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A three-dimensional study of the ring vortex solitons is conducted for both attractive and repulsive Bose-
Einstein condensates subject to harmonic potential confinement. A family of stationary ring vortex solitons,
which is defined by the radial excitation number and the winding number of the intrinsic vorticity, are obtained
numerically for a given atomic interaction strength. We find that stabilities of the ground and radially excited
states of the ring vortex soliton are dependent on the winding number differently. The ground state of the ring
vortex soliton with the large winding number is unstable dynamically against random perturbation. The radially
excited state of the ring vortex soliton with large winding number corresponds to the increased collapse threshold
and therefore can be made stable for sufficiently small atomic interaction strengths. The ground and radially
excited states also demonstrate different dynamic evolutions under large atomic interaction strengths. The former
exhibits simultaneous symmetric splitting in the transverse plane, while the latter displays periodic expand-merge
cycles in the longitudinal direction.
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I. INTRODUCTION

The realization of Bose-Einstein condensates (BECs) in
dilute quantum gases has drawn a great deal of interest in
vortices [1,2]. Recently, considerable effort has been aimed at
the prediction of settings supporting stable multidimensional
solitons with intrinsic vorticity. One such structure is the ring
vortex soliton, where a soliton loops back on itself to form
a ring and the phase of the wave function winds through an
integer multiple of 2π radians around the vortex line. Such
a ring vortex soliton can be defined by the quantum number
set (n,S), where n is the radial excitation number, equal to
the number of the rings, and S is the winding number of the
intrinsic vorticity. One example of the ring vortex soliton,
called “ring-profile solitary waves,” has been studied in the
context of optics [3,4]. Another example of the ring vortex
soliton, called “vortex tori,” has also been predicted in a three-
dimensional (3D) cubic-quintic Ginzburg-Landau equation
[5,6]. The ring dark soliton is first introduced in the repulsive
BECs [7]. In a recent binary BEC experiment, ring bright
solitons are also observed [8,9], which is studied further in
theoretical works [10].

The most simple structure of the ring vortex soliton is
of one ring in the radial direction, i.e., n = 1, which can
be regarded as the radial ground state, and here we call
it a single ring vortex soliton (SRVS). The bright vortex
soliton created in the attractive and dipolar BECs [11–16]
can be regarded as one typical example of SRVS. As we
know, the atomic interaction in BECs can be controlled
by the Feshbach resonance technique [17–19] to change
the strength and sign of the interaction. Therefore, there is
great interest in investigating the properties of the vortex
soliton under the nonlinearity of the atomic interaction. It is
predicted that SRVS is stable under the 3D harmonic trapping

*ymyu@iphy.ac.cn

potential for sufficiently small interaction strengths [11,12,20],
while for large interaction strengths the dynamic instability
phenomena, such as split-merge cycles of particles [11,14,21]
and intertwining of doubly quantized vortices [22–24], occur
in the unstable regime.

An infinite sequence of radially excited stationary states of
the ring vortex have been predicted by the Gross-Pitaevskii
equation (GPE) in two dimensions (2D) and the sphere shell
in three dimensions (3D) [25,26]. The radial excited state is
of multiple concentric density-wave rings, i.e., n � 2, and
here we call it the multiple ring vortex soliton (MRVS). The
one-dimensional (1D) and 2D solutions of the MRVS are
also proposed for a specific, spatially modulated nonlinearity
[27–29]. In experiments, the ringlike excitations have been
observed in the hyperfine states |F = 1,mf = −1〉 and |F =
2,mf = +1〉 of 87Rb under a rotating cylindrical magnetic
trap [8]. In |±1〉 spinor 87Rb BECs, more ringlike excitation
modes have also been yielded under cylindrical magnetic
confinement [9]. In theoretical simulations, a family of 3D
gap solitons having multiple rings has been reproduced, as
supported by 1D optical lattices [30].

