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We analyze the formation of squeezed states in a condensate of ultracold bosonic atoms confined by a
double-well potential. The emphasis is set on the dynamical formation of such states from initially coherent
many-body quantum states. Two cases are described: the squeezing formation in the evolution of the system
around the stable point, and in the short-time evolution in the vicinity of an unstable point. The latter is shown
to produce highly squeezed states on very short times. On the basis of a semiclassical approximation to the
Bose-Hubbard Hamiltonian, we are able to predict the amount of squeezing, its scaling with N , and the speed of
coherent spin formation with simple analytical formulas which successfully describe the numerical Bose-Hubbard
results. This method of producing highly squeezed spin states in systems of ultracold atoms is compared to other
standard methods in the literature.
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I. INTRODUCTION

Condensates of ultracold atoms provide an exceptional tool
to understand and control a number of phenomena in the
fields of condensed matter, many-body quantum mechanics,
and quantum information and computation [1,2]. Condensates
are bosonic many-body quantum systems, the Hamiltonian of
which can be tuned via Feshbach resonance techniques or by
varying the trapping conditions.

In particular, we shall be interested here in condensates of
ultracold bosonic atoms trapped in an external double-well
potential, thus giving rise to the so-called external Josephson
dynamics [3–7]. The case of atoms with two internal states
trapped in a common harmonic potential is similar. In this
case, the Josephson dynamics takes place between the two
internal states [8]. A first relevant observation for these
systems was that of the predicted self-trapped regime [9,10],
which appears already in the semiclassical description of the
two-site Bose-Hubbard Hamiltonian. Later, the emphasis has
been set on producing strongly correlated quantum states
with appealing quantum properties such as entangled states
[6,11,12], or squeezed states with possible application in
quantum metrology [7,13–15]. Recently, the limits imposed
by finite temperature on the maximal attainable spin squeezing
have been discussed in Ref. [16].

Most of the studies have concentrated on quantum many-
body properties present in the ground state. Notably studying
the possibility of having catlike many-body ground states
[17–22] or largely squeezed states [6]. In this paper, we focus
on the dynamical generation of squeezed states, that is, we
consider a condensate initially prepared in a coherent state
which is left to evolve in a suitable Hamiltonian so as to give
rise to entangled many-body states during the time evolution.
Our aim is thus to build those particular states from initial states
that can be constructed with present experimental techniques.
We will use the Bose-Hubbard Hamiltonian to study numer-
ically the time evolution by solving the corresponding time-
dependent Schrödinger equation (TDSE). Alternatively, we
apply a semiclassical approximation (based on a perturbative
expansion in 1/N , with N the number of atoms) to obtain

simple and yet accurate expressions describing the dynamics
of the relevant expectation values. Similar methods have been
used in recent years to study the thermodynamic limit of the
Lipkin-Meshkov-Glick model [23], which can be mapped into
the usual two-site Bose-Hubbard, finding exact expressions
for the ground state in the thermodynamic limit [24] and
characterizing entanglement properties of the ground state in
the same limit [25].

The article is organized as follows. First, we introduce the
Bose-Hubbard (BH) Hamiltonian in Sec. II, and give a short
reminder of the semiclassical approximation in Sec. III. In
Secs. IV and V, we propose an experimentally feasible setup
for producing dynamically a new kind of squeezed states and
study their properties. A comparison with the adiabatic and
diabatic one-axis squeezing is presented in Sec. VI. In Sec. VII,
we outline our conclusions.

II. TWO-SITE BOSE-HUBBARD HAMILTONIAN
AND SQUEEZING

Let us consider a many-body system of bosons described
by a two-site Bose-Hubbard Hamiltonian of the form h̄HBH

with

HBH = −J (â†
1â2 + â

†
2â1) + U

2
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1)],

(1)

where n̂i = â
†
i âi and [âi ,â

†
j ] = δi,j . J is the hopping strength,

taken positive, and U is the nonlinear coupling strength. U > 0
and U < 0 correspond to repulsive and attractive interactions,
respectively. To remain close to ongoing experimental realiza-
tions, we will concentrate on the case of repulsive interactions
among the atoms. The time-dependent Schrödinger equation
is written as

ı∂t |�〉 = HBH|�〉. (2)

An appropriate many-body basis for this bosonic system is
the Fock basis [26] {|N1,N2〉}, with N1 + N2 = N . Since
the total number of atoms N is taken to be constant, it
will be more convenient to introduce a different notation:
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N1 = k, N2 = N − k. A general many-body state |�〉 can
then be written in this basis as

|�〉 =
N∑

k=0

ck|k,N − k〉. (3)

The low-energy stationary states of the system are charac-
terized by values of ck that vary smoothly with k and that
take vanishingly small values when k → 0 or k → N , which
corresponds to negligible probabilities for finding almost all
the atoms on one of the two sites.

It is customary to define three operators Ĵ ≡ (Ĵx,Ĵy,Ĵz)
[26,27]:

Ĵx = 1
2 (â†

1â2 + â
†
2â1),

Ĵy = 1
2i

(â†
1â2 − â

†
2â1), (4)

Ĵz = 1
2 (â†

1â1 − â
†
2â2).

