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Nonlinear scattering of a Bose-Einstein condensate on a rectangular barrier
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We consider the nonlinear scattering and transmission of an atom laser or Bose-Einstein condensate (BEC)
on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several physical
features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence
for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity
and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the
condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier
is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that
controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark
soliton or dark-soliton train from a phononlike standing wave.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) in the dilute gas limit
and in the presence of many kinds of external potential are
modeled very well by the nonlinear Schrödinger equation
(NLSE) [1,2]. BECs with potential barriers have many
practical applications, including atom lasers [3–5] and high-
resolution holography [6,7]. Two recent experiments by Engels
and Atherton [8] and by Dries and co-workers [9] have
considered the dynamics of a finite barrier dragged over
an effectively one-dimensional (1D) BEC, giving one the
opportunity to investigate the Landau criterion [1] under
the constraint of a 1D system. Instead of the quantized
vortices common to superfluids in two and higher dimensions,
dark solitons appear in 1D. As the stationary NLSE with
a δ-function potential can be solved exactly [10–13], it is
convenient for theory to model localized potential barriers
with δ-functions. For instance, multiple δ-functions have been
used to investigate intriguing problems such as nonlinear band
structure [14] and Anderson localization [15]. However, as we
show in this article, when the δ-function is replaced with a
potential of finite width additional features arise, including a
denumerably infinite series of bifurcations in the transmission
resonances, and one or more dark solitons localized on the
barrier.

Since the stationary NLSE can be solved exactly for any
piecewise-constant potential, we take the potential of finite
width to be rectangular in form [16]. In single-particle quantum
mechanics, the stationary solution of the Schrödinger equation
for a rectangular potential barrier or well is a classic problem
taught in undergraduate quantum mechanics courses. The
nonlinearity inherent in the mean-field description of the
BEC as captured by the NLSE substantially changes this
well-known problem, as we will show. The physical context
of our problem is the steady-state transmission behavior of an
atom laser incident on a barrier. We assume that the BEC is
confined in the transverse directions by a harmonic-oscillator
trap, and that its behavior is quasi-one-dimensional [17–20];
that is, the longitudinal direction of the BEC is much larger

than the transverse directions and the healing length, and the
chemical potential is much larger than the transverse excitation
energy. Further, we assume that the width of the potential
barrier is much less than the longitudinal dimension of the
BEC, so that the system is effectively longitudinally infinite
and far-field effects may be neglected. This physical situation
was experimentally produced in the experiments reported in
[8,9].

Past studies of the 1D stationary NLSE with various bound-
ary conditions and potentials are very extensive, including both
repulsive and attractive interactions; see [21] and references
therein. A review of the NLSE with spatially varying nonlinear
coefficient and applications to, among other things, BECs and
nonlinear lattices can be found within [22]. In this article we
focus on the more common case of repulsive interactions,
although our techniques work for general interactions in the
NLSE. Our own work has often treated cases described by
piecewise-constant potentials, starting with a uniform potential
with periodic or box boundary conditions [19,23,24]. This
work was later extended to a discontinuous potential step and
to a δ-function potential [12]. Other studies in this direction
included the Kronig-Penney potential [14] and the bichromatic
lattice [25].

The potential barrier or well has been treated in restricted
circumstances in three previous studies. First, Carr, Mahmud,
and Reinhardt [26] found particular classes of bound states in
the potential well. Such bound states are localized or partially
localized, and it was found that experimental parameters could
be tuned to achieve different regimes of tunneling. Second,
Rapedius, Witthaut, and Korsch [27] took the region outside
the well to be strictly linear. They found a bistable behavior
in the transmitted flux for unbound states. The critical non-
linearity at which bound states appear was discovered. Third,
Ishkhanyan and Krainov [28] considered the limit of very
small nonlinearity. They used perturbation theory to expand
the NLSE, and a multiscale method to find the solutions. The
reflection coefficient R could then be determined by the usual
methods of linear quantum mechanics, decomposing the wave
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functions in each region into left- and right-traveling waves
via the superposition principle. The latter two studies had in
common that they retained the concept of the superposition
principle outside the well. We discard this concept in favor
of full nonlinearity, solving the complete nonlinear problem
without approximations of any kind. Additional related work
on scattering of a bright soliton on a potential barrier or
well has treated a variety of applied and foundational issues
in quantum mechanics, from bound-state spectroscopy and
resonant trapping [29] to macroscopic superpositions [30,31]
(Schrödinger cat states).

In all studies of the stationary 1D NLSE solitons play a key
role. In the experiment of Engels and Atherton [8], the barrier
was produced by an elliptical laser beam, then dragged through
the BEC. For intermediate drag speeds a train of dark solitons
was observed in the presence of the barrier. Such solitons have
been produced by other experimental methods, for example,
by merging two coherent BECs [32]. An experiment by Weller
et al. studied the dynamical behavior and interactions of
such solitons [33]. Solitons are localized, persistent, robust
nonlinear structures which appear often in BEC experiments
[34,35]. A key feature of solitons in quasi-1D in the absence
of an external potential is that they interact elastically and
do not dissipate [36,37]. Such behavior was observed in the
experiment of Weller et al., and was found to agree with
numerical simulations of NLSE solution dynamics [33].

Our article is outlined as follows. In Sec. II we present
the fundamental equations and a general solution method.
We emphasize that our work is completely analytical and
symbolic up to one numerical integration used to characterize
transmission; the NLSE solution itself is analytical and is
determined rigorously [38]. The appendixes contain some
key brief proofs to support this rigor, as well as numerical
studies to support our analysis and a brief overview of
Jacobi elliptic functional relationships used in our analysis.
In Sec. III we apply our solution method to scattering on
the rectangular barrier and obtain characteristic solutions,
highlighting cases for which solitons are localized on the
barrier. In Sec. IV we study transmission of the BEC for
both wide and narrow barriers. In Sec. V we focus in on the
transmission resonances, where the barrier is invisible, and
discover a series of bifurcations in such resonances. Finally,
in Sec. VI we conclude.

II. EQUATION AND METHODS

A. The 1D nonlinear Schrödinger equation

The 1D NLSE is[
− h̄2

2M

∂2

∂x̃2
+ g̃|�̃(x̃,t̃)|2 + Ṽ (x̃)

]
�̃(x̃,t̃) = ih̄

∂

∂t̃
�̃(x̃,t̃),

(1)

where g̃ = 2ash̄ω is the interaction strength or nonlinearity
renormalized to 1D [19], as is the s-wave scattering length for
binary contact interactions, ω is the oscillation frequency of
the transverse trap as described in Sec. I, M is the mass of
the atoms or molecules that are Bose condensed, and Ṽ (x̃) is
an external potential. We take the Landau interpretation of the
wave function or order parameter: ρ̃ ≡ |�̃|2 is the local BEC

number density and ṽ = (h̄/m)∂x̃Arg(�̃) is its local velocity.
Here and throughout this paper, a tilde denotes a dimensional
quantity.

