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Detecting the superfluid critical momentum of Bose gases in optical lattices
through dipole oscillations
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We study the stability of superflow of Bose gases in optical lattices by analyzing the Bose-Hubbard model within
the Gutzwiller mean-field approximation. We calculate the excitation spectra of the homogeneous Bose-Hubbard
model at unit filling to determine the critical momenta for the Landau and dynamical instabilities. These two
critical momenta are shown to approach each other when the on-site interaction increases towards the Mott
transition point. In order to make a direct connection with realistic experiments, we next take into account a
parabolic trapping potential and compute the real-time dynamics of dipole oscillations induced by suddenly
displacing the trap center. We consider the following two cases: standard soft-core bosons, whose interparticle
interactions include the on-site one only; and hard-core bosons with long-range dipole-dipole interactions. For
both cases, we show that the dipole oscillation is significantly damped when the maximum local momentum
exceeds a certain threshold, which quantitatively agrees with the critical momentum for the dynamical instability
in the homogeneous system. In the case of dipolar hard-core bosons, the dynamical instability of dipole oscillations
leads to the formation of checkerboard density waves in the superfluid phase near the boundary to the supersolid
phase.
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I. INTRODUCTION

Since the observation of the quantum phase transition
from superfluid (SF) to Mott insulator (MI) [1], systems
of ultracold gases confined in optical lattices have provided
an ideal venue for studying strong correlation physics [2].
Many interesting properties of strongly correlated ultracold
gases have been revealed in recent experiments, including
excitation spectra [3–6], quantum criticality [7], and particle
transport [8–10].

In particular, transport properties have attracted much inter-
est, in connection with the SF critical momentum above which
superflow breaks down. In experiments with ultracold gases
in optical lattices, transport is investigated by using a moving
optical lattice [9,11,12] or suddenly displacing the parabolic
trapping potential to induce a dipole oscillation [8,10,13].
In the weakly interacting regime, where the Gross-Pitaevskii
(GP) mean-field approximation is valid, it has been shown that
the critical momentum in a trapped system at low temperatures
agrees quantitatively with that for the dynamical instability
(DI) in the homogeneous lattice system [11–15], regardless of
whether one uses the trap displacement or the moving optical
lattice. In the intermediate and strongly interacting regimes,
while the agreement in the critical momenta of the trapped and
untrapped systems has been obtained when the moving optical
lattice is used [9,16,17], it remains unclear whether this is also
the case for the trap displacement.

In addition to optical lattices, new possibilities for the
study of strong correlation physics have been opened up
by the creation of ultracold atomic gases with strong mag-
netic dipole-dipole interactions [18,19] and gases of polar
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molecules [20,21]. It has been predicted that when a dipolar
Bose gas is loaded on an optical lattice, there exist supersolid
(SS) phases that possess both diagonal (crystalline) and
off-diagonal (SF) long-range order [22–29]. Danshita and
Yamamoto have studied the critical momenta of dipolar Bose
gases in a two-dimensional (2D) optical lattices and suggested
that some properties of the critical momenta can be used
to identify SS phases [28]. More specifically, the critical
momenta of the SS phases are finite, in contrast to the
insulating phases, such as MI and density wave phases, and
significantly smaller than that for the SF phase. Since the
analyses in Ref. [28] have been done in a homogeneous lattice
system, it is important to investigate the critical momenta of
dipolar Bose gases in the presence of a parabolic trap in order
to make the suggestion more convincing.

In this paper, using the Gutzwiller approximation, we study
SF transport of Bose gases in optical lattices with and without
the dipole-dipole interactions. First, we analyze the critical
momenta of Bose gases without the dipole-dipole interactions
at unit filling in homogeneous 1D, 2D, and 3D optical lattices
by calculating the excitation spectra. We locate the boundaries
to the Landau instability (LI) and the DI. Second, solving the
equation of motion numerically, we simulate the dynamics
of dipole oscillations of Bose gases confined in a parabolic
potential in both the absence and the presence of the dipole-
dipole interactions. For both cases, we find significant damping
of the dipole oscillations when the maximum local momentum
exceeds a certain critical value, and the critical value coincides
with the critical momentum for the DI in homogeneous
lattice systems. We also find a parameter region in which
the dipole-oscillation mode is resonantly coupled with the
breathing mode. When dipole-dipole interactions are present
and the system is in the SF state close to the SS phase, we show
that the DI of a dipole oscillation is followed by the formation
of checkerboard density waves, as predicted in Ref. [28].
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This paper is organized as follows. In Sec. II, we introduce
the Bose-Hubbard Hamiltonian and our formulation of the
problem based on the Gutzwiller mean-field approxima-
tion. In Sec. III, we calculate the critical momenta at unit
filling in homogeneous 1D, 2D, and 3D optical lattices
from the excitation spectra. In Sec. IV, we calculate the
dipole oscillations to determine the critical momenta in
the presence of a parabolic trapping potential. In Sec. V,
we analyze the dipole oscillations of dipolar hardcore bosons.
In Sec. VI, we summarize our results.