In addition to the intrinsic vorticity, the MRVS has an
additional excitation freedom, corresponding to an infinite
number of nodes of the wave function in the radial direction.
The early linear stability analytical results [25,26] have shown
that, despite the radial excitation, the 2D (or 3D in the sphere
shell) MRVS can be stable in the harmonic confinement below
a threshold of the interaction strength. For large interaction
strengths, the MRVS states are susceptible to collapse. When
the instability times are much larger than the time scale 2π/ω,
where ω is the harmonic trap frequency, it is said to be
experimentally stable for small interaction strengths [25,26].
However, in a recent 3D study, it is found that the MRVS
with n = 2 is unstable against quadrupole perturbations [30].
This implies that the radial excitation of MRVS could display
more rich stability properties if subjected to 3D geometry.
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This motivates us to investigate the stability of the MRVS
in 3D space. Besides, considering the cylindrical magnetic
confinement in the related experiments [8,9], the full 3D
equation is necessary to study the ring vortex solitons.

In this paper, the 3D ring vortex solitons are constructed
within the framework of GPE at the cylindrical coordinate
for both attractive and repulsive BECs. The stabilities of
SRVS and MRVS depend on S differently. The SRVS with
S = 1 has better stability, i.e., large gc, a threshold of the
atomic interaction strength below which the ring vortex state
is robustly stable against random perturbation, while the
SRVS with S � 2 corresponds to the greatly decreased gc

and therefore has poor stability. On the contrary, the MRVS
with large S has better stability, especially when the radial
excitation is high. No or a very small stable regime is found
for the MRVS with S = 1. The differences between the ground
and radially excited states of the ring vortex soliton are
further demonstrated in the dynamically unstable evolution.
The SRVS shows the simultaneous symmetric splitting in
the transverse plane, while the MRVS shows the periodic
expand-merge cycles in the longitudinal direction before
collapse. Such dynamic instability occurs at a time scale of
about several seconds, being longer than 2π/ω, proving their
good experimental stability.

The paper is outlined as follows. We first give a family
of ring vortex solitons by using the Newton continuation
method in Sec. II. Next, the stability properties of the ring
vortex solitons are analyzed by using linear stability analysis in
Sec. III, which is followed by the direct numerical simulations
of the perturbed ring vortex solitons in Sec. IV. Finally, we
conclude the main results of the work in Sec. V.

II. THEORETICAL MODEL AND STATIONARY
SOLUTIONS

We consider the BECs in an external harmonic trapping
potential V (r,z) = m(ω2

r r
2 + ω2

zz
2)/2, where r2 = x2 + y2,

m is the atom mass, and ωr and ωz are the radial and axial
trapping frequencies. The wave function ψ of the BECs
satisfies the dimensionless GPE,
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where θ is the azimuthal angle, g = 4πNas/a0 is the in-
teraction strength, as determined by the total number of
particles N in the condensate, the s-scattering wavelength as ,
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Equation (1) is obtained by rescaling the length by a0, the time
by ω−1, and the energy by h̄ω.

Assume the wave function is

ψ(r,z,θ,t) = φ(r,z)eiSθ−iμt , (2)

where S is azimuthal quantum number, i.e., the intrinsic
vorticity, and μ is the chemical potential. The function φ(r,z)

satisfies the equation
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with the boundary conditions of lim r→0
|z|→0

φ(r,z) = 0 and

lim r→∞
|z|→∞ φ(r,z) = 0. The linear-limit solution of Eq. (3) is

written as the scaled linear combinations of products of the
wave functions of the harmonic oscillator [31],
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where CS
n = ∏S

j=1(n + j ), L̂S
n is the generalized-Laguerre

polynomials, and n is the quantum number in the r direction
(the quantum number in the z direction has set to be zero). The
chemical potential corresponding to Eqs. (3) and (4) is written
as

μnS = γr [2(n − 1) + S + 1] − S� + 1
2γz. (5)