Nondimensionalizing (1) by scaling everything to
harmonic-oscillator units leads to the dimensionless or scaled
NLSE,[
−1

2

∂2

∂x2
+ g|�(x,t)|2 + V (x)

]
�(x,t) = i

∂

∂t
�(x,t), (2)

where

x = x̃

�
, (3)

t = ωt̃, (4)

g = g̃

h̄ω�
, (5)

V = Ṽ

h̄ω
, (6)

� = �̃�1/2, (7)

and � = √
h̄/(mω) is the harmonic-oscillator length.

Equation (9) can be solved [23] for stationary states of the
form

�(x,t) =
√

ρ(x) ei[φ(x)−μt], (8)

where μ is the eigenvalue of the stationary 1D NLSE. Then
the 1D NLSE becomes[

−1

2

∂2

∂x2
+ g|�(x,t)|2 + V (x)

]
�(x,t) = μ�(x,t). (9)

We work with the nondimensionalized stationary 1D NLSE,
Eq. (9), throughout the rest of our article.

B. Exact solution for a constant potential

When the potential V (x) = V0 is a constant, one can prove
that the dimensionless density ρ ≡ |�|2 and the phase φ(x)
have the forms

ρ(x) = A sn2 (bx + δ0|m) + B, (10)
∂φ

∂x
= α

ρ
, (11)

where A is the density scaling, b is the translational scaling,
m is the elliptic parameter, δ0 and B are offsets, and α is
an integration constant. The function sn is one of 12 Jacobi
elliptic functions [39], which can be interpreted geometrically
as the elliptical analog of the circular trigonometric functions.
In this interpretation, the square root of the elliptic parameter
m represents the eccentricity of an ellipse. In the limit that
m → 0, the Jacobi functions become the circular functions; in
the limit m → 1, the Jacobi functions become the hyperbolic
functions.

Relationships between parameters may be obtained by
substituting the solutions (10) and (11) into Eq. (9) and
equating coefficients of linearly independent powers of Jacobi
elliptic functions. The relevant proofs of linear independence
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TABLE I. Mathematical conditions on both NLSE parameters
and solution parameters.

Parameter Condition

A Real
B Real
b Either Re(b) = 0 or Im(b) = 0
δ0 No constraints
m Real
g Real
μ Real
α Real

are given in Appendix B. We obtain the relationships

m = A

b2
g, (12)

μ = 1
2 [b2 + (A + 3B)g] + V0, (13)

α2 = B(A + B)(b2 + Bg). (14)

Since α appears only in its square, and ρ(x) does not depend on
α, all solutions with α �= 0 are doubly degenerate. That is, ±α

result in solutions with the same density ρ(x) and eigenvalue
μ, but phases of opposite sign.

Mathematical and physical considerations lead us to con-
clude that not all possible parameter values are relevant to this
problem [38]. The relevant parameter space is summarized in
Table I.

C. Calculation of transmission

We consider a potential barrier of the form

V (x) =

⎧⎪⎨
⎪⎩

0, x < x1,

V0, x1 < x < x2,

0, x2 < x.

(15)

We will take V0 to be positive definite. The barrier can have any
width and height, with the boundaries x1 and x2 located at any
positions along the x axis. We define regions I and III to be the
left and right sides of the barrier, respectively, and region II as
the region over the barrier. We apply our fully general solution
from Sec. II B to a numerical study of the transmission of the
BEC across the barrier. We note that the solution and our code
can be generalized to arbitrary piecewise-constant potentials
with a finite number of jump discontinuities.

Using the solution to the constant potential one can treat
any piecewise-constant potential by the use of appropriate
boundary conditions, similar to the well-known method for
finding stationary solutions of the linear Schrödinger equation
with a rectangular well or barrier. Our explicit boundary
conditions, expressed in terms of density and phase, are

ρ(x−
i ) = ρ(x+

i ), (16)

dρ(x)

dx

∣∣∣∣
x−

i

= dρ(x)

dx

∣∣∣∣
x+

i

, (17)

φ(x−
i ) = φ(x+

i ) + 2πn, n ∈ Z, (18)

α− = α+, (19)

μ− = μ+, (20)

where xi is the location of the ith boundary and ± indicates
the right (left) side of the boundary [40].

The effective potential experienced by the BEC in the region
over the barrier is

Veff ≡ V0 + gρ(x). (21)

In the regime μ > max(Veff), transmission over the barrier
is classically allowed. For μ < max(Veff), transmission is
classically forbidden. In both regimes, our scattering displays
quantum or wavelike effects, modified by the nonlinearity. The
effective potential is why the linear and nonlinear problems
are so different, in addition to the lack of a superposition
principle.

We briefly remind the reader of the linear case. For g = 0
only in Eq. (9), the wave function in each region can be split
into a sum of two terms representing left- and right-traveling
waves, using the principle of superposition. We can take the
left-hand side as the incident one. On this side, the solution
contains both right- and left-traveling waves, i.e., incident
and reflected waves, with only right-traveling waves on the
transmission side of the barrier. In this case, we may define
the transmission coefficient as

T = 〈|�trans|2〉
〈|�inc|2〉 , (22)

where �trans is the transmitted wave function and �inc is the
incident wave function. The angular brackets 〈·〉 denote an
average value over one period of the function. The definition
given by Eq. (22) is standard in linear quantum mechanics. In
this interpretation, T � 1 over the entire domain of the system,
and T represents the probability that a given particle will be
transmitted across the barrier.

However, in the nonlinear case superposition does not
apply. We cannot define separate left- and right-traveling
waves in this case, and thus the transmission coefficient is
defined simply as

T = 〈|�III|2〉
〈|�I|2〉 = 〈ρIII〉

〈ρI〉 , (23)

where �I and �III are the total wave functions in regions I and
III, with ρI and ρIII the corresponding number densities. In
Eq. (22) this would be equivalent to replacing the denominator
with the sum of incident and reflected amplitudes and then
squaring to get the total probability density to the left-hand
side of the barrier. In the nonlinear case, since neither region
I nor region III can be said to be the incident side, we could
just as easily have replaced the definition in Eq. (23) with its
inverse.

Thus, in the nonlinear case, we find that T may exceed
unity, according to Eq. (23). Physically, output cannot exceed
input, and we conclude that the “transmission” coefficient as
we define it contains information for atom lasers incident on
either side of the barrier. Since we cannot choose only right-
or left-traveling waves in the solution, due to the nonlinearity,
we cannot define T to restrict incidence to only one side of
the barrier, and must consider both circumstances in the same
solution set.