II. MODEL AND FORMULATION

A. Bose-Hubbard model

We consider a system of ultracold Bose gases con-
fined in deep optical lattices combined with a parabolic
trap. This system is well described by the Bose-Hubbard
model [30,31],

Ĥ = −J
∑

j

d∑
α=1

(â†
j âj+eα

+ H.c.) + U

2

∑
j

n̂j(n̂j − 1)

+
∑

j

(εj − μ)n̂j, (1)

where εj = �|aj − r0(t)|2. a and d represent the lattice
constant and the spatial dimension. The vectors j and eα denote
the site index and a unit vector in direction α, where the
directions α = 1, 2, and 3 mean the x, y, and z directions.
âj (â†

j ) is the annihilation (creation) operator and n̂j = â
†
j âj is

the number operator at site j. J , U , �, and μ are the hopping
amplitude, the on-site interaction parameter, the curvature of
the parabolic trap, and the chemical potential, respectively. We
fix the trap curvature to be �/J = 0.01 when we consider
dipole oscillations of Bose gases in optical lattices in the
presence of a parabolic trap. We assume that dipole oscillations
are induced by displacing the trap center in the x direction as
r0(t) = Daθ (t)ê1, where θ (t) is the step function. We control
the momentum of Bose gases by changing the displacement
Da. Henceforth, we adopt the units in which J = h̄ = a = 1
except in the figures and their captions.

B. Gutzwiller approximation

In order to calculate the ground states, the excitation spectra,
and the real-time dynamics of Bose gases in optical lattices,
we use the Gutzwiller approximation, in which the many-body
wave function is assumed to be a single product of local states
as [32]

|�G〉 =
∏

j

∑
n

fj,n(t)|n〉j, (2)

where |n〉j represents the local Fock state at the site j and
the normalization condition for coefficient fj,n is

∑
n |fj,n|2 =

1. Minimizing the effective action,
∫

dt〈�G|i d
dt

− Ĥ |�G〉,
with respect to f ∗

j,n, one can derive the equation of motion

for fj,n,

i
dfj,n(t)

dt
= −

d∑
α=1

[√
nfj,n−1

(
�j−eα

+ �j+eα

)

+√
n + 1fj,n+1

(
�∗

j−eα
+ �∗

j+eα

)]

+
[
U

2
n(n − 1) + (εj − μ)n

]
fj,n, (3)

where �j ≡ 〈�G|âj |�G〉 = ∑
n

√
nf ∗

j,n−1fj,n is the SF order
parameter. While Eq. (3) obviously describes the real-time
dynamics, it also allows us to calculate the ground states by
solving it in imaginary time [33]. A steady solution takes the
form of fj,n(t) = f̃j,ne

−iω̃jt , where f̃j,n is time independent and
the phase factor ω̃j is given by

ω̃j = −
d∑

α=1

[(
�̃j−eα

+ �̃j+eα

)
�̃∗

j + (
�̃∗

j−eα
+ �̃∗

j+eα

)
�̃j

]

+
∑

n

[
U

2
(n − 1) − μj

]
n|f̃j,n|2. (4)

Here, μj = μ − εj is the effective chemical potential at site j
and �̃j = ∑

n

√
nf̃ ∗

j,n−1f̃j,n is the SF order parameter for the
steady state. We explain how to calculate the excitation spectra
from Eq. (3) in the next subsection.

The Gutzwiller approximation has often been applied to
the Bose-Hubbard model in order to analyze various phe-
nomena and properties of Bose gases in optical lattices. This
approximation is more accurate in higher dimensions because
of its mean-field nature. Indeed, thorough comparisons with
experiments have shown that it can quantitatively describe
several interesting properties in three dimensions, such as
the excitation spectra [6] and critical momenta [9]. The
qualitative validity of this approximation is thought to hold
also in two dimensions, given that it correctly captures the
order of the SF-to-MI quantum phase transition. In contrast,
it is widely known that the Gutzwiller approximation fails
miserably in one dimension except for very weak interactions
U � 1. Regarding the SF-to-MI transition, for instance, the
transition in one dimension is of the Berezinskii-Kosterlitz-
Thouless type and the critical value of U/J at unit filling is
(U/J )c � 3.4 according to accurate DMRG calculations [34].
However, the Gutzwiller approximation predicts the second-
order transition and (U/J )c = 11.7. Nevertheless, in the
present paper we analyze 1D systems using the Gutzwiller
approximation because the simplicity of 1D systems is very
useful to illustrate basic properties of transport that hold in
the level of the approximation. Note that in Refs. [16,17]
the Gutzwiller approximation has been used for calculat-
ing the critical momentum in one dimension in a similar
spirit.

