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Pair condensation in the BCS-BEC crossover of ultracold atoms loaded
onto a two-dimensional square lattice
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We investigate the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly bound Cooper pairs
to the Bose-Einstein condensate (BEC) of strongly bound molecular dimers in a gas of ultracold atoms loaded
on a two-dimensional optical lattice. By using the mean-field BCS equations of the emerging Hubbard model
and the concept of off-diagonal long-range order for fermions we calculate analytically and numerically the pair
binding energy, the energy gap, and the condensate fraction of Cooper pairs as a function of interaction strength
and filling factor of atoms in the lattice at zero temperature.
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I. INTRODUCTION

Several experimental groups [1–6] have observed in ul-
tracold alkali-metal atoms the predicted [7–9] crossover
from the Bardeen-Cooper-Schrieffer (BCS) state of weakly
bound Fermi pairs to the Bose-Einstein condensate (BEC)
of molecular dimers. In two [4,6] of these experiments the
condensate fraction of Cooper pairs [10] has been studied with
two hyperfine component Fermi vapours of 6Li atoms. The
experimental data of the condensate fraction, which is directly
related to the off-diagonal long-range order of the two-body
density matrix of fermions [11,12], are in quite good agreement
with mean-field theoretical predictions [13,14] and Monte
Carlo simulations [15] at zero temperature, while at finite
temperature beyond-mean-field corrections are needed [16].
Recently, the condensate fraction in the BCS-BEC crossover
has been theoretically investigated for a two-dimensional (2D)
uniform Fermi gas [17], for a uniform three-spin-component
Fermi gas with SU(3) symmetry [18], for a 2D uniform two-
component Fermi gas with Rashba spin-orbit coupling [19,20],
and also for neutron matter [21]. Two years ago 2D degenerate
Fermi gases have been experimentally realized for ultracold
atoms in a highly anisotropic disk-shaped potential [22].

Motivated by these recent theoretical and experimental
achievements, in the present paper we analyze the condensate
fraction in the BCS-BEC crossover for a quasi-2D two-
component Fermi gas under optical confinement, which gives
rise to a two-dimensional square lattice [23]. In particular we
study the energy gap and the condensate fraction of Cooper
pairs as a function of the interaction strength (or equivalently as
a function of binding energy of pairs) and filling factor of atoms
in the lattice by using the concept of off-diagonal long-range
order [10–12] and solving the mean-field BCS equations [23].
The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian which describes two-spin-component
Fermi atoms loaded onto a quasi-2D optical lattice. In Sec. III
we discuss and solve the zero-temperature mean-field BCS
equations as a function of the adimensional ratio between the
interaction energy per site and the tunneling energy, calculating
the binding energy of atomic pairs, the chemical potential,
and the energy gap order parameter. In particular, we compare
the numerical results obtained by using the exact density of
states with the analytical ones derived from an approximated
density of states. In Sec. IV we calculate the condensate

fraction of atomic pairs investigating the dependence of the
condensate fraction on the relevant parameters of the system:
scaled interatomic strength and filling factor. The paper is
concluded by Sec. V.

II. FERMI ATOMS ON A QUASI-2D LATTICE

The Hamiltonian of a confined dilute and ultracold gas of
two-component Fermi atoms is given by

Ĥ =
∫

d3r
∑

σ

ψ̂+
σ (r)

[
− h̄2

2m
∇2 + Vext(r)

]
ψ̂σ (r)

+ g

∫
d3r ψ̂+

↑ (r) ψ̂+
↓ (r) ψ̂↓(r) ψ̂↑(r), (1)

where ψ̂σ (r) is the fermionic field operator that destroys
an atom of pseudospin σ (σ =↑ , ↓) at the position r and
g = 4πh̄2as/m is the interaction strength of the contact
interparticle potential with as the s-wave scattering length.
The external optical potential

Vext(r) = Vlat(x,y) + 1
2mω2

zz
2 (2)

produces a harmonic confinement along the z axis and a
periodic potential

Vlat(x,y) = V0

[
cos2

(
2π

λ
x

)
+ cos2

(
2π

λ
y

)]
(3)

in the (x,y) plane, with λ the wavelength of the laser light
which determines the optical lattice [23]. The minima of the
lattice potential form a two-dimensional square lattice with
sites in the positions Ri = ai = a(ix,iy), where a = λ/2 is
the lattice spacing and i = (ix,iy) is a 2D vector of integer
numbers.

