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Pairing in a two-dimensional Fermi gas with population imbalance
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Pairing in a population-imbalanced Fermi system in a two-dimensional optical lattice is studied using
determinant quantum Monte Carlo simulations and mean-field calculations. The approximation-free numerical
results show a wide range of stability of the Fulde-Ferrell-Larkin-Ovchinnikov phase. Contrary to claims of
fragility with increased dimensionality, we find that this phase is stable across a wide range of values for the
polarization, temperature, and interaction strength. Both homogeneous and harmonically trapped systems display
pairing with finite center-of-mass momentum, with clear signatures either in momentum space or real space,
which could be observed in cold-atomic gases loaded in an optical lattice. We also use the harmonic level
basis in the confined system and find that pairs can form between particles occupying different levels, which
can be seen as the analog of the finite center-of-mass momentum pairing in the translationally invariant case.
Finally, we perform mean-field calculations for the uniform and confined systems and show the results to be in
good agreement with quantum Monte Carlo. This leads to a simple picture of the different pairing mechanisms,
depending on the filling and confining potential.
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I. INTRODUCTION

The question of pairing in polarized fermionic systems
came to the fore shortly after superconductivity in unpo-
larized systems was explained by BCS [1] as being due
to the formation of Cooper pairs with zero center-of-mass
momentum. Fulde and Ferrell [2] and independently Larkin
and Ovchinnikov [3] proposed similar but not identical
mechanisms whereby the fermions form pairs with nonzero
center-of-mass momentum. We will refer to such a phase
as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. On
the other hand, Sarma [4] proposed a mechanism where, in
spite of the mismatch in the Fermi momenta due to the spin
population imbalance, the pairing occurs with zero center-of-
mass momentum. Verifying these predictions experimentally
proved difficult in condensed matter systems [5]. However,
thanks to rapid experimental progress in the domain of
ultracold atoms, it is now possible to study such population-
imbalanced systems. Fermionic atoms are made to occupy
two hyperfine states, thus emulating a system with “up” and
“down” spins. An advantage of these systems is that the
population imbalance (the polarization) and the interaction
strengths are highly tunable. Such experiments have been
performed in three-dimensional [6,7] and one-dimensional [8]
systems.

It is by now widely accepted that at T = 0 the FFLO phase is
robust over a wide range of parameters in one-dimensional sys-
tems with imbalanced fermion populations. This was shown in
various numerical studies using, for example, quantum Monte
Carlo (QMC) [9,10] and density-matrix renormalization group
(DMRG) [11–15]. In addition, it has been shown to be stable
in quasi-one-dimensional situations, i.e., in the case of an

elongated trap [16,17]. In a previous work, we also showed
that the FFLO phase is stable over a wide range of parameters
in the temperature-polarization (TP) phase diagram [18]. This
exotic pairing occurs both in homogeneous and confined
systems, and has been shown to survive up to relatively high
temperatures (T/TF ≈ 0.1) which are achievable in current
experiments.

The question of the stability of this phase in higher
dimensions remains a subject of debate. It is believed that
“nesting” of the Fermi surfaces stabilizes FFLO pairing. For
example, in one dimension one wave vector connects all
points on the Fermi surfaces of each species, which would
enable all particles from the Fermi surfaces to participate
in the formation of pairs with finite momentum. The effect
of “nesting” is considerably weaker in higher dimensions.
In a two-dimensional lattice system, the shape of a Fermi
surface depends on the filling. At half-filling, the Fermi surface
becomes a square and touches the edge of the first Brillouin
zone (van Hove singularity). Around this filling, matching of
the Fermi surfaces becomes more efficient, in other words,
the “nesting” is enhanced as compared to the situation when
both Fermi surfaces are circular (low filling). This reasoning
leads us to expect that FFLO pairing should be more prevalent
around half-filling than at lower fillings. This lattice-enhanced
stability of FFLO was studied using mean-field (MF) methods
in Refs. [19] and [20]. In the latter, the authors point also at
Hartree corrections and domain-wall formation as additional
reasons for enhancement.

Numerous theoretical studies of the system in higher
dimensions do not offer a clear conclusion on the stability
of the FFLO mechanism. In a variational MF study of a
three-dimensional system in the continuum with and without
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a trapping potential, it is observed that FFLO is a fragile
state which can be realized only in a tiny sliver of the
interaction-polarization phase diagram [21,22]. Furthermore,
this study showed that in a trap, FFLO can exist only in a thin
shell of the atomic cloud. Another study of a three-dimensional
Fermi gas at unitarity [23] shows that this phase is competitive
over a large region in the phase diagram. However, the trap
would need to be adjusted to allow FFLO to occupy a large
enough spatial region to be observed. On the other hand, in
a Bogoliubov–de Gennes study [24] of a trapped system, the
calculated phase diagram indicates that the ground state of the
system is always FFLO for any imbalance up to some critical
value.

The unsettled status of this phase in higher dimensionality
may be clarified with exact numerical simulations. However,
simulations of the Hubbard model in three dimensions are
not feasible for large systems at low enough temperatures
due to the severity of the “fermion sign problem.” On the
other hand, exact QMC simulations in two dimensions are
feasible, but so far none have demonstrated the existence
of the FFLO order in fermionic systems. In addition, two-
dimensional systems are intermediate between one dimension
where MF is almost certain to fail and three dimensions
where MF is more reliable. Consequently, there has been a
concerted, yet inconclusive, effort to understand FFLO physics
theoretically in two-dimensional systems. Homogeneous and
trapped two-dimensional polarized Fermi gases have been
studied with MF calculations which exclude the possibility of
FFLO pairing (e.g., [25] and [26]). An interaction-polarization
phase diagram is shown in Ref. [27] where FFLO pairing is
seen to occupy a wide region. Koponen et al. [19] obtain
MF phase diagrams in the polarization versus filling plane
for one-, two-, and three-dimensional systems. In the two-
dimensional system, there is a very strong feature around
the van Hove singularity of the majority component and
the FFLO phase is present over a wide range of parameters
around this value. They also show temperature-polarization
phase diagrams of one dimensional system which were shown
not to agree with exact QMC results [18]. The temperature-
polarization phase diagram in three dimensions is shown as
well but not the two-dimensional case. Studies of quasi-two-
dimensional systems have been done using MF and they
predict a first-order transition to FFLO at finite temperature
[28]. Another mean-field study of two-dimensional two-orbital
Hubbard model with p orbitals and highly unidirectional
hopping shows enhancement of the FFLO region in the
phase diagram due to the one-dimensional character of the
Fermi surface [29]. A DMRG study of population imbal-
anced Fermi gas on two-leg ladders has found FFLO pair
correlations [30].