To calculate the average over the densities, we note that
the period of sn2(bx + δ0|m) is 2K(m)/b, where K(m) is the
complete elliptic integral of the first kind [39]. Thus we obtain
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the average density by

〈ρ〉 = b

2K(m)

∫
dx ρ(x), (24)

where the integral is taken over one period of ρ(x). Using the
properties of Jacobi functions and elliptic integrals, one can
show that, if 0 � m � 1,

〈ρ〉 = B + A

[
1

m
− E(m)

mK(m)

]
, (25)

where E(m) is the complete elliptic integral of the second kind.
If m /∈ [0,1], we must first apply a transformation to write the
density in terms of Jacobi elliptic functions which depend on
a parameter m′ ∈ [0,1], and then use the methods above to
simplify the integral. The relevant transformations are given
in Appendix A.

D. Transmission coefficients for nonlinear scattering

As was mentioned previously, linear quantum mechanics
defines transmission as a ratio between the average of the
probability density function postpotential to that incident on
the potential. Moreover, this definition relies on the linear
decomposition of waves, which is not generally available
to nonlinear problems. Consequently, the definition of trans-
mission for nonlinear scattering problems is not unique. In
this section we briefly discuss our transmission coefficient in
comparison to another notable definition.

In Paul et al. [41] consider a mathematical model, used
to describe transport phenomena of a BEC beam, that is
structurally similar to our Eq. (1). To overcome the lack
of superposition principles, the authors adapt the methods
of [42,43] to define a transmission coefficient valid in
the limiting regimes of (i) arbitrary nonlinearity and small
transmission; (ii) arbitrary transmission and small nonlinearity,
where the decomposition of waves is approximately valid.
Experimentally, one considers a state where the system is at
rest with respect to the frame associated with a traveling barrier.
In this case, conservation of density is recast into a first-order
linear ordinary differential equation (ODE) that when used
with their quasi-one-dimensional NLSE yields a nonlinear
ODE on a unitless amplitude A in the traveling variable X =
x − ct , subject to an amplitude-dependent potential W (A). In
upstream free space, when X → ∞, the first integral of the
previous ODE can be written as

h̄2

2m

(
dρ

dX

)2

+ 8F (ρ) = 8ρE+ ∈ R, (26)

which describes a fictitious classical particle with “mass”
h̄2/2m, “position” A = √

ρ, and “time” X, evolving in a
potential W (A) = 8F (ρ) [44,45]. Adapting the perturbative
arguments of [42], the authors power-expand F about ρ = 1
and find an ODE for the perturbation δρ(X) = ρ(X) − 1
whose solution gives ρ(X) = 1 + 2λ + 2

√
λ2 + λ cos(2κX +

θ ), which describes upstream, X → ∞, density oscillations.
Using the probability density n defined by their NLSE and
decomposing these oscillations into incident and reflected

waves gives

ψinc(X) =
√

n(X)(1 + λ)

ρ(X)
exp(−iκX), (27)

ψref(X) =
√

n(X)λ

ρ(X)
exp(iκX + θ ), (28)

which, though only approximate solutions to the original
NLSE, give an intuitive definition of transmission T = 1 −
|ψref|2/|ψinc|2 = (1 + λ)−1. It must be emphasized that, while
intuitive, this definition is valid in regime (i), λ � 1, and
regime (ii) when the barrier speed is much larger than the BEC
sound speed. However, outside of these regimes where linear
wave decomposition cannot be applied, the dimensionless
parameter λ finds continued use as the independent variable of
a Fokker-Plank equation whose solution defines the probability
distribution for transmission.

In conclusion, we have two definitions of nonlinear trans-
mission, both with valid linear limits; see Appendix C 1.
Regardless, either definition corroborates the existence of
gray-soliton trains and sinusoidal wakes in experiments where
the NLSE with a potential is the appropriate mathematical
model [46]. It is interesting to note that the nonlinearity
presents itself as a balance between calculation and intuition.
That is, the work of Paul et al. yields an intuitive transmission
coefficient, which is regime limited by virtue of perturbative
expansions. On the other hand, our transmission coefficient is
more general but not as intuitive in the linear limit.

E. Numerical methods

We use MATHEMATICA to compute the transmission co-
efficient Eq. (23). We require an internal precision of 100
digits; our main reason for using MATHEMATICA is its feature of
arbitrary internal precision, which is absolutely necessary for
the highly singular problem of nonlinear scattering. Besides
internal precision, we use a uniform numerical tolerance of
10−5 for parameters. If a quantity is smaller than this value, it
is taken to be zero; for example, we take g < 10−5 to be zero.
We consider only repulsive interactions, i.e., g � 0, in our
numerical analysis. In addition, we restrict analysis to positive
barriers V0 > 0, for consistency with the idea of scattering
by an atom laser. However, as mentioned previously, our
mathematics is completely general, and our solution may be
applied to attractive interactions and potential wells.

To find a scattering solution, we take A, B, and δ0 on the left
side of the barrier, denoted by a subscript I. These parameters
can be calculated uniquely from the average number density,
momentum, and energy for a physical atom laser, as described
in [12]. We consider the physical quantities g and μ, as
well as the barrier parameters, to be input parameters for an
experiment, and take them as known. Other parameters on the
left side of the barrier may be obtained from Eqs. (12)–(14).
We then use the physical boundary conditions (20) to solve for
parameters in regions II and III in terms of the known input
parameters from region I.

Our code is completely symbolic, with the exception of
one numerical integration used in computing the transmission
coefficient. In order to keep the code symbolic wherever

023621-4



NONLINEAR SCATTERING OF A BOSE-EINSTEIN . . . PHYSICAL REVIEW A 86, 023621 (2012)

possible, we used MATHEMATICA’s pure function routines.
These are functions whose arguments are defined in terms of
their position rather than being given a specific variable name.
This construction avoids the possibility of errors arising from
multiply defined variables, while still allowing us to maintain
a consistent convention for functional dependencies.

The analytical solution process using boundary conditions
yields 12 solutions for (A,B) in regions II and III. Six of these
are extraneous solutions, obtained as a result of squaring both
sides of an equation. Since they are not true solutions, they do
not satisfy the boundary conditions, and this is used as a filter in
the code to discard these extraneous solutions. The remaining
six solutions all correspond to the same functional form of the
density, and we need only consider one. In our construction
of Eq. (10) as the polar form of a complex function, we may
take ρ(x) to be real without loss of generality. Solutions with
Im(ρ) �= 0 are mathematically invalid, and these are encoun-
tered in the code as a result of one or more assumptions break-
ing down. Therefore, we take only real solutions for (A,B).

To obtain the average densities in Eq. (23), we numerically
integrate the densities using Simpson’s rule [47]. The trans-
mission coefficient is computed as in (23), and is treated as a
resonance if it is within an interval of ±10−4 around unity.