Using the set of Wannier functions in the lowest Bloch
band [23], where the Wannier function Wi(x,y) is maximally
localized at site Ri, we can expand the fermionic field operator
as

ψ̂σ (r) =
∑

i

ĉiσ Wi(x,y)
e−z2/(2a2

z )

π1/4a
1/2
z

, (4)

where ĉiσ and ĉiσ obey the usual Fermi anticommutation
relations, and az = √

h̄/(mωz) is the characteristic length of
the strong harmonic confinement along the z axis, which
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induces a quasi-2D confinement if h̄ωz is much larger than
the other energies of the system. Under these conditions, the
Hamiltonian (1) can be written as

Ĥ = −t
∑
〈ij〉 σ

ĉ†iσ ĉjσ + U
∑

i

n̂i↑n̂i↓, (5)

where 〈ij〉 means nearest-neighbor sites,

t = −
∫

dx dy W ∗
i (x,y)

[
− h̄2

2m
∇2 + Vlatt(x,y)

]
Wj(x,y)

(6)

is the hopping parameter (t > 0), i.e., the tunneling energy
between nearest-neighbor sites, and

U = g

πaz

∫
dx dy|Wi(x,y)|4 (7)

is the on-site strength of the interatomic interaction. n̂iσ =
ĉ
†
iσ ĉiσ is the number operator which describes the number of

atoms with spin σ at the site i, and consequently the total
number operator reads

N̂ =
∑
i σ

n̂iσ . (8)

Notice that Eq. (7) holds under the conditions |as | 	 az and
|as | 	 a, which ensure the absence of confinement induced
resonance [24] and no distortion of Cooper pairs due to
neighbor valleys of the optical confinement. In the Hubbard-
like Hamiltonian (5) we have not included the tunneling
energies between sites which are not nearest neighbor because
they are exponentially suppressed. We have also assumed the
on-site one-body energies to be the same on all sites and
therefore dropped them as irrelevant [23].

III. MEAN-FIELD BCS EQUATIONS

It is well known that the BCS state appears only in the
case of an attractive strength, i.e., U < 0 [23]. In the past
the negative-U Hubbard Hamiltonian has been investigated by
various authors [25] as a model for high-Tc superconductivity.
More recently, it has been used to study the BCS-BEC
crossover on 2D and 3D lattices both at zero [26–28] and
finite temperature [29,30]. As stressed in the Introduction,
motivated by recent theoretical and experimental achievement
with ultracold atoms in optical lattices, here we reconsider
the 2D negative-U Hubbard Hamiltonian to investigate the
pair condensation, and in particular the condensate fraction of
Fermi atoms in the 2D lattice at zero temperature. Note that
he condensate fraction has been calculated by Kujawa [27] in
the 3D square lattice with a generalized Hubbard model, but
only in the special case |U |/t = ∞. In the following sections
we calculate, as a function of |U |/t and of the filling factor,
the energy gap and condensate fraction in the 2D square lattice,
analyzing also the pair binding energy, which is always finite
in the 2D BCS-BEC crossover.