In this paper, we present a determinant QMC (DQMC) [31]
study of the two-dimensional Hubbard model with imbalanced
populations of up and down spins. In Sec. II, we present the
model and discuss our results for the uniform system in Sec. III.
Our main result here is the demonstration of the robustness of
the FFLO phase and the determination of the phase diagram
in the temperature-polarization plane at low filling. We also
compare the behavior of the system at low and half-fillings.
In Sec. IV, we examine the system in a harmonic trap. Our
conclusions are in Sec. V.

II. MODEL AND METHODS

The system of interest is governed by the two-dimensional
fermionic Hubbard Hamiltonian

H = −t
∑

〈i,j〉 σ

(c†i σ cj σ + c
†
j σ ci σ ) −

∑
i

(μ1n̂i 1 + μ2n̂i 2)

+U
∑

i

(
n̂i 1 − 1

2

)(
n̂i 2 − 1

2

)

+VT

∑
j

(j − jc)2(n̂j 1 + n̂j 2), (1)

where c
†
i σ (ci σ ) create (annihilate) a fermion of spin σ = 1, 2

on lattice site i (the lattice spacing is equal to unity, setting
both spatial and momentum scales) and n̂i σ = c

†
i σ ci σ is

the corresponding number operator. The near-neighbor 〈i,j 〉
hopping parameter is t , which we take equal to unity to set
the energy scale. We consider only onsite interaction with an
attractive coupling constant U < 0. The number of particles in
each population is governed by its chemical potential (μσ ). The
harmonic trap is introduced via the VT term in the Hamiltonian
where jc is the position of the center of the trap (also middle
of the lattice). All simulations are performed with periodic
boundary conditions. In the confined case, we ensured that the
density vanishes at the edge of the lattice.

The main quantities of interest in this study are the single-
particle Green’s functions Gσ and the pair Green’s function
Gpair:

Gσ (l) = 〈c†i+l σ ci σ 〉, (2)

Gpair(l) = 〈�†
i+l �i 〉, (3)

�i = ci 2 ci 1, (4)

where �i creates a pair on site i. The Fourier transform of Gσ

gives the momentum distribution of the spins-σ species while
the transform of Gpair yields the pair momentum distribution.
In the trapped case, the density profiles of the two species are
also studied.

We studied this system numerically using the DQMC [31]
algorithm. In this approach, the Hubbard-Stratonovich (HS)
transformation is employed to decouple the quartic interaction
term into two quadratic terms coupling the number operator
of each species nσ (i) to the HS field, which effectively acts
as a site-dependent and imaginary-time-dependent chemical
potential. The fermion operators can now be traced out leading
to a partition function in the form of a product of two deter-
minants, one for each spin, summed over all configurations of
the HS field. For U < 0 and equal populations μ1 = μ2, the
determinants are identical: their product is always positive.
But, in the imbalanced case μ1 �= μ2, the two determinants
are no longer equal and their product can, and does, become
negative leading to the known “fermion sign problem.” This is
the main obstacle to the simulation of this system. We found
that at low total filling the sign problem is manageable even at
large polarizations and low temperatures. This was not the case
closer to half-filling. Typical simulations of the harmonically
confined system at low temperature took about two weeks on
a 3-GHz processor.
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In the presence of the trapping potential, we have also
studied the system using a mean-field approach. Starting from
the full Fermi-Hubbard Hamiltonian (1), one can derive the
mean-field Hamiltonian:

HMF = ψ†Mψ + 1

U

∑
i

�∗
i �i −

∑
i

μi 2,

M =
(

hij 1 −�i

−�∗
i −hji 2

)
, (5)

where �∗
i = U 〈c†i 1c

†
i 2〉 are onsite pairing amplitudes; �† =

(. . . ,c†i 1, . . . ,ci 2, . . .) is the Nambu spinor. The matrix h

depicts the one-particle Hamiltonian, namely, hopping terms
between nearest neighbors hijσ = −t (i �= j ) and chemical
potential terms hjjσ = −μjσ = −μσ + VT (j − jc)2n̂j σ . To
account properly for spatial inhomogeneities, the BCS order
parameter at each site, �i , is an independent variable [32–34],
whose value is determined, for a given temperature, by a global
minimization of the free energy F = − 1

β
ln (Z) associated

with the mean-field Hamiltonian:

F = − 1

β

∑
k

ln (1 + e−βλk ) + 1

U

∑
i

�∗
i �i −

∑
i

μi 2, (6)

where the λk are the 2N eigenvalues of the Nambu matrix M;
N is the number of sites. β is the inverse (dimensionless)
temperature 1/T . The minimization of the free energy is
performed using a mixed quasi-Newton and conjugate gradient
method; additional checks were performed to ensure that the
global minimum has been reached.

III. HOMOGENEOUS SYSTEM

To set the stage, we start with the homogeneous two-
dimensional Hubbard model with balanced populations at total
density ρ = ρ1 + ρ2 = 0.3. With balanced populations, the
pairs form with zero center-of-mass momentum and a sharp
peak in the pair momentum distribution is expected at �k = 0.
Figure 1 shows the momentum distributions for a system with
U = −3.5, ρ1 + ρ2 = 0.3, and β = 30 in a 16 × 16 optical
lattice. The single-particle momentum distribution, identical
for the two spins, is shown in Fig. 1(a), while Fig. 1(b) shows
the pair momentum distribution. As expected for weak to
moderate values of |U |, the single-particle distribution has
the usual Fermi form and the pair momentum distribution
exhibits a very sharp peak at �k = 0, indicating pairing with
zero center-of-mass momentum.

