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Faraday patterns in coupled one-dimensional dipolar condensates
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We study Faraday patterns in quasi-one-dimensional dipolar Bose-Einstein condensates with parametrically
driven dipolar interactions. We show that in the presence of a roton minimum in the excitation spectrum, the
emergent Faraday waves differ substantially in two- and one-dimensional geometries, providing a clear example
of the key role of confinement dimensionality in dipolar gases. Moreover, Faraday patterns constitute an excellent
tool to study nonlocal effects in polar gases, as we illustrate with two parallel quasi-one-dimensional dipolar
condensates. Nonlocal interactions between the condensates give rise to an excitation spectrum characterized
by symmetric and antisymmetric modes, even in the absence of hopping. We show that this feature, absent in
nondipolar gases, results in a critical driving frequency at which a marked transition occurs between correlated
and anticorrelated Faraday patterns in the two condensates. Interestingly, at this critical frequency, the emergent
Faraday pattern stems from a spontaneous symmetry-breaking mechanism.

DOI: 10.1103/PhysRevA.86.023620 PACS number(s): 03.75.Kk, 89.75.Kd, 05.30.Jp

I. INTRODUCTION

Interparticle interactions play an essential role in the
physics of ultracold gases. Although in many experiments
these interactions may be approximated by a contact potential,
there is a rapidly growing interest in a novel type of cold gases
in which electric or magnetic dipole-dipole interactions (DDI)
are crucial for the occurring phenomena. These so-called
dipolar gases include atoms with large magnetic moments
[1–3], polar molecules [4–6], and Rydberg gases [7]. The
distinct nature of the dipolar interactions leads to a wealth of
novel physics, including a geometry-dependent stability and
a rotonlike minimum in the excitation spectrum (for reviews,
see, e.g., Refs. [8,9]).

Interestingly, the long-range dipolar interactions result in an
inherent nonlocal nature of dipolar gases, particularly striking
in deep optical lattices. For nondipolar systems, gases trapped
in different sites of a deep lattice do not interact with each
other. Hence, for a vanishing intersite hopping, different sites
may be considered as independent, uncorrelated experiments.
In contrast, intersite DDI play a substantial role even in the
absence of hopping. Recent lattice experiments have shown
that the intersite dipolar interactions are the key element in
the dynamics [10], as well as in the stability and collapse of
dipolar condensates [11,12].

Faraday patterns constitute a paradigmatic example of pat-
tern formation in periodically driven systems [13,14], ranging
from classical fluids [15] through multimode lasers [16] and
superfluid helium [17]. Interestingly, Faraday patterns may be
observed in Bose-Einstein condensates (BECs) by modulating
the nonlinearity resulting from the interatomic interactions
[18–23], as shown in recent experiments [24]. Faraday patterns
in BECs may be directly linked to the spectrum of elementary
excitations, and in this sense provide an excellent insight into
the fundamental properties of the condensates. In nondipolar
gases, the Faraday pattern selection is determined uniquely for
each modulation frequency due to the monotonically growing
character of the excitation energy [25]. Interestingly, this is no
longer the case for dipolar BECs with a rotonlike minimum in
the excitation spectrum [26]. As a result, it has been shown that

Faraday patterns in two-dimensional (2D) dipolar condensates
present remarkable qualitative novel features [27].

In this paper, we analyze quasi-one-dimensional (quasi-
1D) dipolar condensates with periodically driven dipolar
interactions. We demonstrate that Faraday patterns provide
a clear example of the nontrivial role of confinement di-
mensionality in dipolar gases, showing that in the presence
of a rotonlike minimum in the excitation spectrum, Faraday
patterns in a quasi-1D trap differ significantly with respect
to the 2D case [27]. Moreover, Faraday patterns provide an
excellent tool for the study of nonlocal effects in dipolar
condensates, as we illustrate with two parallel quasi-1D
BECs, in the absence of tunneling. The nonlocal dipolar
interactions between both BECs lead to an unfolding of the
excitation spectrum into symmetric and antisymmetric modes
with respect to the transposition of the two condensates. We
show that, as a consequence, at a critical driving frequency, a
transition between correlated (symmetric) and anticorrelated
(antisymmetric) Faraday patterns in the two BECs occurs.
For the critical driving, the emergent Faraday pattern differs
from one realization to another, resulting from a spontaneous
symmetry-breaking mechanism.