C. Excitation spectrum

Previous works have described prescriptions for calculating
the excitation spectra of the homogeneous Bose-Hubbard
model within the Gutzwiller approximation [23,35], and
the prescriptions have been used to study several interest-
ing properties, such as the excitations of soft-core dipolar
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bosons [36] and the stability of dark solitons [37]. We
analyze the excitation spectra not only to investigate the
stability of Bose gases in homogeneous systems, but also to
obtain collective-mode frequencies in trapped systems. While
Kovrizhin et al. have used an extended version of the pre-
scriptions to calculate the excitations in trapped systems [38],
they have not explicitly explained their formulations. In this
subsection, we present a detailed explanation of the extended
version that allows us to deal with spatially inhomogeneous
systems.

We consider a small fluctuation δfj,n around a steady
solution f̃j,n,

fj,n(t) = [f̃j,n + δfj,n(t)]e−iω̃jt . (5)

We substitute Eq. (5) into Eq. (3) and linearize the equation of
motion with respect to the fluctuation δfj,n. The Bogoliubov
transformation on the fluctuation,

δfj,n = uj,ne
−iωt + v∗

j,ne
iω∗t , (6)

leads to the following linear equations:

ωuj,n = −
∑
m

d∑
α=1

[{√
nmf̃j,n−1f̃

∗
j−eα,m−1 +

√
(n + 1)(m + 1)f̃j,n+1f̃

∗
j−eα,m+1

}
uj−eα,m + {√

nmf̃j,n−1f̃
∗
j+eα,m−1

+
√

(n + 1)(m + 1)f̃j,n+1f̃
∗
j+eα,m+1

}
uj+eα,m + {√

n(m + 1)f̃j,n−1f̃j−eα,m+1 +
√

(n + 1)mf̃j,n+1f̃j−eα,m−1
}
vj−eα,m

+ {√
n(m + 1)f̃j,n−1f̃j+eα,m+1 +

√
(n + 1)mf̃j,n+1f̃j+eα,m−1

}
vj+eα,m

] −
d∑

α=1

[√
n
(
�̃j−eα

+ �̃j+eα

)
uj,n−1

+√
n + 1

(
�̃∗

j−eα
+ �̃∗

j+eα

)
uj,n+1

] +
[
U

2
n(n − 1) − nμj − ω̃j

]
uj,n, (7)

−ωvj,n = −
∑
m

d∑
α=1

[{√
nmf̃ ∗

j,n−1f̃j−eα,m−1 +
√

(n + 1)(m + 1)f̃ ∗
j,n+1f̃j−eα,m+1

}
vj−eα,m + {√

nmf̃ ∗
j,n−1f̃j+eα,m−1

+
√

(n + 1)(m + 1)f̃ ∗
j,n+1f̃j+eα,m+1

}
vj+eα,m + {√

n(m + 1)f̃ ∗
j,n−1f̃

∗
j−eα,m+1 +

√
(n + 1)mf̃ ∗

j,n+1f̃
∗
j−eα,m−1

}
uj−eα,m

+ {√
n(m + 1)f̃ ∗

j,n−1f̃
∗
j+eα,m+1 +

√
(n + 1)mf̃ ∗

j,n+1f̃
∗
j+eα,m−1

}
uj+eα,m

] −
d∑

α=1

[√
n
(
�̃∗

j−eα
+ �̃∗

j+eα

)
vj,n−1

+√
n + 1

(
�̃j−eα

+ �̃j+eα

)
vj,n+1

] +
[
U

2
n(n − 1) − nμj − ω̃j

]
vj,n. (8)

Solving these equations, one obtains the frequencies ω and
the wave functions (uj,n,vj,n) of excitations, which allow us
to discriminate the stability of a steady state [39]. When
all the excitations satisfy the condition Nω � 0, the steady
state is stable, where N = ∑

j

∑
n(|uj,n|2 − |vj,n|2) is the

normalization constant and Nω describes the energy change
associated with low-amplitude oscillations given by Eq. (6).
If there exist excitations satisfying Nω < 0, the state is
energetically unstable. This instability is called the LI. The
emergence of excitations with complex frequencies, i.e.,
|Im[ω]| > 0, signals the DI, which means exponential growth
of the fluctuation in time. In a system of atomic gases at
sufficiently low temperatures, while the LI cannot destabilize
the system because of the lack of energy-dissipation processes,
the DI can drastically break down the system [12,40,41].
Hence, it is important to calculate the critical momentum for
the DI, even though it is always larger than the Landau critical
momentum [39].