The stationary soliton solutions can be obtained as numerical
solutions of Eq. (3) using the Newton continuation method [32]
with μnS input, starting with the linear-limit solutions, under
the constraint that the normalization of the wave function Ñ

and the energy E are conserved with numerical iteration time,

FIG. 1. (Color online) The 3D ring vortex solitons with different
quantum-number sets (n,S) found numerically for attractive BECs,
as visualized by the isosurface of dimensionless density of the wave
function in the isotropic (a)–(h), pancake-shaped (i)–(l), and cigar-
shaped (m)–(p) harmonic traps, respectively.
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FIG. 2. (Color online) The radial density profile of the ring vortex solitons characterized by the quantum numbers (n,S) for the attractive
(g < 0) or repulsive (g > 0) interactions under the isotropic harmonic potential in (a)–(c) and also the cigar-shaped and pancake-shaped
harmonic potentials in (d).

where

Ñ (ψ) =
∫

R
|ψ(R,t)|2dR = Ñ (ψ0) = 1, t � 0, (6)

and the energy

Eg,�(ψ) =
∫

R

[
1

2
|ψ(R,t)|2 + V (r,z)|ψ(R,t)|2

+g

2
|ψ(R,t)|4 − �S

]
dR

≡ Eg,�(ψ0), t � 0. (7)

Shown in Fig. 1 are various ring vortex solitons obtained
in the case of the attractive interaction under different shaped
harmonic potentials. For the isotropic harmonic potential of
γr = γz = 1, g = −0.0083N refers to a 7Li system both with
ωr = ωz = 20π Hz, for the cigar-shaped harmonic potential of
γr = 1.44 and γz = 1, g = −0.0117N referring to 7Li with
ωr = 178 Hz and ωz = 123 Hz [33], and for the pancaked
harmonic potential of γr = 1 and γz = 20, g = −0.0083N

referring to 7Li with ωr = 20π Hz and ωz = 400π Hz [34].
In the case of isotropic harmonic potential, we also study the
ring vortex solitons for the repulsive interactions, where g =
0.0188N refers to 87Rb BECs with ωr = ωz = 20π Hz. In this
work, � = 0.7 is fixed, except that is mentioned specifically.
The vortex solitons obtained for the repulsive interactions (not
shown here for the sake of brevity) resemble those shown in
Fig. 1 for the attractive interaction.

The ring vortex solitons are further illustrated according
to the radial profile of the wave function. Figure 2(a) shows

that the influence of the quantum number n on the ring vortex
solitons, i.e., the radially excited level is increasing with n,
corresponding to more nodes of the wave function in the radial
direction. Figure 2(b) shows the influence of the quantum
number S on the ring vortex solitons. The ring vortex solitons

FIG. 3. (Color online) The μ(N ) curves of the ring vortex solitons
of n = 1,2,3,4 with S = 1 (square), S = 2 (circle), and S = 3
(triangular), as calculated with γr = γz = 1 and g = −0.0083N , and
� = 0.7, referring the 7Li condensate under the isotropic harmonic
potential with ωr = ωz = 20π Hz.
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with the larger S demonstrate the deeper depletion of density
at the core area (denoted by dashed arrows) and the lower
density peak (denoted by solid arrows). Figure 2(c) shows
the influence of the sign of the interaction nonlinearity on
the shape of the ring vortex solitons for a given interaction
strength. The density of the wave function at the first peak
[denoted by the arrow in Fig. 2(c)] in the case of the attractive
interaction is higher a little than that in the case of the repulsive
interaction. Such a difference is the most prominent in the case
of (n,S) = (1,1) but is weak in the cases of large n or large S.
Figure 2(d) illustrates variation of the radial profile of the ring
vortex solitons under the different shaped harmonic potentials.

Shown in Fig. 3 is the μ(N ) curves of the ring vortex
solitons. For a given N , as compared to the SRVS family
with n = 1, the MRVS families with n = 2, 3, 4, . . . are of
increasing μ. Within a SRVS or MRVS family, μ is increasing
with S. Each data shown in Fig. 3 corresponds to a convergent
stationary state, which is further investigated for the stability
and dynamic evolution.