In terms of these, the Hamiltonian reads as

HBH = −2J Ĵx + UĴ 2
z + U

(
N̂2

4
− N̂

2

)
. (5)

An important consequence of the form of this Hamiltonian
is the existence of squeezed-spin eigenstates in the Fock
representation [11]. This pseudospin is the one defined in
Eq. (4). These states are of special importance as they
incorporate correlations which are beyond mean field.

Here instead we will study the dynamical generation of
squeezing: we assume that at t = 0 the system is initially
prepared in a coherent state characterized by (θ,φ) [27]:

|�θ,φ〉 =
∑

k

(
N

k

)1/2

(cos θ/2)k(eıφ sin θ/2)N−k|k,N − k〉,

which corresponds to a state in which all atoms populate
the same single-particle state cos(θ/2)|1〉 + eiφ sin(θ/2)|2〉
where |1〉 = â

†
1|vac〉 and |2〉 = â

†
2|vac〉. Such states have been

recently engineered, producing and characterizing them in a
wide range of values of (θ,φ) [8].

Moreover, coherent states have simple expectation values
of Ĵx , Ĵy , and Ĵz [27],

〈�θ,φ|Ĵx |�θ,φ〉 = N

2
sin θ cos φ,

〈�θ,φ|Ĵy |�θ,φ〉 = N

2
sin θ sin φ, (6)

〈�θ,φ|Ĵz|�θ,φ〉 = N

2
cos θ,

which allow us to represent them on the surface of a sphere of
radius N/2. They can be used to define a Husimi distribution
of any given many-body state |�〉 [19]:

ρH(θ,φ) = |〈�θ,φ|�〉|2. (7)

As an example, it is useful to note that the Husimi distribution
of a coherent state characterized by (θ ′,φ′) is given by

ρH(θ,φ) = 2−N [1 + cos(θ ) cos(θ ′)
+ cos(φ′ − φ) sin(θ ) sin(θ ′)]N, (8)

which has a maximum of 1 for (θ,φ) = (θ ′,φ′).
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FIG. 1. (Color online) Husimi distribution ρH (θ,φ) of the state
�π/2,0 (a), and �π/2,π (b). N = 200.

In our study, we will consider as initial states two different
coherent states:

|�π/2,0〉 = N0(â†
1 + â

†
2)N |vac〉,

(9)
|�π/2,π 〉 = Nπ (â†

1 − â
†
2)N |vac〉,

withN0,π , normalization constants. The coefficients |ck|2 obey
in both cases a binomial distribution

|ck|2 = 1

2N

(
N

k

)
, (10)

and their Husimi distributions are

ρH(θ,φ) =
(

1 ± cos(φ) sin(θ )

2

)N

, (11)

where the + and − signs correspond to the (π/2,0)
and (π/2,π ), respectively. For large N , the equiprobabil-
ity lines correspond to circles around (θ,φ) = (π/2,0) and
(π/2,π ), respectively. The distributions are presented in
Fig. 1.

Both initial states are especially interesting for two reasons:
(1) they correspond to two relevant limiting cases which
can be prepared in the laboratory, and (2) they give rise to
different dynamical evolutions for 
 �= 0. Starting from the
(π/2,0) state, the system evolves in the vicinity of a stable
point in the semiclassical limit, producing in a natural way
periodic dynamics. In contrast, a system initially prepared
in the (π/2,π ) state evolves in the vicinity of an unstable
point [28] in the semiclassical picture. That difference causes
the very different maximal coherent squeezing found in the
two cases. This will be discussed in greater detail in the next
sections.

A. Squeezing parameters

As customary [6], the number-squeezing parameter is
defined as

ξ 2
N (t) = �Ĵ 2

z(
�Ĵ 2

z

)
bin

, (12)

where �Ĵ 2
z ≡ 〈Ĵ 2

z 〉 − 〈Ĵz〉2 and (�Ĵ 2
z )bin = N/4 in the bino-

mial case (10). The many-body state is said to be squeezed
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if ξN < 1. A second parameter, which takes into account the
coherence of the state, is the so-called coherent spin-squeezing
parameter defined as [14] 1

ξ 2
S = 2J

(
�Ĵ 2

z

)
〈Ĵx〉2

= ξ 2
N

α2
, (13)

where the phase coherence is given by

α(t) = 〈�(t)|α̂|�(t)〉 , α̂ = 2
Ĵx

N
. (14)

The two initial states we are considering have α(0) = 1 and
−1 corresponding to (π/2,0) and (π/2,π ), respectively.

If a state exhibits ξS < 1, it can be employed in a Ramsey-
type atom interferometer with an increased phase precision
compared to the coherent spin state. This gain in precision can
be directly related to entanglement in the system [29].