The paper is structured as follows. In Sec. II we introduce
the model for periodically driven quasi-1D dipolar conden-
sates. Section III is devoted to Faraday patterns in a single
quasi-1D BEC, with a focus on the differences compared to
2D condensates. Section IV is dedicated to the effects of the
intercondensate dipolar interactions on the Faraday pattern
selection in two parallel disjoint quasi-1D dipolar condensates.
We conclude in Sec. V.

II. MODEL

We consider in this paper quasi-1D dipolar BECs, either in
a single trap (Sec. III) or in two parallel traps (Sec. IV). Since
the former case may be considered as a particular realization
of the latter, we present in this section the general formalism
for parallel quasi-1D BECs aligned along the z axis, and
separated along the y axis by a distance �. We assume that the
potential barrier separating both quasi-1D BECs is sufficiently
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large to suppress any hopping between them. Each condensate
experiences a strong harmonic confinement of frequency ω⊥
in the x-y plane and no confinement along the z direction.
The atoms possess a magnetic dipole moment μ (the results
are equally valid for electric dipoles) oriented by an external
field along the y axis. We employ dimensionless expressions,
using units of frequency ω⊥ and length l⊥ = √

h̄/Mω⊥, with
M being the particle mass.

Due to the strong x-y confinement, we assume that the
system remains in the ground state of the x-y harmonic
oscillator (this condition is self-consistently verified), and
we employ the nonlocal nonlinear Schrödinger formalism
developed in Refs. [28,29] for a stack of quasi-1D dipolar
BECs to obtain the coupled equations for the wave functions
ψj (z) in traps j = 1,2:

i∂tψj (z) =
[

− 1

2
∂2
z + gnj (z) + 2π

3
gd

∑
m

∫
dkze

ikzzn̂m(kz)

×F|m−j |(kz)

]
ψj (z). (1)

Short-range interactions are characterized by the coupling
constant g = g3Dn0/2πh̄ω⊥l

3
⊥, where n0 is the linear density,

and g3D = 4πasch̄
2/M , with asc as the s-wave scattering

length. The DDI are determined by the coupling constant
gd = g3D

d n0/2πh̄ω⊥l
3
⊥, where g3D

d = μ0μ
2/4π , with μ0 as

the vacuum permeability. In Eq. (1), n̂m(kz) is the Fourier
transform of the linear density nm(z) = |ψm(z)|2, and

Fp(kz) =
∫ ∞

0
dk

ke− 1
2 k2

k2 + k2
z

[(
k2 − 2k2

z

)
J0(k�p)

− 3k2J2(k�p)
]
, (2)

where Jn(x) are the Bessel functions of the first kind.
In the following, we consider a parametric modulation of

the dipole-dipole interactions,

gd (t) = gd [1 + 2α cos(2ωt)], (3)

where α characterizes the modulation strength. Such modu-
lation may be implemented with intensity oscillations of the
polarizing electric field for the case of polar molecules, or
with additional transverse magnetic fields, which lead to a
precession of the dipole moment orientation, for the case of
magnetic dipoles.