We show in Sec. IV that significant damping of dipole
oscillations occurs when the maximum local momentum in a
trapped system exceeds the critical momentum for the DI in a
homogeneous system.

III. CRITICAL MOMENTA IN HOMOGENEOUS
OPTICAL LATTICES

In this section, we numerically solve Eqs. (7) and (8) to
obtain the excitation spectra for homogeneous Bose-Hubbard
systems at ν = 1 in one, two, and three dimensions, where
ν is the filling factor. Using the discriminant described in
the previous section, we determine the critical momenta for
the LI and the DI. Note that the critical momenta for the DI
have been obtained in Refs. [16,17] by solving the equation
of motion, (3), in real time in a situation where the on-site
interaction U or the flow momentum is slowly increased.
A clear advantage of our method over the previous work is
that the critical momenta for the LI is also available. We also
emphasize that one can calculate the critical momenta for the
DI more accurately. In the limit of U → 0, for instance, while
the critical momentum obtained in Refs. [16,17] is a little
larger than the prediction by the GP mean-field theory, i.e.,
p = π/2 [42], our method gives a precise agreement with the
GP prediction as we see below.

To calculate the excitation spectra for moving Bose gases,
we introduce the phase twist term in Eq. (1) as

â
†
j âj+eα

→ â
†
j âj+eα

eip·eα , (9)
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FIG. 1. Excitation spectra h̄ω(k)/J in 1D homogeneous optical lattices for U/J = 3, ν = 1, and different values of pa/h̄. (a) pa/h̄ = 0;
(b) pa/h̄ = pLIa/h̄ � 0.85, where the LI sets in; (c, d) pa/h̄ = 0.94 > pDI1a/h̄.

which represents the situation where the optical lattice is
moving at a constant momentum −p. Forcing the coefficients
fj,n to be real numbers, we carry out imaginary-time evolution
of Eq. (3) to obtain the steady state with zero momentum,
which is equivalent to a state with momentum p in a static
optical lattice. Substituting the coefficients f̃j,n of the steady
state into Eqs. (7) and (8) and solving them, we obtain the
excitation spectra of the current-carrying state.

In Fig. 1, we show the excitation spectra of Bose gases
in 1D homogeneous optical lattices for U = 3 and different
values of the flow momentum p. We plot the first branch of the
excitations, which corresponds to the well-known Bogoliubov
spectrum, because only this branch is relevant to the LI and

the DI in most of the parameter regions. When pa/h̄ = 0, this
branch has a phonon dispersion at |k| � 1 [Fig. 1(a)]. When
p increases, the slope of the phonon dispersion for k < 0
decreases, and it reaches 0 at p = pLI � 0.85 as shown in
Fig. 1(b). This signals the onset of the LI. When p increases
further and exceeds a certain threshold, the excitations at |k| �
1 have a finite imaginary part, which signals the DI. We call
this threshold pDI1.

In Fig. 2, we show the critical momenta for the LI [dashed
(red) lines] and the DI caused by excitations with |k| � 1
[solid (black) lines] in one, two, and three dimensions. In any
dimensions, pLI → 0 and pDI1 → π/2 when U → 0. When U

increases, pDI1 decreases monotonically and pLI approaches
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FIG. 2. (Color online) Critical momenta versus U/J in homogeneous optical lattices for ν = 1: (a) 1D, (b) 2D, and (c) 3D. Dashed (red),
solid (black), and dotted (blue) lines represent the critical momenta for the LI (pLIa/h̄), the DI caused by excitations with long wavelengths
(pDI1a/h̄), and the DI caused by excitations with short wavelengths (pDI2a/h̄).
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FIG. 3. (Color online) Excitation spectra h̄ω(k)/J in 1D homogeneous optical lattices for the weak interaction U/J = 0.1, ν = 1, and
different values of pa/h̄; (a) pa/h̄ = 0; (b) pa/h̄ = 0.5, where the avoided crossing of the first and second branches starts to occur;
(c) pa/h̄ = 1.2; (d, e) pa/h̄ = 1.3, where excitations with short wavelengths cause the DI. Solid (black), dashed (red), and dotted (blue) lines
represent the normal modes, the antimodes, and the modes whose imaginary part is finite.

pDI1. In the strongly interacting region (U � Uc/2), pLI takes
almost the same value as pDI1, and both momenta reach 0 at
U = Uc, where Uc denotes the SF-MI transition point. The
behaviors of pDI1 are consistent with the work in Refs. [16,17].