B. Angle of maximal squeezing

Number squeezing of a many-body state can occur along an
axis different from the z axis considered above. In that case,
one can generalize the squeezing parameter for an arbitrary
direction u ≡ (ux,uy,uz) (u2 = 1) as

ξ 2
N ;u = �(u · Ĵ)2

N/4
, (15)

where the denominator is again the fluctuation of the binomial
distribution. The squeezing along any direction in the (y,z)
plane only requires to calculate 〈(u · J)2〉 as 〈(u · J)〉 = 0. The
corresponding generalization of the coherent spin-squeezing
parameter of Eq. (13) reads as

ξ 2
S;û = ξ 2

N ;u

α2
. (16)

As the wave packet evolves in time, there is a certain
direction z′ in which the spin squeezing is maximal. In a frame
rotated an angle β around the x axis we have

Ĵy ′ = cos βĴy + sin βĴz,
(17)

Ĵz′ = − sin βĴy + cos βĴz.

Since〈
Ĵ 2

z′
〉 = sin2 β

〈
Ĵ 2

y

〉 + cos2 β
〈
Ĵ 2

z

〉 − sin β cos β〈{Ĵy,Ĵz}〉,
(18)

requiring that d〈Ĵ 2
z′ 〉/dβ = 0 gives the angle of maximal

squeezing

tan 2βM = 〈{Ĵy,Ĵz}〉〈
Ĵ 2

y

〉 − 〈
Ĵ 2

z

〉 . (19)

We will use the notation ξ 2
S;βM

and ξ 2
N ;βM

for the maximal
coherent spin squeezing and number squeezing.

It is worth noting the role played by 〈{Ĵy,Ĵz}〉. If this term
is zero, the maximal squeezing is always found either along

1In the cases we will consider, during the time evolution the wave
packet remains at 〈Ĵz,y〉 = 0 at all times.

Jy or Jz. A nonzero value of 〈{Ĵy,Ĵz}〉 implies that the best
squeezing will be found along some other axis.

Equation (19) will allow us to compute at any time during
the evolution the direction along which the squeezing is
maximal. This will be of special relevance for the case where
the initial state is |�π/2,π 〉. As will be shown in Sec. V, in this
case the maximal squeezing gets quite sizable in the short-time
evolution of the system.

Using the Bose-Hubbard Hamiltonian, in Secs. IV and V
we will compute 〈Ĵ 2

i 〉(t) and the associated squeezing pa-
rameters for varying ratios of the tunneling versus atom-atom
interaction strength, and present evidence for spin squeezing
during the time evolution of the system. To better interpret
these numerical results, we will first develop approximate
expressions using a semiclassical model.

III. 1/N APPROXIMATION TO THE BOSE-HUBBARD
MODEL

The appearance of spin squeezing in the evolution of
the system can be studied numerically by solving the
TDSE [Eq. (2)]. It is, however, desirable to find suitable
approximations which can expose the physics underneath
the process of spin squeezing. In this section, we develop
such an approximate model and show that the time evolution
of the system can be successfully mapped into the physics
of a single fictitious particle evolving on a confining or
nonconfining parabolic potential for the (π/2,0) or (π/2,π )
states, respectively.

Following [21], we introduce first an auxiliary Hamiltonian
defined as

HS = − 2

N
Ĵx + U

NJ
Ĵ 2

z = −2hĴx + 2
h2Ĵ 2
z (20)

with h = 1/N and 
 = NU/(2J ). It differs from HBH in
Eq. (5) in the suppression of the additive constants and in
a factor NJ , which makes it dimensionless. In the considered
regime, the expectation values of the two terms in Eq. (20)
are of similar magnitude, so that the factors h compensate the
different N dependence of the expectation values of the two
spin operators.

In Refs. [21,30], a semiclassical approximation to the TDSE
has been derived. It uses a systematic expansion in 1/N . Here,
we will build on this method and extend it to the expectation
values of the quantities required to compute the spin squeezing
and the coherence [Eqs. (12) and (14)]. Earlier versions of
the same expansion can be found also in Refs. [19,31]. As
explained in detail in the Appendix, the expectation values of
Jx and J 2

z can be computed from the continuous extension of
the ck’s. To deal with states close to the |�(π/2,0)〉 state
[Eq. (9)], one assumes that the states of interest are such
that their ck vary smoothly: ck ∼ ck±1 and that the number
of atoms is always large, h = 1/N 	 1. This allows us to
introduce a continuous variable x and a continuous function
ψ(x) such that ψ(x = k/N) = √

N ck [21,30–32]. Next, a
new variable z ≡ 2x − 1 is defined, and ψ(z) (−1 � z � 1)
renormalized to

∫ 1
−1 dz|ψ(z)|2 = 1. The expressions for the
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FIG. 2. (Color online) Comparison between the ground-state
properties obtained through expressions (A7), solid lines, and the
Bose-Hubbard computation for N = 200 (dashed lines) as function
of 
 = NU/(2J ).

expectation values are

h〈ψ |Ĵx |ψ〉 �
∫ 1

−1
dz ψ∗(z)

[(
h2(−1 − z2)

4(1 − z2)3/2

+ h

2
√

1 − z2
+

√
1 − z2

2

)
ψ(z)

− h2z√
1 − z2

ψ ′(z) + h2
√

1 − z2ψ ′′(z)

]
,

h2〈ψ |Ĵ 2
z |ψ〉 =

∫ 1

−1
dz |ψ(z)|2 z2

4
. (21)

As in many other semiclassical expansions, the power series
in h is asymptotic, and one can see above that depending
on the behavior of the chosen ψ(z) as z → ±1, divergent
contributions will appear already at order h2. As usual for
asymptotic series, the strategy that we will follow is to truncate
those terms that degrade the convergence. We will detail later
how this is done. The validity of this 1/N expansion can be
seen in Fig. 2, where we show a comparison between our
expressions and the exact Bose-Hubbard calculation of the
ground-state properties of the system.