We now examine the polarized system. To this end, the
chemical potentials μ1 and μ2 are made unequal so that ρ1 �=
ρ2 but ρ = ρ1 + ρ2 remains constant. This requires tuning
the chemical potentials appropriately. The polarization P is
defined by

P = N1 − N2

N1 + N2
, (7)

where N1 and N2 are the total populations of the two species.
Figure 2 shows the momentum distributions for a system

with U = −3.5, P = 0.6, ρ = 0.3, and β = 10 in an optical
lattice of size 16 × 16 for Figs. 2(a)–2(c) and 10 × 30 for
Fig. 2(d). Figures 2(a) and 2(b) show the minority and
majority single-particle momentum distributions n1(kx,ky) and

FIG. 1. (a) Single-particle momentum distribution n1(kx,ky) [the
same as n2(kx,ky)]. (b) Pair momentum distribution npair(kx,ky)
exhibiting a sharp peak at zero momentum. The total density is
ρ1 + ρ2 = 0.3 (ρ1 = ρ2), β = 30, U = −3.5, and the system size
is 16 × 16.

n2(kx,ky), respectively. They exhibit usual Fermi-type distri-
butions. However, the pair momentum distribution npair(kx,ky)
is strikingly different from the balanced case: It has a
volcanolike shape with the maximum of the distribution at
the rim of the crater of radius |�k| = |�kF2 − �kF1|. �kF1 and �kF2

are the minority and majority Fermi momenta, respectively.
In two dimensions, the Fermi surface geometry changes

with the filling. The behavior exhibited in Fig. 2 is for
low filling where the Fermi distributions of both species
have cylindrical shape and the pairs are formed with equal
probability in all radial directions. In this density regime, the
signature for the FFLO phase is the presence of a circular
ridge in the pair momentum distribution as seen in Fig. 2(c).
Studying the system in the low density regime is interesting
because it also approximates the continuum conditions.

To study possible finite-size effects, we performed our
simulations for systems of various sizes. In particular, Fig. 2(d)
shows the pair momentum distribution for the same parameters
as Figs. 2(a)–2(c), but with a system of size 10 × 30. It is seen
that the peak in the pair momentum distribution is at the same
values of |�k| = |�kF1 − �kF2| as the 16 × 16 system.

We now examine the effect of temperature on the FFLO
phase. In particular, we map out the phase diagram in
the temperature-polarization plane. Thermal effects are very
important in experiments due to the difficulty in cooling
fermionic atoms. The inset in Fig. 3 shows two-dimensional
cuts in the three-dimensional pair momentum distribution for
a 16 × 16 system with U = −3.5, ρ = 0.3, and P = 0.55.
We see that as the temperature is increased (β decreased), the
FFLO peak at nonzero momentum decreases and, in fact, shifts
towards zero momentum. Our criterion for the appearance
of the FFLO phase is when the peak of the pair momentum
distribution is no longer at zero momentum. The question is
then what replaces the FFLO phase: Have the pairs been broken
by thermal fluctuations or has the system been homogenized,
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FIG. 2. Momentum distributions of (a) minority and (b) majority
populations. (c) Shows the pair momentum distribution. The parame-
ters are ρ = ρ1 + ρ2 = 0.3, P = 0.6, β = 10, U = −3.5 in an optical
lattice of size 16 × 16. (d) The pair momentum distribution for the
same system but for a lattice of size 10 × 30.

resulting in a uniform mixture of pairs and excess unpaired
particles of the majority population? The double occupancy
D = 〈n1(�r)n2(�r)〉 offers a measure of how tightly bound the
pairs are: In the absence of pairing, D = ρ1ρ2 while when
the pairing is complete, D = ρ1 where ρ1 is the minority
population. These limits suggest the use of a normalized
form (D − ρ1ρ2)/(ρ1 − ρ1ρ2), which is now bounded by 0
and 1. Note that ρ1 = N1/L

2 while 〈n1(�r)〉 is the average
number of type-1 particles at �r . In the absence of pairing, the
two quantities coincide. We see in Fig. 3 that for β > 3 the
normalized double occupancy is essentially constant, signaling
the continued presence of pairs. This means that when the
FFLO peak first disappears at 4 < β < 3, the pairs are still
formed. We conclude therefore that the system leaves the
FFLO phase to enter a polarized paired phase (PPP) phase.

When the thermal energy T = 1/β is of the order of the
pair binding energy |U |, the pairs are expected to break. We
see in Fig. 3 that the double occupancy decreases precipitously
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FIG. 3. (Color online) The normalized double occupancy as
a function of inverse temperature β for ρ = 0.3, P = 0.55, and
U = −3.5. The lattice size is 16 × 16. Inset: Behavior of the
pair momentum distribution as the temperature is increased (β is
decreased).

only for β < 1, which is consistent with the value of 1/|U | =
1/3.5 in our simulation. Similar behavior was found for the
one-dimensional system [18].

Note in Fig. 3 that the double occupancy increases just
before it drops, signaling the breaking of the pairs. This
increase can be understood physically as follows. As the
temperature is increased, the Fermi distribution near the Fermi
momentum gets rounded, but for |�k| < |�kF | the distribution
remains saturated. This means that pairing can happen only
near the Fermi surface, while inside the Fermi sea the particles
are still blocked by the Pauli exclusion principle. Eventually,
as T continues to increase, the occupation of momentum states
inside the Fermi sea drops, rather suddenly as shown by our
simulations, which makes available for pairing a larger number
of particles causing the double occupancy to rise.

The phase diagram is mapped by fixing the polarization
P and increasing T until the peak in the pair momentum
distribution shifts to zero momentum (inset Fig. 3). The phase
diagram for ρ = ρ1 + ρ2 = 0.3 (circles) and ρ = 1 (squares)
is shown in Fig. 4. The solid circles show the boundary of
the FFLO phase; the open circles indicate the largest P at
which we were able to study the system. Up to these high
polarizations, the system remained in the FFLO phase. The

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T

0

0.2

0.4

0.6
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ρ=0.3, lattice size 16x16,TF=1.88
ρ=0.3, lattice size 20x20
half filling, ρ=1.0, lattice size 16x16

FFLO

U=-3.5

PPP

FIG. 4. (Color online) Finite-temperature phase diagram of the
system at ρ = 0.3.
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FFLO phase boundary at low P appears to extrapolate to P �=
0 as T → 0 for the 16 × 16 system. However, this is an effect
of the coarseness of the lattice grid. As P decreases, the peak in
the pair momentum distribution falls between 0 and 2π/L and
gives the impression of peaking at zero momentum. The blue
circles show the phase boundary for a 20 × 20 system; we see
that effect is corrected for a while, but then even larger systems
are needed. This is not possible because as T decreases, the
sign problem becomes too severe. We believe that as soon as
the system is polarized it goes into the FFLO phase if T is low
enough. The long dashed line connecting this FFLO boundary
to the origin schematizes this. Outside the FFLO phase, the
system is in the PPP since the pairs are still formed and break
only at higher T than shown in the figure. The squares in Fig. 4
show the phase boundary at these temperatures for the case of
ρ = 1 (discussed in the following).