When the interaction is sufficiently weak in one dimension,
a DI caused by excitations with short wavelengths precedes the
DI caused by excitations with |k| � 1. The critical momentum
for this DI pDI2 is plotted by the dotted (blue) line in Fig. 2(a).
To understand this instability, we show in Fig. 3 the excitation
spectra including the first branch (Bogoliubov mode), the
second branch, and the antimodes of the two branches [43] for
U = 0.1 and different values of p. Note that the second branch
becomes the amplitude mode in the strongly interacting region.
When p increases, the second branch declines and exhibits an
avoided crossing with the first branch as shown in Figs. 3(b)
and 3(c). With further increases in p, the second (first) branch
is coupled with the antimode of the first (second) branch and
these coupled modes cause the DI [39]. We suggest that this DI
leads to the formation of density waves with ordering vectors
k � ±0.3π and ±0.5π . While this type of DI has been found
previously in the presence of off-site interactions [28,44–46],
this is the first example of such a DI in the standard Bose-
Hubbard model only with the on-site interaction.

IV. DIPOLE OSCILLATIONS IN THE STANDARD
BOSE-HUBBARD SYSTEM

In this section, we consider systems of Bose gases in 1D
and 2D optical lattices combined with a parabolic trap. We
fix the total number of particles to be N = 45 in 1D and

N = 3000 in 2D lattices such that the Mott plateau at unit
filling forms in the central region of the trap when U exceeds
Uc. We first calculate the ground state via imaginary-time
evolution of Eq. (3). We next calculate real-time dynamics
subjected to a sudden displacement of the trap center that
induces a dipole oscillation. Note that while similar dynamics
have been studied in Refs. [38,47] using the same Gutzwiller
approximation, the previous studies did not address the relation
between dipole oscillations and critical momenta, which is our
main interest here.

A. Stability and damping of dipole oscillations

To illustrate basic properties of the dynamics of dipole
oscillations, we start our analyses with the 1D case. In Fig. 4,
we show typical examples of the center-of-mass (c.m.) motion
for stable and damped dipole oscillations. The amplitude of the
dipole oscillation hardly changes as long as the displacement
D is smaller than a certain critical value Dc as shown in
Fig. 4(a). This dissipationless motion is a clear characteristic
of superflow. In contrast, the oscillation is remarkably damped
when Dc is exceeded [see Fig. 4(b)]. It is worth noting that
the dynamics for these two cases can be clearly distinguished
because the transition to the damped oscillation occurs very
sharply. Thanks to this property, one can determine the critical
displacement accurately.

It is shown in Fig. 4(b) that the oscillation is damped in
a short time scale, within t < 100h̄/J , and becomes almost
undamped afterward. However, when D is sufficiently large
compared to Dc, the breakdown of superflow is so significant
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FIG. 4. Time evolution of the center-of-mass xc.m.(t)/a in 1D optical lattices combined with the parabolic trap for U/J = 6. The maximum
density of the initial state is 1.29. (a) Stable dipole oscillation at D = 4.3; (b) damped dipole oscillation at D = 4.4; (c) overdamped motion at
D = 8.

that the c.m. motion is overdamped and never exhibits a stable
oscillation as shown in Fig. 4(c), where D = 8.

B. Collective and local momentum

We characterize the transport in trapped systems by the col-
lective momentum pcol and local momentum pj and compare
them with the critical momenta in homogeneous systems. Let
us first define the collective momentum. The c.m. velocity is
given by vc.m. = dxc.m./dt , where xc.m. = ∑

j jnj/N denotes
the c.m. position. Here nj = 〈�G|n̂j|�G〉 = ∑

n nf ∗
j,nfj,n is

the density at site j. In the tight-binding regime, since the
(quasi)momentum pα in the α direction is related to the group
velocity vα as

vα = 2 sin pα, (10)

we define the collective momentum as

pα
col = sin−1

(
vα

c.m.

2

)
. (11)

Note that a different parameter to analyze the collective
motion, i.e., pc.m. = ∑

p pnp/N , was used in Refs. [16,17],
where np is the momentum distribution. However, we adopt
the quantity defined by Eq. (11) because it is more directly
relevant to actual experiments in the sense that the c.m. velocity
can be measured rather easily in the time-of-flight images as
done in experiments in Refs. [8,10].