III. STABILITY ANALYSIS

The stability of the ring vortex solitons is analyzed using
the linear stability analysis. The wave function that deviates
slightly from the stationary solutions is constructed as

ψ = [φ(r,z) + ueiEt + w∗e−iE∗t ]eiSθ−iμt , (8)

where |u|, |w| � 1 are eigenmodes. Substituting Eq. (8) into
Eq. (1) gives (

L −gφ2

gφ2 −L

) (
u

w

)
= E

(
u

w

)
, (9)

where L ≡ (∂rr + 1
r
∂r + ∂zz − S2

r2 )/2 − V (r,z) − 2gφ2 +
S� + μ, and E is the eigenvalue related to u and w, which
is obtained by diagonalization of Eq. (9) under the boundary
conditions demanding that u(r,z),w(r,z) → 0 at r,|z| → ∞
and r,|z| → 0. Applying Eq. (9), we analyze the ring vortex
solitons of different radial excited states, not only the SRVS,
i.e., n = 1, but also the MRVS, from the first radially excited
state, i.e., n = 2, to the higher radially excited states.

Figure 4(a) shows the real and imaginary parts of eigenval-
ues of the SRVS obtained for a given interaction strength in
an isotropic harmonic potential. When S = 1, all eigenvalues
are real, indicating that the corresponding state is stable.
When S � 2, complex eigenvalues emerge, indicating that the
corresponding states are dynamically unstable. The inverse of
the imaginary part of the complex eigenvalue, Im E, gives
the time scale of such a dynamic instability. As shown in
Figs. 4(a) and 4(b), it is found that Im E decreases with S,
which indicates that the ring vortex soliton with the larger
intrinsic vorticity is of the longer lifetime before collapse, i.e.,
the better experimental stability.

Moreover, Figs. 4(c) and 4(d) show the g dependence of
Im E obtained for the SRVS with different S. The eigenvalues
become complex above the critical interaction strength gc,
showing the onset of dynamic instability. The gc value is
dependent on S. For example, our results show that gc is around
– 11 when S = 1 but decreases to −1.5 and −2 when S = 5 and
20 in the case of the attractive interaction. The corresponding
value of gc becomes a little larger in the case of the repulsive

FIG. 4. (Color online) The imaginary part in the energy spectrums
(Im E) of the stability analysis, (a),(b): Im E vs S obtained for SRVS
under a given attractive interaction g = −11. The inset in (a) displays
a robust SRVS wit S = 1 at dimensionless time t = 342 against noise
perturbation, and Im E vs g obtained for SRVS [(c),(d)] and MRVS
of n = 2 [(e) and (h)] and n = 4 [(g),(h)] with different S.

interaction, being around 12, 3, or 1.5 for the SRVS with S = 1,
5, and 20, respectively. The case of the SRVS, i.e., the general
ring vortex soliton without radial excitation, has been studied
previously [11,14,20]. It was found that for sufficiently weak
interaction strength the SRVS with S = 1 is stable, while for
S � 2 the SRVS is unstable to quadrupole oscillations. For
instability times much longer than the time scale 2π/ω of
the BECs, the SRVS with S � 2 is said to be experimentally
stable for small interaction strength. Our results shown in
Figs. 4(a)–4(c) are consistent with the previous study for the
general ring soliton without radial excitation [11,14,20].

Figures 4(e) and 4(f) show the curve of Im E vs g obtained
for the MRVS of n = 2, i.e., the first excited state. The stability
of the ring vortex soliton of the first radial excited state has
been studied based on the 2D solutions [25], which shows
that the first radial excited state with S = 1 is stable for the
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sufficiently small interaction strength below a critical value. In
our 3D study, for S = 1, no stable regime is found for the first
excited state. This result means that the 3D MRVS of the first
excited state with S = 1 could be different from its counterpart
in 2D. The critical dimensionality for the GPE is 2D. Further,
we find that for large S, the 3D MRVS can be made stable. For
example, we give two Im E vs g curves obtained for MRVS
with S = 5 and S = 20 in Figs. 4(e) and 4(f), where the stable
regime, though being very small, is found up to gc = −1.0 in
the case of the attractive interactions and gc = 1.5 in the case
of the repulsive interactions. Such results indicate that the
stability of the MRVS is dependent on the intrinsic vorticity.
The MRVS with large S is expected to be stable.