We start by decoupling the interaction Hamiltonian of
Eq. (5) in both normal and anomalous channels [31],

n̂i↑n̂i↓ � 〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↓〉 − 〈ĉ†i↑ĉ
†
i↓〉ĉi↑ĉi↓

− ĉ
†
i↑ĉ

†
i↓〈ĉi↑ĉi↓〉 − 〈n̂i↑〉〈n̂i↓〉 + 〈ĉ†i↑ĉ

†
i↓〉〈ĉi↑ĉi↓〉. (9)

We also assume
n

2
= 〈n̂i↑〉 = 〈n̂i↑〉 (10)

and introduce the (real) mean-field, site-independent, gap order
parameter,

� = −U 〈ĉ†i↑ĉ
†
i↓〉 = −U 〈ĉi↓ĉi↑〉. (11)

In this way we obtain the mean-field Hamiltonian

ĤMF = −t
∑
〈ij〉 σ

ĉ†iσ ĉjσ + Un

2

∑
i

(n̂i↑ + n̂i↓)

+�
∑

i

(ĉi↑ĉi↓ + ĉ
†
i↓ĉ

†
i↑) − Un2

4
Ns + �2

U
Ns, (12)

where Ns is the number of lattice sites.
In the dual space of wave vectors k = (kx,ky), setting

ĉiσ =
∑

k

ĉkσ

eik·Ri

√
Ns

, (13)

where ĉkσ destroys an atom of spin σ and wave vector k, the
mean-field Hamiltonian (12) becomes

ĤMF =
∑

k

(
εk + Un

2

)
ĉ
†
kσ ĉkσ

+�
∑

k

(ĉk↑ĉ−k↓ + ĉ
†
−k↓ĉ

†
k↑) − Un2

4
Ns + �2

U
Ns,

(14)

where

εk = −2t[cos (kxa) + cos (kya)] (15)

is the single-particle energy. We stress that we are considering
only the lowest Bloch band. This single-band approximation
for the BCS-BEC crossover is reliable since the crossover
occurs at magnetic fields that are relatively far away from
the Feshbach resonance underlying it [32]. Moreover, the
approximation is reliable under the following conditions
[32,33]: (i) there are no more than two fermions per site;
(ii) the two lowest bands do not overlap, implying that V0 �
Er , which means 8t 	 Er , and |U | 	 Eg . Er = h̄2k2

L/(2m)
is the recoil energy with kL = 2π/a the wave vector of the 2D
optical lattice, and Eg is the energy gap between the first and
the second Bloch band.

We calculate the thermodynamic potential

	 = 〈ĤMF〉 − μ 〈N̂〉, (16)

where μ is the chemical potential which determines the
average number N = 〈N̂〉 of fermions, by introducing the
Bogoliubov canonical transformation:

α̂k = ukĉk↑ − vkĉ
†
−k↓, β̂k = ukĉ−k↓ + vkĉ

†
k↑, (17)

where uk and vk are real and u2
k + v2

k = 1. After the mimimiza-
tion of 	 with respect to μ and � we recover the standard BCS
equation [23,31] for the average number of particles per site,

n = 2
1

Ns

∑
k

v2
k, (18)
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and the familiar BCS gap equation

1

|U | = 1

Ns

∑
k

1

2Ek
, (19)

where the quasiparticle amplitudes uk and vk are given by

v2
k = 1

2

(
1 − εk − h

Ek

)
, (20)

and u2
k = 1 − v2

k. Here the Bogoliubov energy reads

Ek = [(εk − h)2 + �2]1/2, (21)

where

h = μ − Un

2
, (22)

is the effective chemical potential which takes into account
the Hartree interaction. The effective chemical potential h and
the gap energy � are obtained by solving Eqs. (18)
and (19). In the continuum limit

∑
k → a2Ns

∫
BZ d2k/(2π )2

and introducing the density of states (DOS) per site

D(ε) = a2
∫
BZ

d2k
(2π )2

δ(εk − ε)

= 1

2π2t
K

(√
1 − ε2

16t2

)