The local momentum pα
j means the momentum per parti-

cle of the local current Iα
j flowing from site j to site j + eα ,

which is given by Iα
j = (�∗

j �j+eα
− �j�

∗
j+eα

)/i within the
Gutzwiller approximation. With this local current, the local
velocity is expressed as

vα
j = Iα

j√
nc

j n
c
j+eα

, (12)

where nc
j = |�j|2 is the condensate density at site j. From

Eqs. (10) and (12), the local momentum is naturally defined as

pα
j = sin−1

⎛
⎝ Iα

j

2
√

nc
j n

c
j+eα

⎞
⎠ . (13)

We show in the next section that significant damping of dipole
oscillations occurs when the maximum local momentum in a

trapped system exceeds the critical momentum for the DI in a
homogeneous system.

In Fig. 5, we show snapshots of the local momentum
pj , the condensate density nc

j , and the density nj at the
critical displacement D = Dc for a weak interaction, U = 2
[Fig. 5(a)], and a strong interaction, U = 10 [Fig. 5(b)].
The time is set such that the momentum of c.m. takes the
maximum value during the time evolution. We define this
time as tmax. For the weak interaction, the local momentum is
almost constant. On the other hand, for the strong interaction
in Fig. 5(b), the local momentum is significantly dependent on
the position so that it peaks at unit-filling points. This happens
because the condensate density in regions close to unit filling
is strongly suppressed as a precursor of the formation of Mott
plateaus. Due to the strong spatial dependence of the local
momentum, the collective momentum is noticeably smaller
than the maximum local momentum, especially near the Mott
transition.

C. Critical momentum

In Fig. 6, we show the maximum local momentum pmax

and the collective momentum pcol at D = Dc and t = tmax

as functions of U . For comparison, we also plot the critical
momenta pDI1 obtained in homogeneous systems at unit filling.
We find that pmax(t = tmax) in the trapped system quantitatively
agrees with pDI1. In contrast, pcol(t = tmax) drastically deviates
from pDI1. These results lead to an important conclusion; to
detect critical momenta for homogeneous lattice systems from
dipole oscillations, one needs to measure the local momentum
rather than the collective momentum, which can be measured
relatively easily from the time-of-flight images [8,10,13].
While the local momentum has never been experimentally
measured so far, it should be available in future experiments
because recent experiments have developed techniques to
address local observables at the scale of a single lattice
site [7,48].

D. Mode coupling

We now focus on long-time dynamics of the dipole
oscillation. In this case, we find that the dipole oscillation
with damping and revival occurs below the critical momentum
in a particular range at the interaction U = 7.5–7.8. Similar
behaviors have been found in Refs. [38,47]. In Fig. 7, we
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FIG. 5. (Color online) Local momentum pja/h̄ [solid (black) line], local condensate density nc
j = |�j |2 [dashed (red) line], local density

nj [dotted (blue) line], local current Ijh̄/J [dot-dashed (green) line] in one dimension at D = Dc and t = tmax, where U/J = 2 (a) and
U/J = 10 (b).

show this unusual oscillation for U = 7.78. To understand
this phenomenon, we calculate the excitation spectrum by
diagonalizing Eqs. (7) and (8). In Fig. 8(a), we plot the
frequencies of the first and second modes, which correspond
to the dipole mode and the breathing mode, respectively.
We also show the ratio of the breathing-mode frequency ω2

to the dipole-mode frequency ω1 in Fig. 8(b). We find that
the ratio ω2/ω1 is nearly equal to 2 in the regime where
damping and revival occur. Therefore, this phenomenon can
be interpreted as indicating that dipole and breathing modes
are coupled by the nonlinear effect in Eq. (3). In this regime,
although the amplitude of the dipole oscillation decreases due
to this mode coupling even below the critical momentum, we
can determine the critical momentum because the damping
caused by mode coupling is much smaller than that caused by
the DI.