Let us now go back to the Hamiltonian HS in Eq. (20).
Using the above results, its semiclassical expectation value is

〈ψ |HS |ψ〉 = −2h〈ψ |Ĵx |ψ〉 + 2
h2〈ψ |Ĵ 2
z |ψ〉. (22)

When we look for the stationary points of 〈ψ |HS |ψ〉 −
E(s)〈ψ |ψ〉, we arrive at

HN (z)ψ(z) ≡ −2h2

(√
1 − z2ψ ′′ − z√

1 − z2
ψ ′

)

+
(

1

2

z2 −

√
1 − z2 + δV

)
ψ(z)

≡ −2h2∂z

√
1 − z2∂zψ + V(z)ψ = E(s)ψ(z),

(23)

which is a pseudo-Schrödinger equation similar to the one
reported in Ref. [21] except for the additional term δV:

δV = − h√
1 − z2

+ h2 (1 + z2)

(1 − z2)3/2
, (24)

which was neglected in Ref. [21].
Equation (23) can be regarded as a Schrödinger-type

equation defined on a compact interval z ∈ [−1,1]. It is
expected to provide accurate results provided ψ(z) vanishes at
the boundaries. The equation provides an important insight
into the problem, essentially builds on the semiclassical
Hamiltonian, which is equal to V(z), and quantizes it, through
the effective mass form −2h2∂z

√
1 − z2∂z.

In line with the present approximation, the time evolution
will then be described via

ıh∂tψ(z,t) = HNψ(z,t), (25)

where now t is the time measured in units of 1/J . The so-called
“Rabi” time of the system is tRabi = π/J .

IV. DYNAMICAL SQUEEZING AROUND A FIXED STABLE
POINT: �π/2,0 STATE

We consider now the dynamical situation where the
condensate is initially prepared in the coherent state �(π/2,0),
and study the squeezing and coherence of the system as a
function of time as it evolves under the action of HN .

In the limit of large N , small h, the binomial distribution
|ck|2 corresponding to the state �π/2,0 [see Eq. (10)] ap-
proaches the Gaussian distribution in the continuous z variable

ψ0(z) =
(

1

πb2
0

)1/4

e−z2/(2b2
0), (26)

with b2
0 = 2h = 2/N . During the time evolution, |ψ(z,t)|2 will

be confined to a fairly narrow region in z of size � √
2h. For

this range of values of z, we will approximate
√

1 − z2 �
1 in the kinetic energy term of HN , and make a parabolic
approximation to V(z):

V(z) � −1 − h + 1

2

1

4
ω2z2, (27)

with effective mass equal to 1/4 and frequency given by
ω = 2

√
1 + 
 − h. Thus, the evolution of the �π/2,0 state is

mapped into the evolution of a centered Gaussian wave packet
inside a confining harmonic-oscillator potential. The system
will oscillate around the classical stable point, periodically
building a certain amount of coherent spin squeezing that we
will quantify in the following. The parabolic approximation
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FIG. 3. (Color online) Depiction of V(z) and its parabolic
approximation used in Secs. IV (left) and V (right).

is extremely accurate for our purposes. This is because the
initial extent of the packet

√
〈z2(0)〉 = √

2h 	 1 is always the
maximum value attainable during the time evolution.

Under the parabolic approximation for the potential (see
Fig. 3), the initial Gaussian wave packet [Eq. (26)] remains
Gaussian as it evolves in time. The exact wave function reads
as

ψ
(z,t) = 1

(πb2)1/4
eiκ e−z2/(2b2) eiz2φ/(2b2), (28)

where

b2(t) = h

(
1 + 4

ω2
+

(
1 − 4

ω2

)
cos 2ωt

)
,

φ(t) = ω

4

(
4

ω2
− 1

)
sin 2ωt, (29)

κ(t) = 1 + h

h
t + 1

4
arctan

( ω

2 tan ωt

)
− π

8
− π

4

[
ωt

π

]
,

where in the last equation [x] means integer part of x. Now,
we insert the exact ψ
(z,t) in the semiclassical expressions for
the expectation values of the spin components [Eqs. (21) and
(A7)] and replace the denominators by their approximations
for small z, i.e., 1/

√
1 − z2 � 1 + z2/2 or 1 depending on the

size of their contribution. And finally, we retain terms up to
linear in h (note that b2 is proportional to h):

2h〈Ĵx〉 � 1 + h

4


2

1 + 

(cos 2ωt − 1),

4h2
〈
Ĵ 2

x

〉 � 1 + h

2


2

1 + 

(cos 2ωt − 1),

4h2
〈
Ĵ 2

y

〉 � h

2
(2 + 
 − 
 cos 2ωt), (30)

4h2
〈
Ĵ 2

z

〉 � h

2(1 + 
)
(2 + 
 + 
 cos 2ωt) ,

4h2〈{Ĵy,Ĵz}〉 � h

√

1 + 

sin 2ωt.