Shown in Figs. 4(g) and 4(h) are results for the MRVS
of n = 4. The S dependence on the stability becomes more
prominent when the MRVS is of the higher radial excitation.
The stable region, though being very small, below gc = −0.2
and gc = 0.4, is found for the n = 4 MRVS, with S = 1 under
the attractive and repulsive interactions. The stable region
increases for large S. When S = 5, the stable regions are up to
gc = −2 and gc = 3 in the cases of the attractive and repulsive
interactions, respectively. Furthermore, when S = 20, the
stable regions increase up to gc = −4 and gc = 5 in the cases of
the attractive and repulsive interactions, respectively. Through
comparing two cases of n = 2 [Figs. 4(e) and 4(f)] and n = 4
[Figs. 4(g) and 4(h)], we can find that the intrinsic vorticity
tends to improve the stability of the MRVS, and such an effect
becomes more significant when the radial excitation of MRVS
is high. The MRVS of large S has a prominent stable region.

The linear stability analytic results for the S dependence
of the MRVS stability is further confirmed by the directed
simulation based on Eq. (1). Corresponding to Fig. 4(e),
Figs. 5(a) and 5(b) prove that the radially first-excited state of
MRVS of n = 2 is unstable against random perturbation when
S = 1 but becomes stable when S is large, such as S = 5, under
a small g. Next, corresponding to Fig. 4(g), Figs. 5(c)–5(e)
show the stable MRVS of n = 4 with different S values under
the given interaction strength below an increasingly large gc.

IV. DYNAMIC EVOLUTION

The ring vortex solitons are unstable against dynamic
instability when the interaction strength is larger than gc.
Such dynamic instability is simulated through numerically
integrating Eq. (1) using the time-splitting-spectral technique
[35]. In our simulation, the stationary solutions of the ring
vortex solitons are used as initial states after adding a random
perturbation of a 1% relative amplitude of density.

We first simulate the dynamic evolution of the SRVS. As
shown in Fig. 6, the SRVS evolves into polygonal rings, then
splits into small fragments, and finally collapses. The multiple
symmetry is revealed during such evolution. As S increases, we
obtain the two-, three-, four-, five-, six-, seven-, and eightfold
symmetry, as shown in Figs. 6 and 7. As seen in the phase pro-
file of the wave function, the multiply quantized vorticity splits
into many singly quantized vortices. Such a singly quantized
vortex cannot be seen in the density plot, and hence they are
called hidden (or ghost) vortices [36,37]. The singly quantized
vortices are self-organized into the regular lattice, contributing
to the symmetry in splitting. Such symmetry in instability

FIG. 5. (Color online) The dynamic evolution of the MRVS in
unstable and stable regions in Figs. 4(e) and 4(f), where (a) is
dynamically unstable and (b)–(e) are dynamically stable states which
are consistent with linear stability analysis. Referring to a 7Li system
confined by ωr = ωz = 20π Hz, the size is about 120 μm and the
real time t ′ = 0.0159t sec, and t = 0 corresponds to the initial state
of a 1% random perturbation in density.

can be regarded as simultaneous, because the random initial
perturbation we add is of no azimuthal mode. The multiple
symmetric splitting phenomena has been demonstrated for
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FIG. 6. (Color online) Noise-induced splitting of the ring vortex
solitons of different S at dimensionless time t , and the corresponding
density and phase (the third and forth columns) plots in the x-y plane.
To translate the results into the experiment-related units, we assume a
7Li condensate containing about 1500 atoms in an isotropic harmonic
potential with ωr = ωz = 20π Hz. The radii of the ring vortex solitons
here are about 120 μm, decaying at the real time t ′ = 0.0159t sec.