The modulation of gd induces Faraday waves. With the aim
of examining the growth of such patterns, we introduce the
following ansatz for the wave functions:

ψj (z,t) = ψjH
[1 + Aj (t) cos(qz)], (4)

which describes correctly the physics of the pattern in
the linear regime, where the modulation is weak and we
may consider each momentum component q of the pattern
separately. In Eq. (4), we introduce the complex amplitude
Aj (t) = uj (t) + ivj (t), which determines the perturbation
from the initial homogeneous solution ψjH

= exp{−iμj [t +
(�j/ω) sin(2ωt)]}, where �j = α(1 − gd/μj ), and μj = g +
2π
3 gd

∑
F|m−j |(0) is the chemical potential. By inserting

Eqs. (3) and (4) into Eq. (1), and linearizing in Aj , we arrive at

FIG. 1. (Color online) Excitation spectrum ε(q) of a single
quasi-1D dipolar BEC, with g = −0.1007, gd = 0.0629. Note the
roton minimum at ωr = ε(qr ) and the maxon maximum at ωm. For
a driving frequency ωr < ω < ωm, there are three possible momenta
q1,2,3 obeying the resonance condition ω = ε(q).

the system of equations describing the modulation dynamics,

d2uj

dt2
+ q2

2

[(
q2

2
+ 2g

)
uj

+ 4π

3
gd (t)

∑
m

umF|m−j |(q)

]
= 0. (5)

III. FARADAY PATTERNS IN A SINGLE QUASI-1D
DIPOLAR BOSE-EINSTEIN CONDENSATE

We consider in this section the case of a single condensate,
being particularly interested in the differences between the
emergent Faraday patterns in a quasi-1D trap and those
predicted in Ref. [27] for a 2D condensate. Employing a similar
Bogoliubov analysis as the one presented in Ref. [28], we
obtain the spectrum of elementary excitations in the considered
case (see Fig. 1):

ε(q) =
√

q2

2

[
q2

2
+ 2g + 4π

3
gdF0(q)

]
, (6)

where

F0(q) = 1 + 3
2q2eq2/2Ei(−q2/2), (7)

with Ei(x) being the exponential integral function. Using
Eqs. (5) and (6), we arrive at the corresponding Mathieu
equation [30]

d2u

dt2
+ [ε2(q) + 2ω2b(q,ω,α) cos(2ωt)]u = 0, (8)

with

b(q,ω,α) = 2π

3ω2
gdαq2F0(q). (9)

Following the Floquet theorem [31], the solutions of Eq. (8)
are of the form u(t) = eσ̃ tf (t), where f (t) = f (t + π/ω)
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and σ̃ (q,ω,α) is the Floquet characteristic exponent, which
can be found numerically. If the real part σ ≡ Re(σ̃ ) > 0,
the homogeneous quasi-1D BEC becomes dynamically unsta-
ble and Faraday patterns emerge. The typical wavelength of
the pattern will be determined by the most unstable mode, i.e.,
that with the largest σ . In the limit of small driving amplitude
α → 0, the properties of the pattern are governed by momenta
q obeying parametric resonances nω = εn(q).

Contrary to nondipolar BECs with a monotonic spectrum
ε(q), dipolar gases may offer a more complex roton-maxon
spectrum [26] (Fig. 1). In consequence of this nonmonotonic
character, for a specific range of ω, between the roton
and maxon frequencies (ωr and ωm, respectively) there are
three values q1 < q2 < q3 satisfying the resonance condition
ω = ε(q). Figure 2 shows the stability diagram for a driving
frequency in this particular window. As expected, for small
amplitudes α, the three instability tongues (white regions)
correspond exactly to q1,2,3 (Fig. 1). This raises an interesting
question about which of the three modes dominates the pattern
formation. For a 2D geometry, Ref. [27] showed that when
modulating dipole-dipole interactions, the most unstable mode
corresponds to the intermediate momentum q2 < qr , with qr

the roton momentum. Crucially, as we show below, this is
not the case in a quasi-1D dipolar condensate. This striking
contrast between quasi-1D and 2D predictions illustrates once
more the key role played by the trapping geometry in dipolar
gases.