In the linear limit g → 0, exact analytical expressions may
be obtained for the boundary conditions. We use these exact
expressions, rather than MATHEMATICA’s Solve routine, in the
limit of small g. By doing this, we avoid problems with
infinities due to internal MATHEMATICA processes.

We also made use of several other methods to ensure the
correctness of the computations performed by MATHEMATICA.
In our experience, MATHEMATICA does not always handle√−1 correctly. Therefore, we kept i as a symbol, using
replacement tables to handle powers of i, and avoiding
MATHEMATICA’s internal complex-number routines wherever
possible. In addition, we included several identities for Jacobi
elliptic functions via replacement tables, as MATHEMATICA’s
default processes do not make use of these identities for
simplification. Finally, rather than relying on MATHEMATICA

to handle the special cases of complex argument and m > 1
internally, we used known transformations to write equivalent
expressions in terms of Jacobi functions with real argument and
parameter smaller than unity. These expressions were used in
the code for computations.

Convergence was verified using several methods. These are
detailed in Appendix C.

III. SOLITON LOCALIZATION

A large variety of solution types appear after following
the methods of Sec. II. We present here some particularly
interesting cases which are very far from the kinds of solutions
found for the linear Schrödinger equation. We recall that, in the
linear Schrödinger equation, the wavelength of the plane-wave
components across regions I, II, and III is the same; it is only
the spatial offset in the arguments of the exponentials and
the amplitudes that can be different. In the nonlinear case
the wavelength can be quite different in all three regions. We
present two such cases, in which a phononlike standing wave
is transformed into a strongly localized soliton or soliton train
over the barrier, and then returns to a phononlike profile. We
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FIG. 1. (Color online) Density (a) and phase (b) of a solution
to the NLSE in which an incident near-sinusoidal wave produces a
single dark soliton localized over the barrier. The density notch of a
second dark soliton is formed near the far right of the barrier, around
x = 19, and a longer barrier could trap two or more dark solitons in
a dark-soliton train. The three colors in the phase curve denote the
three scattering regions. The red dashed curve shows the potential
barrier for reference. Both nondimensional quantities ρ and φ/2π

are plotted against the nondimensional length x.

recall that phonons are a limit of Bogoliubov quasiparticles
for BECs, and appear as a small modulation on top of a large
offset; qualitatively speaking, as ripples on a pond. Since we
work with the fully nonlinear problem our phonons are not
constrained to be small oscillations, but continue to appear as
ripples of amplitude A and translational offset δ0 on top of an
offset of magnitude B.

Figure 1 shows the density and phase for a localized soliton.
A well-localized solution can be seen above the potential
barrier. The barrier, indicated with a red dashed box in the
figure, has height V0 = 1 and width 20. The nonlinearity is
g = 2.02 and the chemical potential μ = 2.404. We choose
AI = 1, BI = 1, and δ0I = 0. In regions I and III, outside the
barrier, the elliptic parameter m � 1. In region II, over the
barrier, m approaches unity and the peaks of the sn2 function
broaden significantly. The local minimum of the density over
the barrier is a dark soliton, called “gray” because it does not
have a node. Such a soliton is always moving. Examining the
phase profile, we observe two areas in region II: away from
the dark soliton is a background superflow with a shallower
slope, while over the soliton there is a characteristic phase
jump displaying a sharp increase in slope. In this solution the
superflow flows to the right with velocity v = ∂xφ(x), while
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the dark soliton moves to the left with an equal and opposite
velocity; the two velocities cancel each other, leading to a
stationary state.

The phase has an overall linear envelope on either side of
the barrier, with clearly visible oscillations on this background.
The background slopes differ slightly between regions I and
III, and the slope over the barrier in region II is smaller by a
factor of 3. This shows that the velocity profile of the BEC
need not be the same on either side of the barrier. Although
we fixed parameters on the left-hand side in order to find this
solution, as described in Sec. II, from the physical perspective
of an atom laser the BEC is incident on the right-hand side.
Thus, as happens approximately half the time in our solution
method, we have in fact fixed the output rather than the input
parameters. The overall transmission right to left is about 50%,
and T > 1 according to our definition from Eq. (23).

With a longer barrier of width x2 − x1 = 90 and the same
nonlinearity g = 2.02, chemical potential μ = 2.404, and
input parameters AI = 1, BI = 1, and δ0I = 0 fixed on the
left-hand side, we obtain a soliton train localized on the barrier,
as shown in Fig. 2. In Fig. 2 we again display the potential with
a dashed red line for reference. The location of the dark solitons
can be observed in both the density and the phase, similar to
Fig. 1. Multiple solitons have been observed in a variety of
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FIG. 2. (Color online) Density (a) and phase (b), similar to Fig. 1,
but with a soliton train localized on the barrier instead of a single
soliton. The input parameters are identical to those of Fig. 1; only the
barrier width has been changed, from 20 to 90. We observe a train
of nine very deep solitons localized on the barrier. Both nondimen-
sional quantities ρ and φ/2π are plotted against the dimensionless
length x.

BEC experiments [8,33,48]. However, such solitons have so
far not been phase locked into a train in BECs. Our barrier
method constitutes a completely different way of producing
multiple solitons locked into a train. The length of the barrier
can be used to control the number of solitons in the train. We
note that dark-soliton trains have been produced in nonlinear
spin waves in thin magnetic films [49,50], but not via our
scattering technique; also spin waves are in fact a damped
driven system which are best modeled by an open-system
version of the NLSE quite different from Eq. (9) [51].

IV. ATOM LASER TRANSMISSION

We turn now to a more systematic exploration of the
solution space. The nonlinear Schrödinger equation has a
substantially larger parameter space to explore than the
linear case. We divide this exploration into wide and narrow
barriers. The barrier size x2 − x1 can be compared to the BEC
healing length ξ ≡ 1/

√
8π〈ρ〉as , with 〈ρ〉 the average linear

number density. However, the healing length provides a useful
comparison only for low-energy excitations, as it describes
how a uniform ground-state BEC is perturbed by a localized
potential, e.g., a hard wall. This corresponds to well-separated
dark solitons, as in region II in Figs. 1 and 2. As we treat a wide
variety of excitations, many of which take standing-wave form
which is very far from the ground state, e.g., regions I and III
in Figs. 1 and 2, the correct comparison to identify wide and
narrow barriers is in fact the wavelength of the excitations,

λ ≡ 2K(m)

b
=

2K
(

Ag

2(μ−V0)−(A+3B)g

)
√

2(μ − V0) − (A + 3B)g
, (29)

as can be calculated from Eqs. (12) and (10). Thus x2 − x1 �
λj is the narrow-barrier case and x2 − x1 � λj is the wide-
barrier case, where the subscript j ∈ {I,II,III} refers to the
region. For sufficiently small λ all barriers are effectively wide.
Holding other parameters fixed, including the nonlinearity, the
wide-barrier limit occurs for large chemical potential, since the
wavelength is a decreasing function of μ, as can be verified by
consideration of Eq. (29).