(
1 − ε2

16t2

)
, (23)

whereBZ = [−π/2,π/a] × [−π/a,π/2] is the first Brillouin
zone, K(x) is the complete elliptic integral of the first kind,
and (x) is the step function, the number equation (18) and
the gap equation (19) can be written as

n =
∫ 4t

−4t

dε D(ε)

(
1 − ε − h√

(ε − h)2 + �2

)
, (24)

1

|U | =
∫ 4t

−4t

dε D(ε)
1

2
√

(ε − h)2 + �2
. (25)

As discussed in Ref. [25], quite generally in two dimensions
a bound-state energy EB exists for any value of the negative
interaction strength U . For the contact potential the bound-
state equation in the lattice is

1

|U | =
∫ 4t

−4t

dε D(ε)
1

2(ε − ε0) + EB

, (26)

where ε0 = −4t is the lower value of the single-particle energy
εk, occurring at k = 0. If we approximate the true DOS with
a constant value in the interval [−4t,4t], i.e.,

D(ε) � 1

8t


(
1 − ε2

16t2

)
, (27)

that ensures the normalization∫ 4t

−4t

dε D(ε) = 1, (28)

the bound-state equation can be solved analytically giving

1

|U | = 1

16t
ln

∣∣∣∣EB + 16t

EB

∣∣∣∣. (29)

In Fig. 1 we plot the binding energy EB/t as a function of
the interaction strength |U | obtained with this approximate
formula (dashed line). For comparison we plot also the exact

0 2 4 6 8 10 12 14 16 18

|U|/t

0

2

4

6

8

10

12

E
B
/t

exact DOS
approx DOS

FIG. 1. (Color online) Scaled binding energy EB/t as a function
of the scaled interaction strength |U |/t , with t the tunneling energy.
Solid lines are the results obtained with the exact density of states
(exact DOS) given by Eq. (23), while dashed lines are the results
obtained with the approximate density of states (approx DOS) given
by Eq. (27).

result (solid line), obtained by numerically solving Eq. (26).
The figure shows that the agreement between the two curves is
extremely good. The BCS-BEC crossover is governed by the
adimensional parameter |U |/t or equivalently by the scaled
binding energy EB/t . The limit of large tunneling and small
interaction |U |/t 	 1 corresponds to the BCS regime where
EB/t is close to zero. Instead the limit of strong localization
and large interaction |U |/t � 1 corresponds to the BEC
regime where EB/t is large.

The quite good agreement between the solid curve and
the dashed curve of Fig. 1 suggests that one could use the
approximate DOS to study various ground-state properties of
the system in the BCS-BEC. Within the approximation of a
constant DOS in the band, i.e., Eq. (27), the number density
equation and the gap equation read

n = 1

8t
(8t−

√
(4t − h)2 + �2 +

√
(4t + h)2 + �2), (30)

1

|U | = 1

16t
ln

∣∣∣∣ h + √
h2 + �2

h − 8t +
√

(h − 8t)2 + �2

∣∣∣∣. (31)

It is then straightforward to plot (see Fig. 2) the effective
chemical potential h (upper panel) and the chemical potential
μ (lower panel) as a function of the scaled interaction strength
|U |/t , for different values of the filling factor x = n/2 (0 �
x � 1). In the figure the lines are obtained by using Eqs. (30)
and (31) based on the approximate DOS of Eq. (27), while the
filled circles are obtained by using Eqs. (24) and (25) with the
exact DOS of Eq. (23).

Figure 2 shows that at half filling (x = 0.5) the effective
chemical potential h remains always constant and equal to
zero, and the corresponding chemical potential μ follows the
simple law μ = −|U |/2. Moreover, the lower panel of Fig. 2
shows that, at fixed filling factor x, the chemical potential
μ as a function of U is close to a straight line (it is true
straight line only for x = 0.5) and approaches μ � −|U |/2 for
large |U |.
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FIG. 2. (Color online) Scaled effective chemical potential h/t

(upper panel) and scaled chemical potential μ/t (lower panel) as
a function of the scaled interaction strength |U |/t , with t the
tunneling energy. Results obtained for three values of the filling factor
x = n/2. Filled circles are the results obtained with the exact density
of states given by Eq. (23), while lines are the results obtained with
the approximate density of states given by Eq. (27).