It is important to emphasize here that, in our discussion,
the FFLO state is characterized by the behavior of the pair
momentum distribution: If the peak is at nonzero momentum,
the system is in the FFLO phase. The question naturally
arises as to whether the FFLO pairs have phase coherence
and are, consequently, superfluid. In the balanced case, the
phase diagram in the temperature versus filling plane was
determined for U = −4 in Ref. [35]. By studying the pairing
susceptibility as a function of T as in Ref. [35], we find that
in the balanced case of our system with U = −3.5, the critical
temperature is Tc ≈ 0.1, in good agreement with the U = −4
results [35]. However, studying the same pairing susceptibility
in the polarized case showed no sign of s-wave superfluidity
in the temperature range attainable by QMC. Our numerical
results support approximate analytic results which indicate
that polarization may suppress superfluidity in the FFLO
phase [36]. It is, therefore, currently not clear if when T is
reduced even further, the FFLO phase will become superfluid.
We note, however, that the current focus of most experimental
measures of FFLO is the same nonzero momentum peak on
which our simulations concentrate.

The phase diagram (Fig. 4) resembles the one found in one
dimension [18] and shows that FFLO is very robust. The Fermi
temperature is calculated as usual by considering a balanced
ideal system and gives for ρ = 0.3 a value TF = 1.88t . The
FFLO phase at high P survives up to T = 0.2TF , while in one
dimension [18] at ρ = 0.25, FFLO survives up to T = 0.8TF

at high P . So, while FFLO is still robust in two dimensions, it
is more easily destroyed by finite T . This is important to keep
in mind in experiments.

In a two-dimensional lattice, the Fermi surface geometry
evolves with the filling from closed, rotationally symmetric
surfaces for low filling to a square at half-filling to open
surfaces for higher filling. Consequently, pairing at finite
momentum occurs with different symmetries depending on
the filling. The pairs form with equal probability in all radial
directions in the case of low filling while they form in preferred
directions when the Fermi surfaces are anisotropic.

As discussed in the Introduction, there are claims that
around the van Hove singularity the FFLO pairing could
be enhanced due to increased nesting. Indeed, we observe
that FFLO is stable over a wider range of temperatures and
polarizations for ρ = 1. The squares in Fig. 4 show the
FFLO-PPP boundary in the half-filled case. It is seen that

FIG. 5. (Color online) Top row: difference in the momentum
distributions of majority and minority, showing parallel Fermi
surfaces from the mean-field method (a) and from QMC (b). Bottom
row: pairing schematic for balanced (c) and imbalanced (d). In the
situation when the populations of fermionic species are imbalanced
(diagram on the right), a particle from the majority species forms a
pair with a particle from the minority, the Fermi momentum of which
either matches the kx or ky coordinate of the majority particle Fermi
vector. The pair formed has a finite momentum equal to the distance
of the two Fermi surfaces either along kx or ky .

the FFLO phase persists to higher T than the low-density
case. However, when compared to TF = 6.28t , FFLO is
destroyed for T ≈ 0.08TF as compared with T ≈ 0.2TF for
the half-filled case in one dimension.

When the populations are imbalanced around half-filling of
the lattice, one can readily see the effect of the interaction on
the Fermi surfaces in Fig. 5, depicting the difference between
the Fermi distributions of the species calculated using both
mean-field and QMC methods: they almost look like nested
squares parallel to each other in most of the momentum states,
whereas the noninteracting ones would look more rounded and
not as parallel. Similar Fermi surface geometry in the context
of LO states in three dimensions (3D) have been shown in
Ref. [20].

The reason why the system exhibits such Fermi surfaces
can be understood as follows. If we look at the region of
kx > 0, we can parametrize the linear part of the majority
Fermi line as k+

f,2(kx) = −kx + α2 for positive values and
k−
f,2(kx) = kx − α2 for negative values and doing the same

for the minority we have k+
f,1(kx) = −kx + α1 and k−

f,1(kx) =
kx − α1 (see Fig. 5). Pairing happens here for a given kx

between the upper part of the majority branch and the lower
part of the minority branch [k+

f 2(kx) pairs with k−
f 1(−kx)]. The

momentum of the pair along y is the sum of these momenta and
is equal to qy = k+

f 2(kx) + k−
f 1(−kx) = α2 − α1. Therefore,

thanks to the parallel Fermi lines, the pairing momentum is
independent of kx , leading to a strong enhancement of the
pairing efficiency. The same construction can be done in the

023630-5
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kx direction, matching the y coordinate of the momentum
vectors and the pairs will be moving along x with ±qx . In other
words, for each kx , we have, along ky the usual imbalanced
one-dimensional (1D) situation, i.e., two rectangular Fermi
distributions, with different Fermi momenta. Again, the crucial
point is both the majority and minority effective 1D Fermi
momentum values change the same way with kx : the two
Fermi surfaces remain always at the same distance from each
other. This pairing mechanism is illustrated in Fig. 5(d). The
excess fermions correspond to the part of the majority Fermi
surface which can not be paired this way, i.e., the four regions
around (kx = 0,ky = ±π ) and (kx = ±π,ky = 0). Note that
in the balanced case, this corresponds to the usual BCS pairing
on a lattice: a particle of one species from the Fermi surface
can form a pair with a particle from the other species with
the Fermi vector of equal length but opposite direction [as
shown in Fig. 5(c)]. The resulting pair has, as expected, a zero
center-of-mass momentum. The pairing along kx and ky might
not seem the most intuitive scenario since one can imagine
the pairs forming with momentum along the diagonal with
smaller |�kp|. Since this pairing was not observed in any of
our simulations, this probably means that, in a mean-field
approach, it only corresponds to a local minimum of the free
energy. However, since the shape of Fermi surfaces is affected
by the nature of the pairing, one can not directly compare both
situations from the present results and a more detailed study
is needed, which is beyond the scope of this paper. On the
contrary, the mean-field simulations show sharp peaks either
along kx or ky depending on the realization (see Fig. 6), and in
the quantum Monte Carlo simulations since we average over
all realizations, we see that the pair momentum distribution
exhibits four peaks: two along kx and two along ky (see Fig. 7).
It is important to notice a very good agreement between the
results obtained by MF and QMC methods. Finally, we have
also observed, as expected, that the value of the position of
the peaks, i.e., the center of mass of the pairs, increases with
large population imbalance.