Within the same approximation, the angle of maximal squeez-
ing [Eq. (19)] can be written as

tan 2βM � 2
√

1 + 


2 + 


1

tan ωt
. (31)

These approximate expressions turn out to be very accurate
for a broad set of parameters. In Fig. 4, we compare the exact
Bose-Hubbard results and those obtained from Eqs. (30). The
initial state is |�π/2,0〉 and is left to evolve in a Hamiltonian

1-h

1-h/2

1

4h
2 <J

x2 >

h

2h

3h

4 
h2  <

J y2 >

0

h/2

h

4h
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J z2 >
0 0.25 0.5 0.75 1

t/tRabi

-h
-h/2

0
h/2

h

4h
2  <

{J
y,J z}>

Λ=1.2
Λ=1.4

Λ=2

FIG. 4. (Color online) Comparison between the Bose-Hubbard
results (dashed lines) and the expressions in Eq. (30) (solid lines) for
different values of 
 = 1.2, 1.4, and 2. The number of particles is
N = 200 = 1/h. The initial state is �π/2,0.

with repulsive atom-atom interactions of 
 = 1.2, 1.4, and 2.
The expectation value of Ĵ 2

i is presented i = x,y,z together
with the expectation value of {Ĵy,Ĵz}. As can be seen, BH
predicts periodic oscillations for all the quantities. 〈Ĵ 2

x 〉 is
seen to be essentially 1 during the time evolution. The small
departure from full coherence is well captured by the term
∝ h in the semiclassical expression. 〈Ĵ 2

z 〉 and 〈Ĵ 2
y 〉 are found

to evolve in phase, as predicted in (30). 〈{Ĵy,Ĵz}〉 is small
but nonzero during the evolution, implying the existence of a
direction along which the squeezing is maximal.

According to Eqs. (30), the wave packet will squeeze
periodically along the z direction with a frequency 2ω. The
maximal attainable number squeezing takes place when 2ωt =
nπ , and is

ξ 2
N,max = 1

1 + 

. (32)

Similarly we find that the coherence at maximal squeezing is
given by

〈α̂〉ma sq = 1 − h

2

2(1 + 
)
. (33)

The semiclassical predictions break down when the extent of
the wave packet

√
〈z2〉 is of the order of h. Using Eqs. (30)

at the maximum number squeezing yields the condition 
 �
1/h = N .

As explained in the previous section, a nonzero value
of the anticommutator 〈{Ĵy,Ĵz}〉, as in Fig. 4, implies that
the maximal squeezing is found along an axis z′, defined
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FIG. 5. (Color online) Snapshots of the Husimi distribution
ρH (θ,φ). Panels (a), (b), (c) and (d), (e), (f) correspond to initial states
�π/2,0 and �π/2,π , respectively. Panels (a) and (d) are computed at
t = 0.1tRabi, (b) and (e) at t = 0.2tRabi, and (c) and (f) at t = 0.3tRabi.
N = 200 and 
 = 2.

by an angle βM [see Eq. (19)]. This also reflects in the
Husimi distributions depicted in Fig. 5. In the figure we
present three snapshots of the Husimi distributions at different
times 0.1, 0.2, and 0.3 tRabi computed for 
 = 2. The Husimi
distribution is initially symmetric (see Fig. 1), as corresponds
to a coherent state. As time evolves, in Figs. 5(a), 5(b),
and 5(c) the distribution is seen to be ellipsoidal but noncanon-
ical, i.e., the symmetry axes of the ellipses are not y and z.
The angle of maximal squeezing is plotted in Fig. 6. The angle
varies almost linearly with time, implying that the distribution
rotates around the x direction at an almost constant velocity.
This behavior is captured by Eq. (31).

0 0.2 0.4
t/t

Rabi

-2π

-π

0

β M
 (

ra
d.

)

Λ=2

Λ=5

Λ=10

Λ=20

FIG. 6. (Color online) Angle of maximal squeezing [Eq. (19)]
computed from the Bose-Hubbard calculation (dashed lines), and
using Eq. (31) (solid lines). N = 400.