giant vortices [38–41]. The symmetry in splitting and the
number of the fragments are considered to be equal to the
added angular-momentum quantum number of the Bogoliubov
excitation mode responsible for the splitting [38,41]. Ones find
a total of three types of splitting patterns—twofold, threefold,
and fourfold symmetries—when the initial perturbation is
random noise in the density of the wave function [40,41].
Figures 6 and 7 indicate that there could be more types of
symmetries in splitting of the ring vortex soliton. As a matter
of fact, the number of symmetry can be manipulated by the
interaction strength g. As shown in Fig. 8, the number in
symmetry (or the number of the fragments) decreases with g

in the case of the repulsive interaction and increases with g in
the case of the attractive interaction.

Second, we simulate the dynamic evolution of the MRVS.
As shown in Fig. 9, the MRVS demonstrates expand-merge cy-
cles, then collapses. The similar phenomenon, expand-shrink
cycles occurring in the transverse direction, was predicted for
the dark SRVS [11,14,21]. As compared with the dark SRVS,

FIG. 7. (Color online) Noise-induced splitting of giant vortices.
The splitting numbers as a function of different S for the attractive
interaction are shown.

a principal difference is that the expand-merge cycles of the
3D MRVS occurs in the longitudinal direction. The condensate
expands along the axial direction. The outer rings expand faster
than the internal rings. At t = 54, the outmost ring splits into
two pieces, and the internal rings expand but remain united.
In contrast, the inmost ring shrinks, as seen in the density
profile in the longitudinal plane shown in Fig. 9, middle row.

FIG. 8. (Color online) Noise-induced splitting of the 3D vortex
solitons of large vorticity in (a)–(c) with S = 25 for the repulsive
interaction and (d)–(f) with S = 45 for the attractive interaction. To
translate the results into the experiment-related units, we assume
the 87Rb condensate containing about 640 (a), 4360 (b), and 8000
(c) atoms and the 7Li condensate containing 1325 (d), 4820 (e), and
9638 (f) atoms in a isotropic harmonic potential with ωr = ωz = 20π

Hz. The radii of the ring vortex solitons here are about 31 μm for
(a)–(c) and 120 μm, being snapshots at the real time t ′ = 0.0159t

sec.
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FIG. 9. (Color online) Noise-induced splitting of a vortex soliton
of (n,S) = (4,3) at the dimensionless time t and the corresponding
density plot in the x-z plane (middle row) and phase plot in the x-y
plane (lower row). To translate the results into experiment-related
units, we assume a 7Li condensate containing about 1500 atoms in
an isotropic harmonic potential with ωr = ωz = 20π Hz. The radii
of the ring vortex solitons here are about 83.68 μm, decaying at the
real time t ′ = 0.0159t sec.

The expanded condensates and pieces subsequently unite to
restore the original shape at t = 162. Such cycles repeat two
times, then collapse finally. The expand-merge cycles reflect
the expansion in the axial direction and the oscillation in
the radial direction of the density of the wave function. In
addition, during the dynamic evolution of the MRVS, as seen
in the phase profile of the wave function in the transverse
plane shown in Fig. 9, lower row, the multiply quantized
vorticity is maintained well during the expand-shrink cycles.
No vortex splitting is observed until the final collapse, which
indicates that for the MRVS, the instability of the multiple

radial waves prevails over the azimuthal instability. The similar
expand-merge evolutions are demonstrated in the case of
the repulsive interaction, where the cycles repeat three times
before collapse, indicating the longer lifetime.

We also simulate the dynamic instability under the pancake-
shaped and cigar-shaped harmonic potentials. The expand-
merge cycle occurring for the isotropic harmonic potential is
suppressed under the pancake confinement potential. Under
the cigar-shaped harmonic potential, being elongated in the
axial direction, the MRVS does not demonstrate expand-
merge cycles either. Besides, another interesting dynamics
phenomenon, intertwining of vortices in the cigar-shaped
BECs [22–24], is also not observed in our simulations.