IV. HARMONICALLY CONFINED SYSTEM

One is used to describing free fermions on a lattice
using intuition built on the free-electron model. Each particle
occupies a state with particular momentum �k, and at T = 0
the filled state with the highest �k is called the Fermi level.
BCS pairing mechanism is understood as pairing between
fermions from the Fermi surface with opposite spins and
opposite momenta. In this description, the FFLO pairing model
predicts forming a pair of fermions from different spin species
with a finite momentum, where the momentum of the pair is
the difference of the Fermi momenta of each involved fermion.
When we turn to study a harmonically confined system at low
filling, for which only few harmonic levels are actually filled,
the translationally invariant momentum space description is no
longer the obvious one. An ideal gas confined in a harmonic
trap is known to be fully characterized by the basis formed
by harmonic-oscillator wave functions. In addition, for low
fillings of the lattice, only the bottom of the band structure
will be filled. Then, the kinetic part of the Hamiltonian is well
described by the free-particle one with an effective mass m∗
given by m∗ = 1/2a2t , where a is the lattice spacing and t

(a)

(b)

(c)

8

8

FIG. 6. Momentum distributions of (a) minority, (b) majority,
and (c) order parameter in k space calculated using the mean-field
method. ρ = ρ1 + ρ2 = 1. Here, P = 0.32, β = 25, U = −3.5t , and
the lattice size is 79 × 79. The pairing peaks are symmetric along kx

or ky depending on the realization.

the tunneling amplitude. In the present case, setting the units
t = 1 and a = 1, the effective mass is therefore m∗ = 1/2.

In this section of the paper, we explore the description of the
interacting system in the harmonic basis. This transformation
is the analog of the Fourier transformation used to go from
real space to momentum space in the case of the free system.
We will show that both BCS and FFLO models can be
translated into the harmonic level basis as pairing of particles
between harmonic levels and look into the limitations of this
description. Since we are studying a two-dimensional system,
we use the eigenstates of the two-dimensional harmonic
oscillator (see, for example, [37]). Due to rotational symmetry,
the nth harmonic level is n + 1 times degenerate. We will
use the labeling of the states as follows: n is the principal
quantum number and m = −n,−n + 2, . . . ,n is the orbital
angular momentum quantum number. For simplicity, we
will sometimes use κ to label the set of quantum numbers,
κ = (n,m). Taking the normalized harmonic-oscillator wave
function for a particular level to be �n,m(i) (where i is the
lattice site), we define a creation operator of a particle in a
level as

�†
n,m = 1√

N

∑
i

�∗
n,m(i)c†i , (8)

which, in the continuum limit, leads to properly anticommu-
tating fermionic operators.
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(a)

(b)

(c)

FIG. 7. Momentum distributions of (a) minority, (b) majority,
and (c) pairs at ρ = ρ1 + ρ2 = 1, obtained from QMC. Here, P =
0.38, β = 10, U = −3.5, and the lattice size is 16 × 16. The pair
momentum distribution depicts four peaks along the kx and ky axes.

We calculate the single-particle Green’s function between
levels for each species as follows:

Gσ (κ,κ ′) = 〈�†
κ,σ �κ ′,σ 〉. (9)

As pairing is our main interest of investigations, we also define
a pair Green’s function using the creation and annihilation
operators of a pair of fermions. Similarly to the homogeneous
case where the pairs are formed between particles having
different momenta, the pairs here can have constituents
occupying different harmonic levels:

Gpair(κ,κ ′) = 〈�†
κ ′,1�

†
κ,2�κ,2�κ ′,1〉. (10)

Therefore, the usual BCS pairing with opposite momenta
�k ↔ −�k corresponds to a pairing (n,m) ↔ (n,−m), i.e., to
fermions having the same principal quantum number and
opposite magnetic number. The FFLO pairing �k ↔ −�k′, for
which the norm of the momenta is different, corresponds
to a pairing (n,m) ↔ (n′,−m′) between fermions having
different principal quantum number, i.e., between fermions
from different energy levels.

In this section, we present results for these correlation
functions obtained using both QMC and MF methods of
balanced and polarized systems with low filling of the lattice.
All QMC results were done on a 20 × 20 lattice at the inverse
temperature β = 10 with interaction strength U = −3.5 and
the trap potential Vt = 0.065, which translates to an effective

FIG. 8. (Color online) Single-particle Green’s function in the
harmonic level basis using QMC in the balanced case. The total
number of particles is 22.3, i.e., ≈11 particles per spin. As one can
see, the single-particle Green’s function value on the diagonal sharply
drops just before the fifth level (n = 4) corresponding to 10 harmonic
states, roughly the number of particles per spin. The off-diagonal
elements are small compared to the diagonal ones, emphasizing the
accuracy of the harmonic description of the system. States are labeled
with κ = (n,m) and only the principal quantum number n is displayed
on the x and y axes.

harmonic frequency ω = 0.5. The simulations done using
the mean-field method were performed on a bigger lattice
of 41 × 41 sites, at the inverse temperature of β = 25 and
taking the interaction strength to be U = −3.0 In the figures,
only the n values are explicitly written, but correlations are
calculated between all different n and m values. The m levels
are arranged from m = −n to n from left to right (or bottom to
top). In the balanced case shown in Fig. 8, the single-particle
Green’s function is mainly diagonal, which indicates that in
this regime the harmonic level basis offers a good description
of the system. The diagonal part is the occupation of levels
and where it drops to zero one can define the Fermi level. We
compare these results to those obtained using the mean-field
method. Both single particle as well as pair Green’s function
shown in Fig. 10 agree qualitatively to the QMC results. The
small of-diagonal values in QMC, which are not present in the
MF results, stem from the exact treatment of the interactions
in QMC, not taken into account in the MF calculations. In
the regime of much higher fillings of the lattice (for example
around half-filling), the effective mass approach is no longer
valid and the MF results show that the harmonic basis is no
longer a relevant one. We do not have any QMC results in that
regime due to the sign problem.