We found that the barrier height V0 is less important,
a statement which we will support further in Sec. V. This
dependence on width more than height is another sense in
which the nonlinear case is very different from the linear
case; in the latter it is only the effective area of the barrier,
2MṼ0(x̃2 − x̃1)2/h̄2, that is important. The dependence on
width arises mainly from the fact that the density in the
nonlinear case can have different wavelengths in different
regions for the same solution, in contrast to the linear case,
as previously mentioned.

For simplicity we will keep the input parameters AI, BI, and
δ0I fixed to the same values as those used in Figs. 1 and 2 and
Sec. III; after a massive exploration of the parameter space, we
found all results to be qualitatively similar to those described
below.

A. Wide-barrier case

We consider a barrier whose width is much larger than its
height. We take a barrier of width x2 − x1 = 20 and height
V0 = 1 for the purposes of illustration. In Figs. 3 and 4
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FIG. 3. (Color online) Wide barrier, small nonlinearity. Transmis-
sion for wide barrier with increasing nonlinearity from bottom to top,
starting with the linear case g = 0 in steps of �g = 0.01. Even a very
small nonlinearity changes the problem because the left-right sym-
metry of the effective potential is broken. The dimensionless trans-
mission T is plotted against the dimensionless chemical potential μ.

transmission plots are laid out on the same set of horizontal
axes. The dashed red lines denote T = 1, and solid curves
are the transmission coefficient as defined in Eq. (23). The
nonlinearity g increases in steps of 0.01 in Fig. 4 as we move
upward on the plot, and in steps of 0.1 in 3. Each transmission
plot is at a convenient vertical offset for illustration, but the
plots are not otherwise scaled or shifted. The nonlinearity
is shown next to each curve for reference. As discussed in
Sec. II C, the transmission coefficient may be greater than
1. This is not a novel physical feature; it arises due to the
redefinition of transmission as in Eq. (23) and the invalidity of
superposition in this problem.

Comparing the linear, i.e., g = 0, transmission curve in
Fig. 3 with the other transmission plots in the same figure,
we observe that there is a significant change in transmission
behavior when we enter the nonlinear regime, even for very
small nonlinearity, g ∼ O(10−2). The most significant change
occurs when μ is small, meaning that the potential barrier has
a greater overall effect on the condensate. In the linear case,
T oscillates about evenly on either side of unity for small μ,
and the amplitude of oscillations is similar in either direction.
In the nonlinear case, we see that while transmission can still
be less than unity, it does not drop as far below unity as in
the linear case. We understand this difference to be due to
the effective potential: for g = 0 the operator in the NLSE
is not biased, whereas for nonzero g it is. Thus, by choosing
parameters on the left-hand side, we fix the effective potential
and bias the system toward particular parameter sets.

As g increases, new peaks appear in the small-μ regime,
and the behavior of T changes significantly for smaller μ.
This regime does not appear for g � 0.2. The reason that
the transmission curves depend strongly on g in the small-μ
regime is that g and μ are not completely independent. For a
given chemical potential μ, when the nonlinearity g becomes
larger than a certain cutoff value, solutions are generated that
have ρ(x) ∈ C. This is invalid because, when we solved the
NLSE, we assumed ρ(x) ∈ R. We may take ρ(x) ∈ R without
loss of generality, since Eq. (8) is a general polar representation
of a complex number. For large μ the cutoff in g is pushed to
a region off the top of our plot; see Figs. 7 and 8 in Sec. V for
more details. The appearance of complex ρ(x) means that one

0 10 20 30 40

1

2

3

4

5
T

FIG. 4. (Color online) Wide barrier, medium nonlinearity. As
Fig. 3, but with steps of �g = 0.1, from g = 0.1 to 1.0. An extended
region of near-perfect invisibility of the barrier in the μ � 20 to
μ � 30 range translates to the right as the nonlinearity increases. The
dimensionless transmission T is plotted against the dimensionless
chemical potential μ.

or more of our assumptions are breaking down in this regime.
A more detailed analysis of this situation is considered in [38].
One such breakdown is due to the appearance of quasibound
states with complex μ [52–54].

For larger values of μ, the overall behavior of the transmis-
sion does not change significantly between each plot. However,
we do see a shift in the transmission curve. For higher μ, the
transmission plot retains its shape and shifts to the right as g

increases. This feature is especially apparent when a computer
is used to animate the transmission plots for increasing g; in
Fig. 4 we have endeavored to lay such an animation out on the
page. In Fig. 4, the regime of the same curve shape translating
gradually to the right with increasing g occurs when μ � 6.

Another feature of note is that with the definition (23)
of transmission, the amplitude of oscillations in T does not
decrease monotonically as in the usual linear interpretation.
In all of the transmission plots of Fig. 4, we see significant
oscillations on either side of a transition region between
μ � 20 and μ � 30. In this region, we have almost perfect
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FIG. 5. (Color online) Transmission for narrow barrier with small
nonlinearity. Note the difference in behavior between the linear and
nonlinear regimes. The dimensionless transmission T plotted against
the dimensionless chemical potential μ.

resonance, i.e., T is very close to unity. Further analysis of
transmission resonances will be presented in Sec. V.

B. Narrow-barrier case

To explore the narrow-barrier regime, we choose x2 − x1 =
0.1 and V0 = 10 so that the barrier is a factor of 100 narrower
than it is high; note that the height is the same as in the wide-
barrier case explored in Sec. IV A. Over the full range of values
of μ and g that we consider, the narrow-barrier requirement
λ � xx − x1 is satisfied, as can be verified from Eq. (13); in the
range we consider, λ � 0.35. We first focus on transmission
plots for small nonlinearity, in Fig. 5. The layout of the figure
is the same as in Sec. IV A: five transmission plots are shown
on the same set of horizontal axes, with vertical offsets in T for
illustration; the plots are not otherwise shifted or scaled, and g

is increased from zero in steps of �g = 0.01. Comparing the
linear g = 0 transmission curve with those for g > 0, we again
see a significant drop in the amplitude of oscillations as we go
from the linear to the nonlinear regime. Again, the nonlinear
transmission curves tend to stay further above unity than below
unity, although the difference is less pronounced than in the
wide-barrier case. As a function of μ the transmission curve
is much smoother as compared to Fig. 3. This is because there
is always less than one wavelength fitting into the barrier, and
thus a small change in μ cannot suddenly cause an integer
number of wavelengths to match the barrier width.