V. EARLY SQUEEZING AROUND AN UNSTABLE
POINT: �π/2,π STATE

When considering the dynamics around the (π/2,π ) state,
in order to make use of the semiclassical model one has to
assume that it is the (−)kck that vary smoothly, and thus
introduce a continuous function ψ(x = k/N) = √

N (−1)kck

[21,30,32]. As explained in Ref. [21], see also the expressions
in our Appendix, the dynamical equation in this case reads as,
including only the lowest order in h terms,

ıh∂tψ(z,t) =
(

2h2∂z

√
1 − z2∂z

+ 1

2

z2 +

√
1 − z2

)
ψ(z,t), (34)

with a negative effective mass. For convenience, we choose
to multiply by −1 both sides of the equation and perform
complex conjugation, so that

ıh∂tψ
∗(z,t) = (−2h2∂z

√
1 − z2∂z + V−(z))ψ∗(z,t), (35)

and the evolution of ψ∗(z,t) is that of an initial wave packet,
again of the form of Eq. (26), inside the potential V−(z) =
−(1/2)
z2 − √

1 − z2. When 
 > 1, this is a double-well
potential in the z space [see Fig. 3 (right)] and has a central
barrier. Including terms of order h, we approximate it as

V−(z) � −1 − h − 1
2

1
4 ω̄2z2, (36)

where ω̄ = 2
√


 − 1 + h. Although this parabolic potential
is nonconfining, we still find that the solution of Eq. (35) with
V−(z) as in Eq. (36) is formally identical to Eq. (28), so that
(up to a phase depending only on t)

ψ∗

(z,t) = 1

[πb2]1/4
e
− z2

2b2(t) e
iφ(t)z2

2b2(t) . (37)

However, inserting this ψ
 in Eq. (35) with the parabolic
approximation for V−(z), one now finds

b2(t) = h

[
1 − 4

ω̄2
+

(
1 + 4

ω̄2

)
cosh 2ω̄t

]
,

(38)

φ(t) = ω̄

4

(
4

ω̄2
+ 1

)
sinh 2ω̄t,

and correspondingly

2h〈Ĵx〉 � −1 + h

4


2


 − 1
(cosh 2ω̄t − 1),

4h2
〈
Ĵ 2

x

〉 � 1 − h

2


2


 − 1
(cosh 2ω̄t − 1),

4h2〈Ĵ 2
y

〉 � h

2
(2 − 
 + 
 cosh 2ω̄t), (39)

4h2
〈
Ĵ 2

z

〉 � h

2(
 − 1)
[
(cosh 2ω̄t + 1) − 2] ,

4h2〈{Ĵy,Ĵz}〉 � −h

√


 − 1
sinh 2ω̄t.

Figure 7 shows that these expressions provide an accurate
account of the short-time dynamics of the system: Eqs. (39)
predict a fast exponential growth of 〈Ĵ 2

y,z〉, while the system
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FIG. 7. (Color online) Comparison between the exact Bose-
Hubbard (BH) result (dashed lines) and the analytic expressions in
Eq. (39) (solid lines) for 
 = 4. The number of particles is N = 200.
The initial state is �π/2,π . The dotted line marks the breaking of the
parabolic approximation and is given by Eq. (42).

remains mostly coherent, which agrees well with the full Bose-
Hubbard calculation. The results suggest that the evolution
of this state will produce much larger squeezing, as we will
quantify in the following, than in the case of the (π/2,0) state,
where 4h2〈Ĵ 2

y,z〉 ∼ h. In fact, it will be during this short-time
evolution that the system will build its maximum coherent
squeezing. Therefore, the simple analytical predictions pro-
vide a powerful tool to characterize the way squeezing is
produced in the system.

In contrast with the (π/2,0) case, now |ψ
(z,t)|2 gets
broader in z space during the time evolution. Thus, the
simplified model should break down whenever the extent of
the wave packet is comparable to the size of the allowed
range for z:

√
〈z2〉 � 1, or when the momentum p̂z = −ıh∂z

is larger than the maximum possible, due to the underlying
discretization √

〈p̂2
z 〉 ≡

√
〈(−h2∂z2 )〉 � 1/2. (40)

A good estimate of the time when the parabolic approximation
breaks down is obtained from

φ2(tmax) � 1/h, (41)

and thus

tmax � 1

4ω̄
ln

(
8N




)
. (42)

This time predicts correctly why the parabolic approximation
breaks down at earlier times as 
 is increased.

0 0.1 0.2 0.3 0.4 0.5
t/t

Rabi

π/8

π/4

3π/8

β M
 (

ra
d.

)

Λ=4

Λ=2

Λ=1.4

FIG. 8. (Color online) Angle for maximal squeezing obtained
from the Bose-Hubbard simulation (dashed lines) and the expression
(19) with the ones in Eq. (39) (solid lines). The dotted lines mark the
breaking of the parabolic approximation for each 
 [Eq. (42)]. The
number of particles is N = 200.

The evolution of the many-body state is presented in
three snapshots of its Husimi distribution in Figs. 5(d), 5(e),
and 5(f) for 
 = 2. As seen in Fig. 5, a very different behavior
is found in comparison with the evolution of the (π/2,0) state.
In this case, the distribution becomes ellipsoidal, as expected
from the nonzero values of 〈{Ĵy,Ĵz}〉, but does not rotate with
time.