The problem of the most unstable mode is best understood
employing a series expansion of the Floquet exponent with
small parameter b(q,ω,α) [20,32,33], which, for the first
parametric resonance ω = ε(q), yields σ � b(q,ω,α)/2 ∝
q2F0(q). Remarkably, in contrast to the 2D case, we find
that now the most unstable mode corresponds to the largest
momentum q3 > qr (solid line in Fig. 2). Figure 3 depicts
a momentum of the most unstable mode as a function of
the driving frequency ω. The plot confirms that for all

FIG. 2. (Color online) Stability diagram for the parameters of
Fig. 1 as a function of the perturbation strength α and momentum q.
The unstable region is depicted in white. The red solid line indicates
the most unstable mode and the blue dashed line refers to the roton
momentum.

FIG. 3. (Color online) Most unstable momentum q as a function
of the driving frequency ω for the parameters of Fig. 1, with α = 0.01.
The horizontal dashed lines indicate the roton and maxon frequencies
(ωr,m) and the vertical line refers to the roton momentum.

frequencies within the window ωm < ω < ωr , the momentum
characterizing the most unstable mode is larger than the roton
momentum, contradicting the prediction for a 2D pancake
geometry [27]. For ω < ωr , alike the 2D case, the observed
modulations are dominated by higher resonances with q in
the vicinity of qr . However, unlike the 2D scenario, even
in this regime, the most unstable mode in a quasi-1D BEC
is characterized by q > qr . We emphasize that the different
nature of the Faraday pattern reported here stems solely from
the quasi-1D character of the condensate, which leads to a
specific momentum dependence of b(q,ω,α) that differs from
that in 2D.

We have simulated numerically the time evolution of
the nonlocal nonlinear Schrödinger equation (1) with the
parametrically driven nonlinearity, according to Eq. (3). The
emergent pattern has been examined by means of Fourier
transform of the condensate density, which confirmed the
results for the most unstable mode that we obtained within
the Mathieu analysis.

IV. FARADAY PATTERNS IN TWO 1D DIPOLAR
BOSE-EINSTEIN CONDENSATES

We now turn to the study of Faraday patterns in two parallel
quasi-1D dipolar BECs. For nondipolar BECs, in the absence
of hopping, each BEC behaves independently, and hence
an experiment with two BECs reduces to two uncorrelated
experiments with a single condensate. The situation is radically
different in dipolar BECs, since, despite the absence of
hopping, the nonlocal character of the dipolar potential gives
rise to a coupling between the two BECs, with the strength of
the intercondensate interactions governed by F1(kz). These
nonlocal interactions lead to a collective character of the
elementary excitations that are shared among the two quasi-1D
condensates [28,34]. Consequently, the excitation spectrum
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FIG. 4. (Color online) Elementary excitations of two parallel
quasi-1D dipolar BECs for g = −0.0629, gd = 0.1749, and �/l⊥ =
6. Note the two branches of the elementary excitations ε±(q),
corresponding, respectively, to symmetric and antisymmetric modes
with respect to the transposition of traps j = 1 ↔ j = 2.

unfolds into two branches,

ε±(q) =
√

q2

2

{
q2

2
+ 2g + 4π

3
gd [F0(q) ± F1(q)]

}
, (10)

which correspond, respectively, to symmetric and antisymmet-
ric states with respect to the transposition of traps j = 1 ↔
j = 2.

Interestingly, this implies that a periodic modulation of the
dipolar interactions yields two different parametric resonances
for each driving frequency ω = ε±(q±), even in the absence
of the roton minimum (see Fig. 4). Note that the patterns are
characterized not only by their momentum q± but also by their
symmetric (+) or antisymmetric (−) character. In analogy to
Sec. III, the double solution raises a fundamental question
about which of these two modes is the most unstable, and
hence provides the dominant Faraday pattern. We stress that
this nontrivial physics stems directly from the intercondensate
interactions, which lead to the splitting between the two
branches in the spectrum, being a qualitatively new feature
of dipolar condensates.