In Fig. 6, we turn to the regime of medium nonlinearity,
increasing g from 0.1 in steps of �g = 0.1 up to g = 2.0. The
amplitude of oscillations decreases smoothly for increasing μ,
independent of g. There is no region of near-perfect resonance
as in the wide-barrier case: T oscillates quasiperiodically
about T = 1. In fact, the entire transmission curve simply
translates smoothly to the right as g increases, with no really
abrupt behavior even for the smallest values of μ allowed for
each curve. Thus we can surmise that the abrupt behavior in
Sec. IV A is due to the barrier width, and it is the width, not
the height, that mainly controls the transmission curves. In the
following section we will adduce further evidence to support
this point.

5 10 15 20 25 30 35

1.0

1.2

1.4

1.6

1.8

T

FIG. 6. (Color online) Transmission for narrow barrier with
increasing nonlinearity from bottom to top, from g = 0.1 to 2.0
in steps of �g = 0.1. The dimensionless transmission T is plotted
against the dimensionless chemical potential μ.

V. TRANSMISSION RESONANCES AND BIFURCATIONS

To better understand the results of Sec. IV, in particular the
extended region of near-perfect invisibility of the barrier, we
focus on the transmission resonances only, i.e., the points in
the g-μ plane for which T = 1 to within a tolerance of 10−5.

We first treat the simpler case of the narrow barrier. The
transmission resonances from Fig. 6 are shown in Fig. 7.

5 10 15 20 25 30 35
µ

0.5

1.0

1.5

2.0

g

FIG. 7. (Color online) Transmission resonances for a narrow
barrier. All behavior is described by regularly spaced straight lines
except for very small μ, where some combinations of g and μ do not
produce stationary solutions. The dimensionless nonlinear coefficient
g is plotted against the dimensionless chemical potential μ.
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FIG. 8. (Color online) Transmission resonances for a wide
barrier. Bifurcations occur in an extended region of near-perfect
invisibility of the barrier. The dimensionless nonlinear coefficient
g is plotted against the dimensionless chemical potential μ.

This clearly shows that all transmission resonances translate
smoothly to the right for increasing g, with a constant slope.
This figure allows us to predict the location of all transmission
resonances except for small μ, where constraints in the allowed
simultaneous values of g and μ cut off certain regions, as
discussed in Sec. IV. We also observe in Fig. 7 that the spacing
between curves increases with increasing μ. A functional fit
to this spacing can allow us to predict transmission resonances
in the entire g-μ plane. Since the spacing is the same starting
from g = 0, it is straightforward to find such a function for
any values of A, B, and δ0.

With the narrow-barrier case as a reference, we move on
to the more intricate wide-barrier case. Figure 8 shows the
transmission resonances from Fig. 4. We observe that the
resonances are sparse for low values of μ, with much more
sporadic and abrupt behavior than in the narrow-barrier case.
This is because an integer number of wavelengths can fit into
the barrier width, an effect which is more pronounced for small
μ; for instance, for g = 0.02 and μ = 2, λ = 2.27, while for
μ = 40, λ = 0.355. In the regions where lines of resonance
appear, the spacing between these lines is smaller than in Fig. 7.
The spacing increases as μ increases, though not as fast as in
the narrow-barrier case.

The resonances are sparse for lower values of μ and
more uniform for higher values of μ. For mid-range μ, we
see very different behavior. There are three regions between
μ = 20 and μ = 26 where the resonances are extremely dense.
These correspond to the region of near-constant resonance
seen in the transmission plots. This region shifts to the right
as g increases, as observed in the transmission plots. Three
bifurcations are present in this region. Bifurcations are typical
of nonlinear systems; the particular example we show here
for this parameter set is expected to be a generic feature
for all parameter sets. Further numerical exploration found
these three bifurcations continued in an apparently infinite
sequence sloping away upward to the right. We found that a
linear function was not sufficient to fit such bifurcations, and
they occurred near but not precisely at a value of λ = 1/2.
We did not find bifurcations at other rational values of λ, so
this may be a coincidence; the barrier length in this parameter
set is x2 − x1 = 10. We explored up to μ = 70 and g = 10.
Although our computationally intensive study was performed
thoroughly only for this particular choice of parameters, we

0.5 1.0 1.5 2.0
AI

1

2

3

4

s

FIG. 9. (Color online) Slopes of resonance transmission lines,
as a function of density offset, coarse sampling. The curves show
B = 0.2,0.5,1.0,1.5,2.0 from bottom to top; a vertical offset is given
to each curve for visualization, since they in fact all lie on top of each
other. The points represent actual data, while the curves are a guide
to the eye.

did spot checks through many regions of parameter space and
observed similar extended regions of near-perfect invisibility
of the barrier.

We return to the narrow-barrier case for further analysis.
We consider the slope s of these parallel lines of resonance
as a function of other physical parameters. For the parameter
regimes considered in this study, the slopes of the resonance
lines do not depend on the value of the density offset B, as seen
in Fig. 9. In this plot, the slope is shown for several values of B.
Each curve has been vertically shifted by a convenient offset
for illustration; all curves in fact lie on top of each other. We
note that the elliptic parameter m, which is strongly governed
by the nonlinearity of the system, depends on both A and b,
but does not depend on B, as described in Sec. II B. Similarly,
we found that the slopes s do not depend on the spatial
translational offset δ0. However, the slopes do depend strongly
on the amplitude A. The slope decreases as the amplitude of the
input density increases. We find an exponential least-squares
fit as shown in Fig. 10:

s(AI) = 0.167 + 0.485e−0.549AI , (30)

where we fixed BI = 1.0.

1 2 3 4 5
s

0.1

0.2

0.3

0.4

0.5

0.6

AI

FIG. 10. (Color online) Slope of resonance curves as a function
of input amplitude. Although the transmission resonances curves do
not depend on B and δ0, they do depend strongly on A. Points are
numerical calculations, while the solid curve is a least-squares fit.
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VI. CONCLUSIONS

We developed a general method for obtaining stationary
states of the nonlinear Schrödinger equation for any piecewise-
constant potential. We applied this method to nonlinear
scattering on a rectangular potential barrier, focusing on
cnoidal waves, or dark-soliton trains. This problem differs
greatly from the textbook linear quantum mechanics problem
of scattering on a rectangular barrier. Among the different
nonlinear features are the following. First, the wavelength in
the three regions (left of the barrier, on the barrier, and right
of the barrier) need not be the same. As a consequence, such
a barrier can be used to create one or more sharply localized
dark solitons from a broad phononlike input. Second, it is
mainly the barrier width, not its area, that controls the kind
of stationary states observed. For wide barriers in which the
barrier width is larger than the wavelength extended regions of
near-perfect transmission occur; the barrier is invisible over a
range of interaction strength g and chemical potential μ. Third,
in wide barriers an apparently infinite sequence of bifurcations
appears in this invisibility region. Despite the parameter space
for solutions being large, we showed that it is just the amplitude
that determines slopes of transmission resonance lines, greatly
simplifying this complex problem.

