

2.5

3.0

Re

FIG. 4. (Color online) The normalized CDR of the atomic ensem-
ble is plotted as a function of β for different values of χ = C/ωp.

u0 = 0.2, nm = 4/3, ω0/ωp = 0.21. Dashed line: χ = 10−5. Solid
line: χ = 10−4. Dotted line: χ = 3 × 10−4.

an eightfold enhancement and in Fig. 3(a) there is none at all
because ω0 is far from the bands. In Fig. 3(b) there is strong
enhancement for all β < 0 because of the flatness of the upper
plasmonic band in Fig. 2. In Fig. 3(d), the large geometry
dependence of the lower band causes the enhancement to
fade away rapidly [note the scale of the abscissa in Fig. 3(d)]
as one departs from the peak at β = 0.816. The maximum
enhancement η is 782, compared to 370 in Fig. 3(b).

These figures exhibit the necessity for the atomic resonance
frequency to lie within a plasmonic band of the metal, in
order to obtain large Purcell enhancement. In the analysis of
Ref. [6], there was no comparable band structure because the
frequency of the cavity resonance had only a smooth variation
with geometry. (The large enhancement of ∼5000 obtained in
Ref. [6] was possible because the metallic permittivity could
be set arbitrarily, whereas in the present paper it is tied to the
characteristics of a real metal, gold.)

In Fig. 4 we study the effect noted in the Introduction of
the mutual influence between the two regions B and C leading
to an increase in the Purcell enhancement. We call this effect
“B-C coupling.” Let us first observe that Eq. (23b) gives us

−i�̃ = −i
(
� − γT

C

)
= u2

0

u2
0 − (

uC
s

)2 − 1

3
, (27)

since C is defined to be 3ωL. Thus �̃ is related to uC
s in a

way independent of C. However, uC
s is itself determined by

eliminating � between Eqs. (23b) and (23c), expressing uB
s

in terms of uC
s and uA

s by Eq. (22), and solving Eq. (21). In

0.5 1.0 1.5 2.0
x

0.5
1.0
1.5
2.0
2.5
3.0

Dr x Dr x 0

FIG. 5. (Color online) The radial component of the displacement
vector is plotted as a function of the normalized radius, at the
maximum decay rate of Fig. 3(d).
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FIG. 6. (Color online) The tangential component of the electric
field is plotted as a function of the normalized radius, at the maximum
decay rate of Fig. 3(d).

this process the value of C enters through the appearance of
χ = C/ωp in Eq. (23c).

Thus we study the effect of C on Re(�̃) by displaying
in Fig. 4 the result of varying χ in the calculation leading
to Fig. 3(d). We obtain three curves, which are essentially
identical except in the region of the peak. The middle curve in
Fig. 4 corresponds to Fig. 3(d); the uppermost curve has χ three
times greater; and the lowermost has χ so small that it might
as well be zero. The peak of the curve is the portion where
−Im (ωs) = CRe (�) = CRe(�̃) + γT is greatest. Therefore
the difference among the three curves must reflect the effect of
using the complex frequency ωs in Eq. (6), rather than its real
part ω. Indeed, the expression � − iχ� appearing in Eq. (23c)
is just ωs/ωp according to Eq. (23a).

In this way the activity of the atoms in the core, represented
by the value of χ, is able to affect the permittivity of the metal
in region B. In fact, since at the maximum � , � , χ , and 


are all real, the imaginary part of the denominator in Eq. (23c)
is just � (
 − 2�χ ) = ω0[γ+2Im(ωs )]

ω2
p

. Thus the migration of

the eigenfrequency off the real axis in the negative imaginary
direction has precisely the effect of diminishing the “effective”
electron collision frequency of the metal, raising the Q value
of the cavity and so increasing the enhancement factor η.

If we set χ = 0 in Eq. (23c) and carry out the whole
calculation otherwise as before, we obtain the result of
neglecting the B-C coupling. This is closely approximated by
the lowest curve in Fig. 4. The peak value of Re(�̃) is then 2.30,
whereas in the highest curve it is 3.04. Thus the B-C coupling
arising from a value of C equal to 3 × 10−4ωp is sufficient to
produce a 32% increase in the Purcell enhancement factor.

Finally, in Figs. 5 and 6, to test the consistency of our
computations, we plot, respectively, the values of Dr and of
Eθ for the case considered in Fig. 3(d), and we show that the
results obtained are continuous as they should be. Examining
Fig 6, we also note that, despite the presence of the metal, the
strength of the tangential component of the electric field as
it escapes from the metal into the passive dielectric medium
has changed only by 20% from its value entering the metal
(almost the geometrical factor). This result puts to rest the
possible concern that the metal shell may in this instance trap
the atomic radiation and prevent it from escaping into the
passive medium.

VI. CONCLUSION

In conclusion, by using the interacting model for both the
atomic medium and the electron in the metals, i.e., using the
frequency-dependent dielectric functions for both materials,
we clarified the physical picture describing the cause for the
enhancement of the superradiance rate for a sphere of identical
atoms enclosed in a thin shell of gold and obtained accurate
values for this quantity at its maximum in each configuration.

The eigenmode approach employed here gives directly the
time evolution of superradiance following excitation by a short
pulse. In principle, the same information could be acquired by
a somewhat roundabout method based on Mie scattering [15].
In the scattering method, one would decompose the short pulse
setting up the initial excitation by a Fourier analysis in time and
solve the boundary value problem for general real frequency.
To get the time development of the system, one must multiply
each frequency component by its time factor exp (−iωt) and
then integrate over ω. In many situations this may be easier than
summing over the discrete complex frequencies corresponding
to free decay. But here only two complex frequencies need to
be included, so that the eigenmode treatment is easier and more
accurate.

By stretching a point, one may regard the Dicke cooperative
enhancement of CDR as a special kind of Purcell enhancement
in which, for each radiating atom, the ensemble of all the other
active atoms acts as the macroscopic resonant circuit. We have,
however, chosen not to press this analogy here.
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