The present work is conducted under the rotating GPE
frame, which facilitates the future further study that considers
the possible dependence of the form and properties of the ring
vortex soliton on the rotation angular frequency. The parameter
� = 0.7 used for Figs. 1–9 is chosen arbitrarily, referring to
the rotating BEC experiment condition [42,43]. However, the
results shown in Figs. 1–9 are of general interest, and the stable
ring vortex solitons do not necessarily rely on such a specific
� value, as found in our additional calculations with other
� values. For example, the dimensionless density profiles of
two kinds of stable stationary ring vortex solitons, the SRVS
with S = 1 and the MRVS of n = 4 with S = 20 subject to
the sufficient small interaction strength g = gc, obtained for
different � values overlap together, as shown in Figs. 10(a) and
10(b). The results indicate that the form of such ring vortex
solitons hardly changes with variations of �. On the other
hand, for a sufficiently small interaction strength g = gc, all
Im E obtained for � = 0, 0.4, 0.75, and 0.95 are equal to zero,

FIG. 10. (Color online) The ring vortex solitons obtained for different rotation frequencies �: (a) and (b) the radial density profile of the
wave function, (c) and (d) the imaginary part in energy spectrums (Im E) of the stability analysis.

023628-7



LI, WANG, WU, YU, AND LIU PHYSICAL REVIEW A 86, 023628 (2012)

as shown in Figs. 10(c) and 10(d), which indicates that the
SRVS with S = 1 and the MRVS with S = 20 maintain robust
stability for different rotating frequencies. For an interaction
strength larger than gc, as shown in the insets in Figs. 10(c) and
10(d), Im E decreases with �, corresponding to longer lifetime
in the dynamic unstable evolution; however, such influence is
in the minor quantity range.

V. DISCUSSION AND CONCLUSIONS

With regard to the cylindrical magnetic confinement, we
used a full 3D equation to investigate the stationary state,
stability, and dynamic evolutions of the ring vortex solitons
in the attractive and repulsive BECs. A family of stationary
ring vortex solitons is obtained numerically by the Newton
continuation method. The stability properties of the ring vortex
solitons are predicted for a given interaction strength by using
the linear stability analysis and confirmed further by direct
simulation. The stabilities of the SRVS and MRVS depend on
S differently. The SRVS with S = 1 corresponds to a large gc,
a threshold below which the solution is stable against random
perturbation, while the SRVS with S � 2 corresponds to the
greatly decreased gc. The S dependence of the stability of the
MRVS is contrary. The prominent stable regimes are found for
the MRVS of n = 4 with large S, such as S = 5 and 20, while
very small stable regimes are obtained for the MRVS of n = 4
with S = 1, and no stable regime is even found for MRVS of
n = 2 with S = 1.

Therefore, we can expect the robust dynamic stability
against random perturbation for the SRVS with S = 1 and
the MRVS with large S when the atomic interaction strength
is less than gc. For the radial ground state of the ring vortex
soliton, the values of gc are around −11 and 12, as predicted
for the SRVS with S = 1 under the attractive and repulsive
interactions. For the radially excited state, the values of gc

are around −4 and 5, as predicted for the MRVS with S = 20
under the attractive and repulsive interactions. In our study, we
consider a cylindrical magnetic trap with a harmonic frequency
of ωr = ωz = 20π Hz, which corresponds to the critical atom
number of the stable ring vortex soliton being about 600∼1300
in the case of the radially ground state (where we refer to the
87Rb system with as = 51 Å and m = 1.44 × 10−25 kg, the
7Li system with as = −79.35 Å, and m = 1.1702 × 10−26 kg,
respectively), and several hundreds in the case of the radially
excited state. To decrease the magnetic harmonic frequency
down to several Hertz, one can expect that the critical atom
number increases to 103∼104. Our results suggest the possible
conditions that the ring vortex soliton can be made stable
against random perturbation.