V. DIPOLAR HARDCORE BOSONS

In this section, we consider dipolar bosons confined in 2D
optical lattices combined with a parabolic trapping potential.
For simplicity, we consider the hard-core limit (U → ∞),
in which the local Hilbert space is spanned only with |0〉

and |1〉, and we analyze this system using the Gutzwiller
approximation as in the previous section. Thus, we treat
exactly the same system (HCB) within the same formalism
as in Ref. [28] except for the parabolic trap. To compare
the critical momentum extracted from the dipole oscillations
with that for the homogeneous lattice system at ν = 0.4
in Ref. [28], we introduced the averaged density n̄ctr =
(n0 + ne1 )/2. We assume that the dipoles are polarized to the
direction perpendicular to the lattice plane. This system is well
described by the Bose-Hubbard model

Ĥ = −J
∑

j

d∑
α=1

(
â
†
j âj+eα

+ h.c.
) + V

2

∑
j�=l

n̂jn̂l

r3
j,l

+
∑

j

(εj − μ)n̂j, (14)

where V is the strength of dipole-dipole interaction, and
rj,l = a|j − l| is the distance between site j and site l. Since the
dipolar interaction potential decays as ∼r−3

j,l , we only include
dipolar interactions in the range rj,l � 7a to reduce the compu-
tational time. While the simulation time is proportional to the
number of lattices M with a cutoff of the dipole interaction, it
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FIG. 6. (Color online) Maximum local momentum pmaxa/(πh̄) [solid (black) lines with symbols] and collective momentum pcola/(πh̄)
[dashed (red) lines] at D = Dc and t = tmax as functions of U/J : (a) 1D and (b) 2D. Dotted (blue) lines represent pDI1a/(h̄π ) in homogeneous
lattice systems, which are plotted in Figs. 2(a) and 2(b) by solid (black) lines.
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FIG. 7. Motion of the center-of-mass xc.m.(t)/a with damping
and revival in 1D optical lattices combined with a parabolic trap for
U/J = 7.78.

is proportional to M2 without a cutoff. Introducing this cutoff
merely changes some quantitative characteristics of the system
very slightly, and does not affect any qualitative properties,
such as the quantum phase diagram and the critical momentum,
when V � 10. We again adopt units of h̄ = J = a = 1.

A. Ground state

Let us calculate the ground state of Eq. (14). We fix the
curvature of the parabolic potential and the total number of
particles to be � = 0.01 and N = 900. In this case, the ground
state can be the following two types of states as long as
V < 4.5. For small V , the dipolar gas in the ground state
consists only of an SF region. When V is sufficiently large,
the ground state has a region of the SS with a checkerboard
density wave order around the trap center, and this SS region is
surrounded by an SF region. As a metaphor, one may imagine a
sunny-side-up egg whose yolk and white correspond to the SS
and SF regions. In order to identify the transition between
the two states, we show in Fig. 9 the average condensate
density and the static structure factor around the center of
the trap, which are defined as nc

ctr = ∑
j∈ctr |�j|2/25 and

Sctr(π,π ) = ∑
j,l∈ctr e

i(π,π)·(j−l)〈njnl〉/25. Here
∑

∈ctr denotes
the summation of the 5 × 5 sites around the center of the trap.
By using these quantities, we identify the state with nc

ctr �= 0
and Sctr(π,π ) = 0 as the SF state and the state with nc

ctr �= 0
and Sctr(π,π ) �= 0 as the SS state. We find that the boundary of
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FIG. 9. (Color online) Average density n̄ctr [dotted (blue) line],
average condensate density nc

ctr [solid (black) line], and static structure
factor Sctr(π,π ) divided by 5 [dashed (red) line] around the trap center
in the ground state of Eq. (14) are plotted as functions of V/J , where
�/J = 0.01 and N = 900.

the SF and the SS is V = 3.26. When V > 4.5, there emerge
other SS and solid phases [26]. We do not analyze the region of
V > 4.5, because our main focus is placed on the SF transport
of the SF and checkerboard SS states.

To compare the critical momentum extracted from the
dipole oscillations with that for the homogeneous lattice
system at ν = 0.4 in Ref. [28], we also plot the average density
n̄ctr = (n0 + ne1 )/2. For this purpose, we take the total number
and the trap curvature such that the central average density is
n̄ctr � 0.4 in the SS state as shown in Fig. 9. On the other
hand, n̄ctr in the SF state ranges roughly between 0.4 and 0.6.
However, this does not matter for the comparison because the
critical momentum for the DI in the SF phase hardly depends
on the density in the range of 0.4 < ν < 0.6.