To relate our predictions to alternate physical input of the
average density, momentum, and energy of an atom laser
formed from a Bose-Einstein condensate, the analysis laid
out in Ref. [12] may be used directly; thus we do not repeat
it here. Future possibilities for this work include applying our
method to various piecewise-constant potentials of interest in
applications, and a more detailed mathematical study of the
bifurcations we found in transmission resonances.
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APPENDIX A: JACOBI ELLIPTIC FUNCTIONS

There are 12 Jacobi elliptic functions in all: sn, cn, dn, sc,
nc, dc, cs, ds, and ns [39]. Not all of these are independent.
The Jacobi functions are doubly periodic in the complex
plane and they depend on two parameters: an independent
variable u and the elliptic parameter m. For a real parameter
m, we may assume 0 � m � 1. If m is outside of this range,
transformations can be made to write the Jacobi function in
terms of functions whose parameter is between 0 and 1. For
sn (u|m), which appears in the density ρ(x) of the BEC, these
transformations are, for m < 0,

sn (u|m) =
(

1

1 − m

)1/2

sd

[
(1 − m)1/2u

∣∣∣∣
( −m

1 − m

)]
, (A1)

and for m > 1,

sn (u|m) = m−1/2sn (um1/2|m−1). (A2)

When m lies between zero and unity, the Jacobi functions
can be interpreted geometrically as the analogs of the hyper-
bolic and trigonometric functions. In this interpretation, the
parameter m corresponds to the square of the eccentricity
of the ellipse. For m = 0, the Jacobi functions reduce to
the trigonometric functions; for m = 1, to the hyperbolic
functions.

The Jacobi elliptic functions are defined as inverse integrals
[55], and by the locations of zeros and poles in the complex
plane [39]. They may be related to one another by various
identities [56–58].

APPENDIX B: PROOFS

1. Linear independence of powers of sn(u|m)

In the following we state a particularly vital proof which
we have not found elsewhere in the literature, and which is
required to establish our exact solutions. Other proofs can be
found in Ref. [38].

Theorem. The functions snp(u|m) and snq(u|m),p,q ∈ Z,
are linearly independent for p �= q.

Proof. Compute the Wronskian of the two functions:

W [snp(u|m),snq(u|m)]

=
∣∣∣∣∣ snp(u|m) snq(u|m)

∂
∂u

[snp(u|m)] ∂
∂u

[snq(u|m)]

∣∣∣∣∣ (B1)

= qsnp(u|m)snq−1(u|m)cn (u|m)dn(u|m)

−psnp−1(u|m)snq(u|m)cn(u|m)dn(u|m) (B2)

= (q − p)cn(u|m)dn(u|m)snp+q−1(u|m). (B3)

The product of Jacobi elliptic functions is nonvanishing except
on a set of measure zero; therefore, for p �= q the functions
are linearly independent. �

2. Linear independence of products of powers of sn(u|m)

Let

f1(x) = snp(a|m)snq(u|m), (B4)

f2(x) = snr (a|m)sns(u|m), (B5)

where p, q, r , and s are integers, and a and u are linear
functions of x. We may assume without loss of generality
that a �= u. The case a = u is analyzed in Appendix B 1.
Computing the Wronskian of f1,f2, we find

W (f1,f2)

= (r − p)cn(a|m)dn(a|m)snr+p−1(a|m)sns+q (u|m)

+ (q − s)cn(u|m)dn(u|m)sns+q−1(u|m)snr+p(a|m).

(B6)

The Wronskian vanishes ∀ a,u only when r = p and q = s;
that is, when f1 and f2 are not distinct functions. In all other
cases, f1 and f2 are linearly independent.
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APPENDIX C: NUMERICAL CONVERGENCE

We consider several limits of the NLSE Eq. (9). These are
used to verify consistency of our code with known results.

1. Linear limit

We consider the NLSE Eq. (9) in the limit that g → 0. In
this limit, the solution should reduce to the well-known linear
scattering solution, which is analyzed in many elementary
quantum mechanics texts. In the linear limit, we find that m →
0, so that the linear density is

ρ(x) = A sin2(bx + δ0), (C1)

since B = 0 in the linear case [38]. For comparison with
the nonlinear case, we define transmission as 〈ρIII〉/〈ρI〉. The
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FIG. 11. (Color online) (a) Numerically computed transmission
for the linear limit. (b) Exact linear value of the transmission. (c) Error
in transmission for the linear limit. Both nondimensional quantities
ρ and ε are plotted against the dimensionless chemical potential μ.
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FIG. 12. (Color online) Density plot for zero barrier. The di-
mensionless density ρ is plotted against the dimensionless chemical
potential μ.

integral for 〈ρ〉 can be evaluated exactly in this case:

〈ρ〉 =
∫ 2π/b

0
dx A sin2(bx + δ0) (C2)

= 1
2A. (C3)

Therefore, the transmission is

T� = AIII

AI
. (C4)

We can compare the value given by Eq. (C4) to the value
T obtained numerically by the code. Transmission plots are
shown in Figs. 11(a) and 11(b). A logarithmic plot of the error,

ε = |T − T�|
Tav

, (C5)

is given in Fig. 11(c). The maximum value of the error is
O(10−7), which is within the numerical tolerance of the code.

2. Constant-potential limit

Consider the NLSE Eq. (9) with potential barrier (15), in
the limit that V0 → 0. In this case, boundary conditions are
redundant and we expect all parameters to be constant ∀ x. By
setting a “barrier” of V0 = 0 in the code, we can verify that
the code gives the correct solution; namely, the amplitude,
period, and shifts in the density should not change at the
“boundary” locations. Indeed this is the case, providing an
additional verification of correctness for the code. A density
plot for this case, with a barrier of width 5 and height 1, is
shown in Fig. 12.
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10 81
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10 77

ε

FIG. 13. (Color online) Error in transmission for zero barrier. The
dimensionless error ε is plotted against the dimensionless chemical
potential μ.
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FIG. 14. (Color online) Density plot for nonzero flat barrier. The
dimensionless density ρ is plotted against the dimensionless length x.

Since the density parameters do not change over space, we
expect to find a transmission coefficient of 1. We compute and
plot the error

ε = ln

( |T − 1|
Tav

)
, (C6)

where Tav denotes the average value of transmission over the
plot interval. A logarithmic plot of the error is given in Fig. 13.

Alternatively, we can consider a constant nonzero potential
V (x) = Vc,∀ x, in Eq. (9). Again we expect all parameters to
be constant ∀ x. We set a barrier of VI = VII = VIII = 2 and
width 5 in the code and plot the density. The plot is shown in
Fig. 14.