1. Squeezing in the initial evolution

As discussed above, in this case there is an exponential
growth of 〈Ĵ 2

y,z〉 for t � tmax. This feature makes this configura-
tion very relevant for the purpose of producing highly squeezed
states along a specific direction. Inserting the semiclassical
expressions given in Eq. (30), we get

tan 2βM � −2

√

 − 1


 − 2
coth(ω̄t), (43)

which for t � tmax reproduces the angle obtained with the full
Bose-Hubbard calculation, as seen in Fig. 8. The angle at
which the squeezing is maximal is initially π/4 regardless of
the interaction at which the evolution is performed. Different
values of 
 produce evolutions in which either the angle
grows or decreases at short times. From Eq. (43), retaining
contributions linear in t , we get

βM = π

4
− 1

2
(2 − 
)t. (44)

Two important features seen in Fig. 8 are well captured by these
expressions: (a) Eq. (44) predicts the angle to grow (decrease)
with time for 
 < (>)2, (b) the value 
 = 2 is predicted to
have an almost constant angle of maximal squeezing for 1/4 of
the Rabi time, also confirmed in the Bose-Hubbard calculation.

The usefulness of the squeezing for the improvement of
interferometric measurements is characterized by the two
squeezing parameters introduced in Eqs. (12) and (13) and their
generalizations in Eqs. (15) and (16). In Fig. 9, we depict both
ξ 2
N ;βM

and ξ 2
S;βM

computed along the direction of best squeezing
defined in Eq. (43). We compare the results obtained with
either initial conditions considered in the article, �π/2,0 and
�π/2,π . As can be seen in the figure, starting from the �π/2,π

the dynamically attainable coherent spin-squeezing parameter
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FIG. 9. (Color online) (Left) Coherent spin-squeezing parameter ξ 2
S;βM

computed in the direction of maximal squeezing as a function of
time. The dotted lines mark the breaking of the parabolic approximation [Eq. (42)]. (Right) Number-squeezing parameter ξ 2

N ;βM
computed in

the direction of maximal squeezing as a function of the spin coherence α2. The upper and lower panels correspond to the initial states �π/2,0

and �π/2,π , respectively. Dashed lines are Bose-Hubbard calculations, while the solid lines are obtained using Eqs. (30) and (39).

is much smaller than the attainable one from the �π/2,0 state.
ξ 2
S remains smaller than one for up to 0.4 tRabi for 
 = 2. The

speed of coherent spin squeezing ∂ξ 2
S;βM

/∂t at the angle of best
squeezing is seen to be equal when starting from any of the
two states

∂ξ 2
S;βM

∂t
= −2
. (45)

The maximal coherent squeezing obtained for the (π/2,π )
case is obtained at the time when the parabolic approximation
breaks down, as seen clearly in Fig. 9. At this time scale, we
have tan 2βM � −2

√

 − 1/(
 − 2) and

ξ 2
S,βM

(tmax) = 2

√
2

N

. (46)

VI. COMPARISON TO STANDARD SQUEEZING
PROCEDURES

In Secs. IV and V, we have presented two methods
of producing spin-squeezed states. The first builds on the
evolution of the initial state in the vicinity of a semiclassical
stable point. The second one profits from the presence of a
bifurcation in the semiclassical description. In both cases,
we have presented simple formulas which quantify how the
coherent spin squeezing evolves with time. In this section, we
will compare these two methods to standard ones: adiabatic
squeezing and diabatic Kitagawa-Ueda [11] one-axis twisting.

A. Adiabatic spin squeezing

This is the maximum spin squeezing that can be obtained
in the ground states by adiabatically varying the parameters of
the Bose-Hubbard Hamiltonian. Experimentally, one is limited
in the variation of the atom-atom interaction but can vary the
linear coupling between the two wells by ramping the potential
barrier [6]. In our model, the ground states are determined by
the Schrödinger equation in Eq. (23). For the range of values
of 
 to be considered, the parabolic approximation is again

sufficient, so that for a given 
 the ground state is

ψGS(z) = 1[
πb2

GS

]1/4 e−z2/(2b2
GS) (47)

with b2
GS = 4h/ω = (2h)/

√
1 + 
 − h. Retaining terms lin-

ear in h,

α � 1 + h − h

2
√

1 + 

,

(48)

ξ 2
N ;GS � 1√

1 + 

,

and thus

ξ 2
S,GS(
) = 1√

1 + 


[
1 − 2h + h√

1 + 


]
. (49)

B. One-axis twisting

One-axis twisting (OAT) was proposed by Kitagawa and
Ueda [11]. Their Hamiltonian is HKU = h̄χĴ 2

z . Compared to
Bose-Hubbard, this implies that their J = 0 and χ = U . They
worked with time tKU in “time units,” whereas here we express
time t in units of 1/J . To have more compact expressions, they
introduced μ ≡ 2χtKU: in our notation

μ = 2UtKU = 2U
1

J
t = 4

N

t. (50)

Since we are here studying squeezings for times of the order of
the Rabi time, and N � 1, this means that in our applications
μ will always be small.