In Fig. 3 we plot the energy gap � vs interaction strength
|U | (upper panel) and vs filling factor x (lower panel). The
upper panel shows that, at fixed filling factor x, the energy gap
� grows by increasing the scaled interaction strength |U |/t ,
that is by increasing the localization. Instead, the lower panel
shows that, at fixed scaled interaction strength |U |/t , the scaled
energy gap �/t reaches its maximum value at half filling
x = 1/2, i.e., when on the average there is one atom per site.
This effect is clearly seen in the lower panel of Fig. 3 where we
consider three values of |U |/t . Notice that the behavior of � as
a function of x is perfectly symmetric with respect to x = 1/2
(half filling). Also in Fig. 3 the agreement between the results
obtained with the exact DOS and the ones calculated with the
approximate DOS is quite good, and it improves by increasing
|U |/t . Motivated by this finding, in the remaining part of the
paper we use the approximate DOS, which is much simpler
for numerical computations and produces analytical results.

IV. CONDENSATE FRACTION

The main task of the paper is to analyze the condensate
fraction of fermions. As shown by Yang [10], the BCS
state guarantees the off-diagonal long-range order [11] of the
Fermi gas, namely that, in the limit wherein both unprimed
coordinates approach an infinite distance from the primed
coordinates, the two-body density matrix factorizes as follows:

〈ψ̂+
↑ (r′

1)ψ̂+
↓ (r′

2)ψ̂↓(r1)ψ̂↑(r2)〉
= 〈ψ̂+

↑ (r′
1)ψ̂+

↓ (r′
2)〉〈ψ̂↓(r1)ψ̂↑(r2)〉. (32)
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FIG. 3. (Color online) Upper panel: scaled energy gap �/t as
a function of scaled interaction strength |U |/t with t the tunneling
energy. The three curves correspond to five different values of the
filling factor x = n/2. Lower panel: scaled energy gap �/t as a
function of filling factor x = n/2, where the three curves correspond
to three different values of the scaled interaction strength |U |/t ,
with t the tunneling energy. Filled circles are the results obtained
with the exact density of states given by Eq. (23), while lines are
the results obtained with the approximate density of states given
by Eq. (27).

The largest eigenvalue of the two-body density matrix (32)
gives the number of pairs in the lowest two-particle state, i.e.,
the condensate number of Fermi pairs [8,10,12]. In this way,
the number N0 of condensed fermions is given by

N0 = 2
∫

d3r d3r′|〈ψ̂↓(r)ψ̂↑(r′)〉|2 = 2
∑

ij

|〈ĉi↓ĉj↑〉|2. (33)

Notice that, as said above, N0 counts the number of condensed
fermions, 0 � N0 � N [18], and not of condensed pairs. It is
then quite easy to show that the condensate number of atoms
per site is

n0 = 2
1

Ns

∑
k

u2
kv

2
k. (34)
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FIG. 4. (Color online) Condensate fraction n0/n as a function of
scaled interaction strength |U |/t with t the tunneling energy. The
three curves correspond to three different values of the filling factor
x = n/2.

With the help of Eq. (20) this number is thus given by

n0 = �2

2

∫ 4t

−4t

dε D(ε)
1

(ε − h)2 + �2
, (35)

and using the approximate DOS of Eq. (27) it reads

n0 = �

16t

[
arctan

(
4t − h

�

)
+ arctan

(
4t + h

�

)]
. (36)

Figure 4 shows the condensate fraction n0/n of fermions,
calculated with Eqs. (30), (31), and (36), as a function of scaled
interaction strength |U |/t for three values of the filling factor x.
We have verified that the plotted results are in good agreement
with the ones obtained by using the exact DOS, except in the
case of very small values of |U |/t . In any case, the condensate
fraction n0/n vanishes when the scaled interaction strength
|U |/t goes to zero. Moreover, as shown in the figure, the
condensed fraction grows very fast for values of the scaled
interaction strength |U |/t � 8, it shows a shoulder, and then
it reaches its asymptotic value n0/n � 1 − x rather slowly.