Similarly to the previous section, we employ Eq. (5) for
j = 1,2, and the spectra (10). In turn, we obtain two decoupled
Mathieu equations for the symmetric and antisymmetric
combinations u± = u1 ± u2:

d2u±
dt2

+ [ε2
±(q) + 2ω2b±(q,ω,α) cos(2ωt)]u = 0, (11)

with

b±(q,ω,α) = 2π

3ω2
gdαq2[F0(q) ± F1(q)], (12)

to which we apply the Floquet analysis employed in the study
of Eq. (8). As in the case of a single BEC, the first parametric
resonances ω = ε±(q±) are characterized by the Floquet
exponent σ± � b±(q,ω,α)/2 ∝ q2[F0(q) ± F1(q)], and the
emerging Faraday pattern is determined, for each driving fre-
quency separately, by the mode with the largest σ . Remarkably,
the involved momentum dependence of F0(q) ± F1(q) leads
to an intricate relation between the Floquet exponents and the
driving frequency ω, as presented in Fig. 5.

Crucially, the curves σ±(ω) cross at a critical frequency ωc.
In consequence, we expect a distinct transition, as a function
of the driving frequency ω, between the symmetric Faraday
pattern for ω < ωc and the antisymmetric pattern for ω > ωc.
Such transition is marked by an abrupt change of the patterns
in both condensates from a maximum-maximum alignment
(correlated patterns) to a maximum-minimum alignment (an-
ticorrelated patterns), as depicted in the corresponding insets
of Figs. 6 and 7. Moreover, for ω = ωc, the patterns in both
condensates exhibit a pronounced change of the wavelength
of the modulation, from l+ = 2π/q+(ωc) to l− = 2π/q−(ωc).

This transition has been confirmed by means of direct
numerical simulations of Eq. (1), with the parametric driving
governed by Eq. (3). As for a single condensate, we Fourier
transform the density of each condensate to obtain the domi-
nant momenta of the emergent Faraday patterns. The results, in
the vicinity of the critical frequency ωc, are depicted in Fig. 6,
where, on top of the spectra ε±, for each driving frequency
ω we indicate with a circle the momentum value where the
numerically evaluated n̂j (kz) shows a marked maximum. We
find that, in agreement with the results for σ±(ω) presented
in Fig. 5, for ω well below ωc the pattern presents a single
momentum component at q+ and it is characterized by a
correlation between the patterns in both quasi-1D BECs. In
contrast, for ω well above ωc, a single momentum component
at q− is observed and the patterns in the two quasi-1D BECs
are anticorrelated.

FIG. 5. (Color online) Real part σ± of the Floquet exponent,
corresponding to the first parametric resonance for the symmetric
and antisymmetric excitation branches ω = ε±(q), as a function of
the driving frequency ω. Note that at a critical frequency ωc =
0.055, both exponents are equal, σ+ = σ−, indicating a transition
between the symmetric and the antisymmetric Faraday pattern. In
the figure, we employ g = −0.0435, gd = 0.0437, � = 6l⊥, and
α = 0.02.
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FIG. 6. (Color online) Analysis of the pattern selection as a
function of the driving frequency ω, in the neighborhood of the critical
frequency ωc (for the same parameters as in Fig. 5). The solid lines
represent the excitation branches. For each ω, we indicate with a circle
a momentum value where the numerical Fourier transform n̂j (kz) of
the Faraday pattern shows a clear maximum. For ω well below (above)
ωc, we observe a single peak at q+ (q−), indicating that a symmetric
(antisymmetric) Faraday pattern emerges (see insets). In the vicinity
of ωc (shaded region), both modes are equally unstable and we observe
the two corresponding peaks occurring simultaneously in the Fourier
transform (see text).

In order to quantify the transition between correlated and
anticorrelated patterns, we introduce the correlation coefficient

r =
∫
dz Sn1 (z)Sn2 (z)√∫

dz S2
n1

(z)
√∫

dz S2
n2

(z)
, (13)

where Snj
(z) = nj (z) − nj , with nj as the average density in a

trap j . The pattern correlation is then characterized by r > 0,
whereas the anticorrelation leads to r < 0. Figure 7 illustrates
the radically different time evolution of the correlation coef-
ficient below and above the critical driving ωc. Clearly, for
frequencies sufficiently smaller (larger) than ωc, the system
arrives at a perfectly correlated (anticorrelated) pattern with
r = 1 (r = −1).