On the other hand, our study also suggests some most
unstable states of the ring vortex solitons, for example, the
SRVS with S � 2 and the MRVS with S = 1. Our direct
simulations show that the lifetime of the dynamic evolution
can be several seconds before the final collapse, for example,
the SRVS shown in Fig. 6 and the MRVS shown in Fig. 9
show that about 103 atoms can survive up to 1.5–8 sec if
referring to a magnetic trapping potential with frequency
ω = 20π . Such time scales are far larger than the time
scale 2π/ω [25,26]. Therefore, the dynamic evolution results
further suggest that the ring vortex solitons could be observed

in experiments if subjected to an appropriate interaction
strength. The differences between the ground and radially
excited states of the ring vortex soliton are also reflected in
the different evolutions before collapse. In the dynamically
unstable regime subjected to the large atomic interaction, the
SRVS demonstrates the simultaneous symmetric splitting in
the transverse plane, while the MRVS exhibits the periodical
expand-merge cycles in the longitudinal direction.

Rotation is one condition for generating vortices in BEC,
and the rotation of a macroscopic quantum state often involves
a dramatic change of its properties. For example, Ho showed
that as the rotating frequency � is very close to radial frequency
ωr , the system reaches a quantum Hall regime where the
density profile is a Gaussian in the xy plane and an inverted
parabolic profile along the z direction [44]. Kartashov et al.
investigated the guiding-center solitons in rotating period
potentials and showed that the increase of � results in
formation of a stable soliton, whose shape is almost identical to
the initial state [45]. Sakaguchi and Malomed studied the gap
solitons in rotating optical lattices and demonstrated that there
is a critical rotating frequency �c. The soliton state is stable
for an indefinitely long time for � < �c but is unstable against
decay into radiation waves for � > �c [46]. Jamaludin et al.
studied the bright solitary waves of atomic BEC under rotation
and showed that � has a considerable stabilizing effect on the
system, significantly raising the critical threshold for collapse
of the bright solitary waves [47]. Lashkin and Maucher et al.
presented exact numerical solutions in the form of spatially
localized 3D rotating multiple solitons in BEC confined by a
parabolic trap and showed that the 3D azimuthal solutions exist
as a continuous family parameterized by rotating frequency
� [48,49]. In these works, the vortex comes from the rotation
conditions and therefore depends on the rotation frequency
somehow.

In the present work, the vortex is embedded in the input
through imprinting a topological phase pattern onto the initial
BEC wave function in terms of e(iSθ−···) in Eq. (2). In recent
years, imprinting vortices in a BEC using topological phases
has been done by many researchers [50,51]. Such initial wave
functions are widely used for the study of singly, doubly, or
multiply quantized vortices [11,22,52]. As bases of the present
work, the exact stationary solutions of ring vortex solitons with
topological phases have been proposed in the nonrotating [28]
and rotating BEC framework [29]. It is shown that when the
initial state is the exact stationary solutions with topological
charge, the stability and the number of vortices are almost the
same for both rotating and nonrotating BECs.

We obtain the stationary solutions with the topological
charge with high numerical accuracy by the Newton contin-
uation method in the present work. We imprint a topological
phase pattern onto the input BEC and find many ring vortex
solitons. Our results in the present work show that the form,
stability, and dynamically unstable lifetimes of such ring
vortex solitons almost do not change with variations of �. The
reason is probably because the intrinsic vorticity is imprinted in
a topological phase, not stemming from the rotation condition.
In this present work, � only enters into the chemical potential
of the wave function through the term S� in Eq. (5), and
this term does not influence the dimensionless profile of the
wave function of the ring vortex solitons. The effect caused by
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such a term is also weak in the stability analysis and dynamic
evolution of the ring vortex solitons.

Our results suggest possibilities for creation and obser-
vation of robust 3D ring vortex solitons in the cylindrical
geometry under a magnetic harmonic trap. The two most stable
ring vortex solitons, the SRVS with S = 1 and the MRVS of
large S, show robust forms and stabilities for different rotation
frequencies of the trap, which means that the stable ring vortex

soliton can be made in either the rotating or the nonrotating
BECs.
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