Again, since the density parameters do not change over
space, we expect to find a transmission coefficient of 1. We
compute and plot the error

ε = ln

( |T − 1|
Tav

)
, (C7)

where Tav denotes the average value of transmission over the
plot interval. A logarithmic plot of the error is given in Fig. 15.

Therefore the code gives the expected results for density
and transmission in the constant-potential limits.
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FIG. 15. (Color online) Error in transmission for nonzero flat
barrier. The dimensionless error ε is plotted against the dimensionless
chemical potential μ.

3. Thomas-Fermi limit

We consider the limit that h̄∂2�/∂x2 → 0 in the unscaled
NLSE Eq. (1). In this limit, the unscaled NLSE becomes

[g|�(x,t)|2 + V (x)]�(x,t) = ih̄
∂

∂t
�(x,t). (C8)

Substituting Eq. (8) for the wave function � in (C8) and
rearranging, we obtain

gρ3/2 + [V (x) − h̄μ]ρ1/2 = 0, (C9)

so that either ρ(x) ≡ 0, the trivial case, or else

ρ(x) = [h̄μ − V (x)]/g, (C10)

when g �= 0. Note that Eq. (C10) works for any spatially
dependent potential V (x).

Equation (C10) is the well-known Thomas-Fermi limit [1].
It is relevant when the curvature of � is nearly zero. This can
be accomplished either by taking the limit A/B → 0, so that
the amplitude of oscillations is small, or by taking the limit
1/b → ∞, so that the wavelength of oscillations is large.
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K. Sengstock, Phys. Rev. Lett. 101, 120406 (2008).

[38] R. R. Miller, MS thesis, Colorado School of Mines, 2010.

[39] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (National Bureau of Standards,
Washington, DC, 1964).

[40] The final condition, μ− = μ+, is not strictly required when the
density vanishes on the boundary; however, in the latter case,
one can argue that this condition holds on physical grounds [38].

[41] T. Paul, M. Albert, P. Schlagheck, P. Leboeuf, and N. Pavloff,
Phys. Rev. A 80, 033615 (2009).

[42] P. Leboeuf, N. Pavloff, and S. Sinha, Phys. Rev. A 68, 063608
(2003).

[43] T. Paul, M. Hartung, K. Richter, and P. Schlagheck, Phys. Rev.
A 76, 063605 (2007).

[44] B. I. Ivlev and N. B. Kopnin, Adv. Phys. 33, 47 (1984).
[45] J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498

(1967).
[46] P. Leboeuf and N. Pavloff, Phys. Rev. A 64, 033602 (2001).
[47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing
(Cambridge University Press, Cambridge, UK, 1993).

[48] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Nature (London) 417, 150 (2002).

[49] B. A. Kalinikos, M. M. Scott, and C. E. Patton, Phys. Rev. Lett.
84, 4697 (2000).

[50] M. Wu, B. A. Kalinikos, and C. E. Patton, Phys. Rev. Lett. 93,
157207 (2004).

[51] Z. Wang, A. Hagerstrom, J. Q. Anderson, W. Tong, M. Wu, L. D.
Carr, R. Eykholt, and B. Kalinikos, Phys. Rev. Lett. 107, 114102
(2011).

[52] N. Moiseyev, L. D. Carr, B. A. Malomed, and Y. B. Band,
J. Phys. B 37, L1 (2004).

[53] L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B 38,
3217 (2005).

[54] G. Dekel, V. Farberovich, V. Fleurov, and A. Soffer,
arXiv:0911.1537.

[55] F. Bowman, Introduction to Elliptic Functions, with Applications
(Dover, New York, 1961).

[56] H. E. Fettis, Math. Comput. 26, 965 (1972).
[57] A. Khare, A. Lakshminarayan, and U. Sukhatme, Pramana J.

Phys. A 62, 1201 (2004).
[58] B. Dayton, in Theory of Equations, Chap. 6 Analysis–

Elliptic Functions (Oakton, Des Plaines, IL, 1999),
http://www.neiu.edu/∼bhdayton/theq/.

023621-13

http://dx.doi.org/10.1088/0953-4075/33/19/312
http://dx.doi.org/10.1088/0953-4075/33/19/312
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevA.62.063610
http://dx.doi.org/10.1103/PhysRevA.62.063610
http://dx.doi.org/10.1103/PhysRevA.62.063611
http://dx.doi.org/10.1103/PhysRevA.62.063611
http://dx.doi.org/10.1103/PhysRevA.72.033602
http://dx.doi.org/10.1103/PhysRevA.72.033602
http://dx.doi.org/10.1103/PhysRevA.64.033603
http://dx.doi.org/10.1103/PhysRevA.64.033603
http://dx.doi.org/10.1103/PhysRevA.73.033608
http://dx.doi.org/10.1103/PhysRevA.73.033608
http://dx.doi.org/10.1103/PhysRevA.80.045601
http://dx.doi.org/10.1103/PhysRevA.80.045601
http://dx.doi.org/10.1103/PhysRevA.81.033614
http://dx.doi.org/10.1103/PhysRevLett.102.010403
http://dx.doi.org/10.1103/PhysRevA.80.043616
http://dx.doi.org/10.1103/PhysRevA.80.043616
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1103/PhysRevLett.101.130401
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1088/0953-4075/30/22/001
http://dx.doi.org/10.1103/PhysRevLett.101.120406
http://dx.doi.org/10.1103/PhysRevA.80.033615
http://dx.doi.org/10.1103/PhysRevA.68.063608
http://dx.doi.org/10.1103/PhysRevA.68.063608
http://dx.doi.org/10.1103/PhysRevA.76.063605
http://dx.doi.org/10.1103/PhysRevA.76.063605
http://dx.doi.org/10.1080/00018738400101641
http://dx.doi.org/10.1103/PhysRev.164.498
http://dx.doi.org/10.1103/PhysRev.164.498
http://dx.doi.org/10.1103/PhysRevA.64.033602
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1103/PhysRevLett.84.4697
http://dx.doi.org/10.1103/PhysRevLett.84.4697
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevLett.107.114102
http://dx.doi.org/10.1103/PhysRevLett.107.114102
http://dx.doi.org/10.1088/0953-4075/37/9/L02
http://dx.doi.org/10.1088/0953-4075/38/17/012
http://dx.doi.org/10.1088/0953-4075/38/17/012
http://arXiv.org/abs/arXiv:0911.1537
http://dx.doi.org/10.1090/S0025-5718-1972-0314234-9
http://dx.doi.org/10.1007/BF02704435
http://dx.doi.org/10.1007/BF02704435
http://www.neiu.edu/%7Ebhdayton/theq/