In the balanced population case, both Figs. 9 (QMC) and
10 (MF) emphasize that the pairing is maximum around the
Fermi level and happen between particles from levels with
the same n and for opposite m and m′ values such that the
total orbital angular momentum of the pair is 0. This situation
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FIG. 9. (Color online) Pair Green’s function in the harmonic
level basis using QMC. The total number of particles is 22.3 and
the populations are balanced. One can clearly see that the pairing
is maximum at the Fermi level n = 4–5, with opposite magnetic
quantum numbers m. Off-diagonal pairing, e.g., between κ = (6,m)
and κ ′ = (4,m′), is almost negligible. By diagonal pairing, we mean
pairing between levels with equal principal quantum numbers.

is similar to the free-particle case, where the pairing occurs
mostly between the +�kF and −�kF states.

At low imbalance, one observes that the pairing mostly
occurs between the same levels, for instance in Fig. 11, where
one observes diagonal pairing for n = 3 and 4. However, one
observes an off-diagonal feature appearing that corresponds
to pairing between the levels n = 3 and 4. When the system
is imbalanced even more, the off-diagonal feature becomes
the main pairing amplitude. For instance, as shown in Fig. 12,
corresponding to a polarization P = 0.22, the diagonal pairing
has almost completely disappeared and the pairing mostly
occurs between the levels n = 3 and 4. Since it corresponds to a
pairing between an odd and even level, it is impossible to match
the m values and get the pairing with total angular momentum
zero. We observed that the strongest pairing happens, for
example, between κ = (4,−4) and κ ′ = (3,3) and analogously
between κ = (4,4) and κ ′ = (3,−3). There is, in addition, a
small contribution from the levels κ = (4,−2) and κ ′ = (3,1)
and κ = (4,2) and κ ′ = (3,−1). In both cases, the sum of the
orbital angular momentum is nonzero. Imbalancing the system
even more, we arrive at the situation where the difference
between the Fermi levels of each species is nF2 − nF1 = 2.
As illustrated in Fig. 13 for P = 0.37, the pairing occurs
between the levels n = 5 and 3 and also n = 4 and 2, which
means that the system can now achieve pairing with zero total
orbital angular momentum. Still, there is small contribution
of pairing between κ = (5,−5) and κ ′ = (3,3) and κ = (5,5)
and κ ′ = (3,−3), for which �m = ±2. For a comparison, we
show the results from the mean-field simulations, depicting a
similar behavior. In the realization shown in Fig. 14, the Fermi
levels of each species are n = 7 and 9 and we can see the

FIG. 10. (Color online) Single particle and pair Green’s function
in the harmonic level basis using MF. Total number of particles is 80.4
and the populations are balanced. As in Fig. 8, the single-particle
Green’s function is diagonal, with a value equal to 1 up to the
Fermi level (n ≈ 8) dropping to 0 after. The pair Green’s function
emphasizes the diagonal pairing (n,m) ↔ (n,−m).

pairing occurs between those levels as well as between the
two levels below n = 6 and 8. The largest m values are almost
unpaired, for they would have led to nonzero total angular
momentum. We conclude that in the low-filling regime and at
intermediate interaction strength, we can understand the FFLO
pairing mechanism in a trapped system as pairing between
fermions from different harmonic levels. We observe that the
pairs are formed in such a way so that the total orbital angular
momentum of all pairs is always zero, and the orbital angular
momentum is minimized for each pair. Finally, similarly to
the untrapped case where the pairs are produced with a finite
center-of-mass momentum (vanishing for the balanced case),
the FFLO state in the harmonic trap corresponds, in a classical
picture, to pairs whose center of mass is oscillating around
the minimum of the trap with an amplitude increasing with
population imbalance.

Momentum distributions and density profiles at low filling
of the lattice. Fermion systems with imbalanced populations
have been realized experimentally in one-dimensional and
elongated three-dimensional harmonic traps. The density
profiles of the populations were found to be qualitatively
different in the two cases. In three dimensions, one observes the
formation of concentric shells where, for very low polarization,
the core is fully paired, i.e., zero local magnetization, and
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FIG. 11. (Color online) Single particle (a) and (b) and pair
Green’s functions (c) in the harmonic level basis (QMC results)
for a low polarization situation (P = 0.11). The total number of
particles is 25.5. Even though the Fermi levels between the two
species no longer match, the pairing is still diagonal for n = 3 and 4
levels. However, one observes an off-diagonal feature appearing that
corresponds to pairing between the levels κ = (4,−4) and κ ′ = (3,3)
and, respectively, κ = (4,4) and κ ′ = (3,−3) as indicated by arrows.

the wings are partially polarized [6,7]. On the other hand,
it was observed in one-dimensional systems that, for low
polarization, the unpolarized fully paired populations are
located at the edges of the cloud while the core is partially
polarized [8]. The role of dimensionality in this qualitatively
different behavior has been one of the focus of studies on
this system. Consequently, the behavior of the system in two
dimensions is of considerable interest.

We present here results of our DQMC study of the trapped
two-dimensional system. The presence of the trap imposes
constraints which make the simulations much harder than
the uniform case. The number of particles should be large
enough so that at large P , the minority population will still
be appreciable but not so large that the local density in the core
regions is close to half-filling. Another constraint is that the
size of the lattice be large enough to ensure that particles do not
leak out. These constraints limit our ability to do simulations
for system sizes beyond 20 × 20.