This result is confirmed in the upper panel of Fig. 5, where
we report the condensate fraction n0/n as a function of the
filling factor x at fixed scaled interaction strength |U |/t . The
figure clearly shows that n0/n ranges from one to zero, being
extremely close to one for x 	 1 and approaching zero as x

goes to 1. This means that there is a full BEC-BCS crossover
by increasing x at constant scaled interaction strength |U |/t .
Moreover, if the scaled interaction strength |U |/t is large,
the condensate fraction no/n follows a straight line during
the BEC-BCS crossover. For the sake of completeness, in the
lower panel of Fig. 5 we plot also the number n0 of condensed
atoms per site as a function of the filling factor x. The results
show that the curves of no vs x have a behavior similar to those
of � vs x (see Fig. 3). In the limit |U |/t → ∞ one finds that
n0 = (1 − x)2x and consequently n0/n = (1 − x).

Finally, we observe that, after a simple rescaling of the
chemical potential, namely h̃ = h + 4t , in the limit t → ∞
with ta2 → πh̄2/m, Eq. (36) becomes the condensate number
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FIG. 5. (Color online) Upper panel: condensate fraction n0/n as
a function of the filling factor x = n/2. Lower panel: number n0 of
condensed atoms per site. The curves correspond to three different
values of the scaled interaction strength |U |/t , with t the tunneling
energy.

equation found in Ref. [17] for the 2D uniform superfluid
Fermi gas.

V. CONCLUSIONS

By using the mean-field extended BCS theory and the
concept of off-diagonal long-range order, that is the existence
of a macroscopic eigenvalue of the two-body density matrix,
we have investigated the condensate fraction of fermionic pairs
in a uniform 2D Fermi gas. We have shown that the condensate
number n0 of Fermi atoms per site is extremely useful to
characterize the BCS-BEC crossover, that is induced by
changing the adimensional ratio |U |/t between the interaction
energy |U | and the tunneling energy t . In particular, we have
found that both the scaled binding energy EB/t of atomic
pairs and the condensate fraction n0/n grow by increasing the
ratio |U |/t at fixed filling factor x = n/2 (with n the average
number of fermions per site). In addition, our results suggest
that fixing the ratio |U |/t , or equivalently the scaled binding
energy EB/t , there is a full BEC-BCS crossover by increasing
the filling factor from zero to one. Finally, we have found that
the analytical results obtained by using an approximate density
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of states are in quite good agreement with the numerical ones
deduced from the exact density of states. In our calculations
we have used the mean-field theory and it is important to
stress that recent Monte Carlo simulations have shown that, at
zero-temperature, beyond-mean-field effects are negligible in
the BCS side of the BCS-BEC crossover while they become
relevant in the deep BEC side [15,34]. In any case, we think
that our mean-field results, and the reliable analytical formulas
we have obtained, can be of interest for near future experiments
with degenerate gases made of alkali-metal atoms confined in
quasi-2D optical lattices.

In this paper we have investigated zero-temperature pair
condensation. According to the Mermin-Wagner theorem [23],
for an infinite 2D system there is condensation (off-diagonal
long-range order) only at zero temperature. However, for
a finite 2D system condensation could be possible also at
nonzero temperature. The investigation of this issue, which
requires a beyond mean-field approach, for 2D fermions in a
lattice is in progress. Another puzzling issue is the filling of
the second Bloch band: we plan to investigate its effect on pair
condensation by analyzing a multiband version of the present
theory.
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