B. Critical momentum

Having obtained the ground state of Eq. (14), we next
calculate the dipole-oscillation dynamics following the method
illustrated in the previous section. We find that the critical
displacement Dc can be accurately determined also in the case
of dipolar hard-core bosons. By the solid (black) line with
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FIG. 8. (Color online) (a) Frequencies of the first mode h̄ω1/J [solid (black) line] and the second mode h̄ω2/J [dashed (red) line] in 1D
lattices combined with a parabolic trap. (b) Ratio ω2/ω1.
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FIG. 10. (Color online) (a) Solid line with symbols represents the maximum local momentum pmaxa/h̄ at D = Dc and t = tmax in the
system described by Eq. (14) as a function of V/J . The dashed (red) line represents the critical momentum for the DI in the homogeneous case
at ν = 0.4 [28]. (b) Critical displacement Dc as a function of V/J .

symbols in Fig. 10(a), we show the maximum local momentum
pmax at D = Dc and t = tmax as a function of V . We clearly
see that pmax agrees well with the critical momentum for the
DI in the homogeneous lattice system at ν = 0.4 obtained in
Ref. [28] by applying the same Gutzwiller approximation to
the same dipolar hard-core Bose-Hubbard model. pmax takes
a distinct minimum at a point close to the transition to the SS
state and is significantly smaller in the SS state than in the SF
state. We emphasize that the agreement with the homogeneous
case is found in the SS state even though there also exists an
SF region with a different critical momentum. This can be
attributed to the fact that the critical momentum in the SS phase
is smaller than that in the SF phase and that the maximum local
momentum is always taken at the center of the SS region where
the local condensate density is lowest.

Let us discuss the feasibility of identifying the SS state
from the critical momentum. If one can measure the local
momentum, the above-mentioned properties of the critical
momentum in the SS state allow us to distinguish the SS
state from other possible states, such as the SF, MI, and
density-wave insulating states. However, since it should be

easier to measure the critical displacement rather than the
critical local momentum, we show the critical displacement as
a function of V in Fig. 10(b), where the significant reduction
of Dc in the SS state is clearly shown. Thus, we suggest that
it is possible to identify the SS state by measuring the critical
displacement Dc.

C. Dynamical transition

It was predicted for the homogeneous case in Ref. [28]
that when the superflow momentum increases in the SF state
near the phase boundary to the SS state, the transition to the
SS phase can occur due to the DI caused by excitations with
k = (π,π ). Since the typical experimental setup includes a
parabolic trapping potential, it is important to confirm whether
or not this dynamical transition induced by superflow occurs
in trapped systems. For this purpose, we choose V = 3.2 such
that the ground state is in the SF state close to the transition
point. In Fig. 11(a), we show the density profile of the ground
state. Taking this state as the initial state, we compute the
dipole-oscillation dynamics of Eq. (14) setting D = 2. To

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-40 -20  0  20  40

Position xj / a

-40

-20

 0

 20

 40

P
os

it
io

n 
y j

 / 
a

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-40 -20  0  20

(a) (b)

 40

Position xj / a

-40

-20

 0

 20

 40

P
os

it
io

n 
y j

 / 
a

FIG. 11. (Color online) Snapshots of the density distribution nj during the dipole-oscillation dynamics of Eq. (14) with V/J = 3.2, where
J t/h̄ = 0 (a) and J t/h̄ = 310 (b).
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FIG. 12. Time evolution of the structure factor Sctr(π,π ) during
the dipole oscillation, where V/J = 3.2 and D = 2.

quantify the formation of the density-wave order associated
with the dynamical transition to the SS, we compute the time
evolution of the static structure factor Sctr(π,π ), which is
shown in Fig. 12. Sctr(π,π ) exhibits repetitive growth and
collapse after the time t � 150. In Fig. 11(b), we show the
density distribution at t = 310, where the growth of the
Sctr(π,π ) is most prominent within the time scale plotted in
Fig. 12. There we clearly see that the checkerboard density
wave forms around the trap center. Thus, the dynamical
transition to the SS can occur in the dipole-oscillation
dynamics in a trapped system.

VI. SUMMARY

We have studied the SF transport of Bose gases in optical
lattices using the Gutzwiller approximation. In 1D, 2D, and 3D
homogeneous systems, we determined the critical momenta for
the LI and the DI from the excitation spectra. Especially, we
have found a DI caused by excitations with short wavelengths
in one dimension when the on-site interaction is very small.
In a trapped system, we have analyzed the dynamics of dipole
oscillations induced by suddenly displacing the trap center.
We have found that the critical momentum defined by the
maximum local momentum in the trap system quantitatively
agrees with that in the homogeneous system at unit filling.
We have also shown that a resonance phenomenon is caused
by the coupling between the dipole-oscillation mode and the
breathing mode. Moreover, we have investigated the critical
momentum of dipolar hard-core bosons and shown that the
critical momentum of the SS state is smaller than that of the
SF state as in the case of the homogeneous system. This result
allows us to suggest that the SS state should be identified by
measuring the critical displacement. We have, finally, shown
that the dynamical transition from the SF state to the SS state
can be induced by dipole oscillations.
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