As for the uniform system, the most important indicator
of the presence of the FFLO state is the pair momentum
distribution. Although the plane-wave basis is not the natural
one in the harmonically confined case, we study the momentum
distributions because they are of experimental interest. We
will show that despite the shortcomings of this language, one
can still detect the FFLO pairing signal this way. In addition,
since the trap destroys translational invariance, it is very
useful to study the density profiles and local magnetization
m(x,y) = ρ2(x,y) − ρ1(x,y) where ρ2 (ρ1) is local density of

FIG. 12. (Color online) Single particle (a) and (b) and pair (c)
Green’s functions in the harmonic level basis (QMC results) for a
medium polarization (P = 0.22). The total number of particles is
26.9. The diagonal pairing has almost completely disappeared and
the pairing mostly occurs between the levels n = 3 and 4. More
precisely, the strongest pairing occurs between κ = (4,−4) and κ ′ =
(3,3) and analogously between κ = (4,4) and κ ′ = (3,−3). There
is, in addition, a small contribution from the levels κ = (4,−2) and
κ ′ = (3,1) and κ = (4,2) and κ ′ = (3,−1). Note that each pairing
corresponds to a nonvanishing total angular momentum for the pair.

the majority (minority). We start with the unpolarized system.
Figure 15(a) shows the momentum distribution of the particles
(the two populations are identical) for a system with a total
of 22.3 particles, P = 0, β = 10, U = −3.5, and a lattice
size of 20 × 20. The trap potential is given by Vt = 0.065.
Figure 15(b) shows the pair momentum distribution and
exhibits a sharp peak at zero momentum. Now, we polarize the
system keeping the total number of particles constant, which
corresponds to the experimental situation. Figure 16 shows the
momentum distributions of the (a) minority and (b) majority
populations and (c) the pairs. The system has a total of 21.4
particles, P = 0.55, β = 10, U = −3.5 and a trap potential
Vt = 0.065 on a 20 × 20 lattice. The Fermi temperature of
the system is TF = 1.86. Figure 16(c) is qualitatively different
from Fig. 15(b) and shows clearly that when the confined
system is polarized, it exhibits FFLO states with pairs forming
with nonzero center-of-mass momentum. This behavior was
observed for a wide range of polarizations and interaction
strengths. The vertical scale in Fig. 16(c) shows that the
number of pairs is very small. This is due to the small total
number of particles in the system. A simulation for a larger
system but with the same characteristic density [38] should
give a stronger signal in the form of higher peaks at nonzero
momentum. This effect of the total number of particles was
shown in the one-dimensional uniform case in Ref. [9].
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FIG. 13. (Color online) Single particle and pair Green’s functions
in the harmonic level basis (QMC results) for a strong polarization
(P = 0.37). The total number of particles is 27.4. The pairing occurs
between the levels n = 5 and 3 and also n = 4 and 2, i.e., with total
zero orbital angular momentum. Still, there is small contribution
to pairing between κ = (5, −5) and κ ′ = (3,3) and κ = (5,5) and
κ ′ = (3, −3).

During our simulations, we measure the density profiles
of each species and we calculate the local magnetization
m(x,y) = n1(x,y) − n2(x,y). The profiles shown in Fig. 17
correspond to the situation when FFLO-type pairing has been
observed in the system as in Fig. 16. One observes that the
system is partially polarized at the core and fully polarized in
the wings (where we see no minority particles). There is no

FIG. 14. (Color online) Pair Green’s function in the harmonic
level basis (MF results) for a polarization P = 0.27. The results are
similar to the QMC results: pairing is maximum among the Fermi
levels n = 7 and 9 and also among the two levels below n = 6 and 8.
The largest m values are almost unpaired, for they would have led to
nonzero total angular momentum.

(a)

(b)

FIG. 15. Momentum distributions of (a) the single particles
n1(kx,ky) = n2(kx,ky) and (b) the pairs npair(kx,ky). The total number
of particles is 22.3, P = 0, β = 10, U = −3.5, the trap potential is
Vt = 0.065, and the lattice size 20 × 20.

fully paired phase where m(x,y) would disappear within the
size of the cloud.

Density profiles are the basic quantities that characterize
the trapped system. The first experimental results in a three-
dimensional system show the formation of concentric shells
where for very low polarization the core is fully paired (no
local magnetization) and the wings are partially polarized
(see [6] and [7]). On the other hand, in the one-dimensional
system it has been observed that there exists a low-polarization

(a)

(b)

(c)

FIG. 16. The momentum distributions of (a) the minority and (b)
majority populations and (c) the pairs. The total number of particles
is 21.4, P = 0.55, β = 10, U = −3.5 on a 20 × 20 lattice. The trap
potential is Vt = 0.065 and the Fermi temperature is TF = 1.86.

023630-10



PAIRING IN A TWO-DIMENSIONAL FERMI GAS WITH . . . PHYSICAL REVIEW A 86, 023630 (2012)

(a)

(b)

(c)

FIG. 17. Density distributions of majority [n1(x,y)], minority
[n2(x,y)], and the local magnetization [m(x,y)]. Total number of
particles is 21.4, P = 0.55, β = 10, lattice size 20 × 20, trap potential
Vt = 0.065.

regime where the unpolarized superfluid is located at the edge
of the cloud, and the core is partially polarized [8]. The issue
of this dimensionally driven transition caused considerable
interest. It is interesting to look at the intermediate two
dimensions and study the behavior of the density profiles to
see whether it follows more closely any of the two limiting
scenarios. During our simulations, we measure the density
profiles of each species and calculate the local magnetization
m(x,y) = n1(x,y) − n2(x,y). The profiles shown in Fig. 17
correspond to the situation where FFLO-type pairing has been
observed in the system as in Fig. 16. One observes that the
system is partially polarized at the core and fully polarized in
the wings (where we see no minority particles). There is no
fully paired phase where m(x,y) would disappear within the
size of the cloud.

In the very low-polarization regime, we observe oscillations
appearing in the profile of the local magnetization. We looked
in detail into these results in order to establish whether the
oscillations are linked to the FFLO-type pair density-wave
behavior. We found, however, that the oscillations are present
in the system even when there is no interaction between
particles as seen in Fig. 18. From the discussion in the
preceding section, where we have shown the relevance of the
harmonic levels at low fillings, we believe that this effect stems
from the underlying harmonic level structure. In the balanced
case, it has already been shown that the density of a fermionic
cloud in a trap can exhibit oscillations with minima or maxima
in the center of the trap depending on whether the last filled
state corresponds to an odd or even harmonic level [39].