An interesting scenario occurs for driving frequencies in
the vicinity of the critical ωc (shaded region in Figs. 5 and
6), where both the symmetric pattern with wavelength l+
and the antisymmetric pattern with wavelength l− are equally
unstable. In consequence, the Fourier transform of the density
in each quasi-1D BEC shows a simultaneous appearance of
both momentum peaks, q+ and q− (see Fig. 6).

Note that at ω = ωc, not only ε+(q+) = ε−(q−) but also
b+(q+,ω,α) = b−(q−,ω,α), and hence the two Mathieu equa-
tions (11) for u+ and u− become identical. This symmetry
is, however, spontaneously broken in experiments due to
quantum and thermal fluctuations, which lead to different
initial conditions (populations) for both modes that change
randomly from one realization to another. This spontaneous
symmetry-breaking mechanism is best studied quantitatively
by considering the relative weight of the momentum peaks at
q+ and q− in the Fourier transform of the density n̂(kz). To this

FIG. 7. (Color online) Correlation function r(t) for the same
parameters as in Fig. 6 (ωc = 0.055). The upper curve, which
corresponds to ω = 0.025 < ωc, approaches r = 1 indicating a
perfectly correlated pattern in both quasi-1D traps. The lower curve,
which corresponds to ω = 0.08 > ωc, reaches r = −1 proving a
perfect anticorrelation between the Faraday patterns in the two traps.
The insets show the corresponding numerical results for the density
distribution nj (z) for t = 11 000, with the bright (dark) colors
indicating density maxima (minima). Naturally, for sufficiently long
times, well beyond the linear regime, the Faraday patterns and their
correlations are eventually destroyed.

end, we define the imbalance parameter

χ (t) = n̂(q+,t) − n̂(q−,t)

n̂(q+,t) + n̂(q−,t)
. (14)

For ω well below or above ωc, once the pattern emerges,
χ (t) = ±1. In the vicinity of ωc, however, the imbalance
parameter χ (t) shows a clear periodicity with frequency 2ω

(see Fig. 8). Note that these oscillations do not result from
nonlinear competition, as they occur well within the linear
regime. In fact, the 2ω oscillations of χ (t) originate in different,

FIG. 8. Population imbalance χ (t) between the two peaks at
q±(ωc) for the critical driving ω = ωc (for the same parameters as
Fig. 6). Note the 2ω periodicity (T = π/ω = 57.1) that stems from
a spontaneous symmetry-breaking mechanism (see text).
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spontaneously chosen, initial conditions for u+ and u− that
lead to their different time evolution, which can be well ap-
proximated by u±(t) = [uc

± cos(ωt) + us
± sin(ωt)] exp(σωt),

where u
c/s
± are the constants determined by the initial condi-

tions. Furthermore, spontaneous symmetry-breaking leads to
a different result for the imbalance χ (t) from one realization
to another, which we have confirmed by considering small
random differences in the initial conditions for our numerical
simulations of Eq. (1).

V. CONCLUSIONS

Faraday patterns in dipolar BECs are crucially dependent
on the unique properties of the dipole-dipole interactions. In
particular, due to the long-range anisotropic nature of the
dipolar interactions, the character of the Faraday patterns
depends strongly on the dimensionality of the condensates.

We have shown that for periodically modulated dipolar
interactions, Faraday patterns in 2D and 1D geometries differ
substantially in the presence of a roton minimum in the
excitation spectrum. Moreover, for parallel quasi-1D dipolar
BECs, the intercondensate interactions lead, even in the
absence of hopping, to an excitation spectrum characterized
by symmetric and antisymmetric modes. This, in turn, gives
rise, at a critical driving frequency, to a marked transition
between correlated and anticorrelated Faraday patterns in the
two condensates. Interestingly, at this transition point, the
Faraday pattern selection stems from a spontaneous symmetry-
breaking mechanism.
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