Harmonically confined system around half-filling MF study.
As mentioned earlier, the quantum Monte Carlo method suffers
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FIG. 18. (Color online) Cut through the center of the trap showing
the local magnetization [m(x,y)]. Comparison of interacting and
noninteracting profiles for low polarization using MF and QMC.
The oscillations seen in the magnetization are present even in the
noninteracting situation (dashed line). From both the MF and QMC,
one can see that the interaction might change the profile, but does
not crucially change the oscillation pattern. Therefore, we attribute
the oscillations to the underlying harmonic levels rather than to the
FFLO order.

from a stronger sign problem for higher fillings of the lattice
with the trap. However, we successfully studied the system
imbalance around half-filling of the lattice in the trap using
the mean-field method. In Figs. 19–22, the order parameter is
shown in real space as well as in Fourier space, for increasing
value of the polarization. The numerical results were obtained
for a lattice size 41 × 41, an interaction strength U = −5, and
chemical potential at the center of the trap corresponding to
half-filling.

FIG. 19. Mean-field parameter � as a function of the position
(top) and in Fourier space (bottom) for a low-polarization value (P =
0.13), around the half-filling situation, in the presence of an harmonic
trap. The structure is similar to the balanced case, i.e., a maximum
number of pairs at the center of the trap, decreasing on the border.
The Fourier transform simply depicts a peak at �k = 0, emphasizing a
BCS-type pairing.
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FIG. 20. Mean-field parameter � as a function of the position
(top) and in Fourier space (bottom) for a polarization value P = 0.43.
A structure in the center of the trap is clearly visible, leading to
oscillations in the Fourier transform.

At low polarization (P = 0.13) (Fig. 19), the structure
is similar to the balanced case, i.e., a maximum number of
pairs at the center of the trap, decreasing on the border. The
Fourier transform simply depicts a peak at �k = 0, emphasizing
BCS-type pairing. At higher polarization P = 0.43 (Fig. 20),
a structure in the pairing order � appears at the center
of the trap, leading to clear oscillations in Fourier space.
This pattern appears first at the center of the trap simply

FIG. 21. Mean-field parameter � as a function of the position
(top) and in Fourier space (bottom) for a polarization value P = 0.48.
The checkerboard pattern is a clear signature of the FFLO state. The
Fourier transform depicts four peaks at the positions (kx = 0,ky =
±q) and (kx = ±q,ky = 0), precisely like in the homogeneous
situation at half-filling.

FIG. 22. Mean-field parameter � as a function of the position
(top) and in Fourier space (bottom) for a polarization value P =
0.66. The checkerboard pattern depicts now a shorter period in real
space, translating into a larger spreading of the four peaks in the
Fourier space and corresponding to pairs having a larger center-of-
mass momentum compared to Fig. 21.

because it corresponds to half-filling which, as explained in
a previous section, is strongly unstable towards the FFLO
state. Indeed, this is emphasized by Figs. 21 and 22 corre-
sponding, respectively, to polarization P = 0.48 and 0.66. The
checkerboard pattern of |�|2 in real space becomes more and
more visible. Note that similar results have been previously
shown in Ref. [40]. However, we would like to emphasize
the link between this pattern and the nature of the pairing
in the homogenous situation. Indeed, in Fourier space, four
peaks are clearly observed. Their positions (kx = 0,ky = ±q)
and (kx = ±q,ky = 0) precisely match those observed in
the homogeneous situation, both in the QMC results and in
the MF ones, around half-filling. In addition, one can see
that the oscillation period of the order parameter becomes
shorter with higher polarization, i.e., corresponding to a larger
center-of-mass momentum q of the pair, which is depicted
by the spreading of the four peaks further away from �k =
0. This also shows that the oscillations in real space are
not related to the underlying harmonic levels, but really to
the FFLO order. From the experimental point of view, this
signature of the FFLO order could be measured either directly
in the density of pairs or in their velocity distribution. Of
course, the present mean-field calculation does not include the
thermal fluctuations which are crucial to properly describe the
condensation of the pairs which, at large interaction, arises
at a temperature kBT ≈ t2/U lower than the pair formation
temperature kBT ≈ U [34,41–43].

V. CONCLUSIONS

Our results, based on QMC and MF calculations, strongly
emphasize that the FFLO state is the ground state of the
fermionic Hubbard model on the square lattice for a large range
of parameters, both with or without harmonic confinement. At
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low filling, the FFLO state is similar to the bulk situation
(i.e., particles having a quadratic dispersion relation), where
the pairs have a vanishing total angular momentum, but a
finite radial component for the center-of-mass momentum.
On the contrary, around half-filling, the underlying Fermi
surface due to the lattice structure leads to a FFLO state
having only discrete value of the center-of-mass momentum,
namely, around (kx = 0,ky = ±q) and (kx = ±q,ky = 0).
We have given an explanation in terms of matching fermionic
momentum on the Fermi surfaces. We have also shown that,
in the presence of a harmonic confinement and at low fillings,
the harmonic level basis gives rise to a simple understanding
of the pairing mechanism. In addition, we have shown that the
harmonic levels are at the origin of the oscillations seen in
the local magnetization, which, therefore, are not a signature
of the FFLO state. Finally, still in the presence of a harmonic
confinement, but around half-filling, we have shown that the
pairing mechanism is essentially identical to the homogeneous
situation, leading to clear signatures in the pair density, both
in real space (checkerboard pattern) and in Fourier space (four
peaks), which allows for a possible experimental observation
with cold atoms.

In the presence of a harmonic trap, it would be interesting
to study the dynamics of the pairs in response to a sudden
quench from balanced to imbalanced populations where our

study indicates that one could expect to observe the oscillations
of the center of mass in the trap. In addition, from a mean-field
point of view, the following points would be interesting to
consider. By monitoring the wavelength and the amplitude
of the oscillations of the order parameter, one should be
able to determine the nature of the pairing and possible
transitions between paired phases. One should also take into
account the effects of terms beyond mean field to determine
properly the critical temperature of the transition (BKT-type)
and to estimate the strength of the quantum fluctuations, thus
allowing for a better comparison with possible experimental
results. Finally, one could study more exotic situations, such as
asymmetric tunneling rates, or in the presence of an effective
gauge field.
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