The initial state considered was �(π/2,0) [similar results
are obtained for the �(π/2,π )] so that the spin remains aligned
along the x axis: 〈Ĵy〉 = 〈Ĵz〉 = 0, while

〈Ĵx〉 = N/2 cosN−1(μ/2). (51)

For small times, this simplifies to

α = 2h〈Ĵx〉 � 1 − 2h
2t2, (52)
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FIG. 10. (Color online) Maximum attainable coherent spin
squeezing (upper panel) and the time when this maximum value
is obtained (lower panel) as a function of the number of atoms
N . We compare the methods described in Secs. IV and V with the
adiabatic squeezing [Eq. (49)] (dotted-dashed lines) and the one-axis
twisting of Ref. [11] by means of Eqs. (54) and (50) (solid lines). The
exact Bose-Hubbard calculations corresponding to the initial states
(π/2,0) and (π/2,π ) are plotted as triangles and squares, respectively.
Analytic formulas obtained for the (π/2,π ) [Eqs. (46) and (42)] are
plotted in dotted lines. Analytic expressions for the (π/2,0) case, the
ratio of Eqs. (32) and (33) and the relation above Eq. (32) which
defines the corresponding time, are plotted as dashed lines. Note that
the plots are made for a fixed value 
 = 20.

which is the same result found when we expand the semi-
classical approximation to 〈Ĵx〉 given in Eq. (30). For longer
times, in OAT, the angle for maximal squeezing was found
to be [11] βM,OAT = 1

2 arctan(B/A) with A = 1 − (cos μ)N−2

and B = 4 sin μ

2 (cos μ

2 )N−2. The minimum variance in the
(y,z) plane is given by

V− = N

4

{[
1 + 1

4
(N − 1)A

]
− 1

4
(N − 1)

√
A2 + B2

}
(53)

so that

ξ 2
S,OAT = (4/N)V−

cos2(N−1)(μ/2)
. (54)

The comparison with the OAT is especially relevant as it
corresponds to the limit U � J of the BH Hamiltonian (1).

C. Maximal squeezing and scaling properties

In Fig. 10, we compare the maximum attainable coherent
spin squeezings according to the different methods, consid-
ering a fixed value of 
. First, we note that the N scaling of
the maximum attainable squeezing starting from the �(π/2,0)
state saturates to ξ 2

S � 1/(1 + 
), with small 1/N corrections

as predicted in Eq. (32). This is similar to the adiabatic case,
which also saturates, albeit to a higher value ξ 2

S � 1/
√

1 + 
.
The large-N behavior of the coherent spin squeezing

achieved from the �(π/2,π ) state is, however, different. The
large-N scaling of the maximum coherent spin squeezing in
this case is closer to the one obtained from the one-axis twisting
method ξ 2

S ∼ N−2/3, as seen in Fig. 10 for 
 = 20. In this case,
the falloff predicted by Eq. (46) is ξ 2

S ∝ (N
)−1/2, in good
agreement with the BH results. Two important differences
appear, however. The first one is that these large squeezings
are achieved at very early times in the evolution of the system
(see lower panel of Fig. 10). Second, as shown in Eq. (45),
the parameter 
 provides control on the speed of coherent
spin squeezing in the system. As seen in Fig. 10, the time
for maximal squeezing obtained from the BH calculation
is well reproduced by Eq. (42), showing that the source of
coherent squeezing in the systems is essentially the inflationary
parabolic evolution described in Sec. V.

Finally, let us note that the present results for the time
evolution of the (π/2,0) and (π/2,π ) initial states are for
moderate 
 = NU/(2J ) values, i.e., with J �= 0. In the

 � 1 limit, the dynamics is the same in both cases and,
as expected, agrees with that of the OAT. Thus, our results are
relevant as they quantify the effects of the linear coupling J

on the maximum coherent spin squeezing achievable with the
considered states.

VII. SUMMARY AND CONCLUSIONS

We have studied the formation of squeezed states in the
quenched evolution of coherent initial states of ultracold atoms
trapped in double-well potentials. The system is initially pre-
pared in either the (π/2,0) or (π/2,π ) coherent states, which
in turn correspond to the ground state of the noninteracting
system or its highest excited state, respectively.

Simple analytical formulas have been derived which cor-
rectly describe (a) the dynamics of the system for a broad range
of repulsive interactions and (b) the formation of squeezed
states in the initial time evolution. Expressions are given
for the angle of maximal squeezing and the magnitude of
the squeezing. The semiclassical model provides a mapping
relating the dynamical evolution of the many-body states
considered to the dynamics of a particle evolving on a parabolic
potential in the Fock space. Within this picture, the evolution of
the �(π/2,0) state corresponds to that of a Gaussian wave packet
in the presence of a confining parabolic potential, and simple
periodic formulas describe the time evolution of the relevant
magnitudes. The evolution of the �(π/2,π) state is mapped, for
short times, onto the motion of a wave packet in a repulsive
parabolic potential. In the second case, we have shown that the
squeezing of the many-body state can be much larger than the
maximum squeezing obtained in the first case, thus providing a
promising experimental resource for coherent spin squeezing.
We have compared the maximum attainable squeezing to
the adabatic and to the Kitagawa-Ueda OAT. We find that
the large-N scaling of the maximum coherent squeezing in the
�(π/2,π) case is similar to OAT, but with the advantage that
the linear coupling 
 allows us to control the speed at which
the squeezing develops in the system. In the experimentally
relevant situation where one is limited by the nonlinearity
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in the system, this allows us to accelerate the generation of
squeezing in the system. The two initial conditions considered
are within reach experimentally in internal bosonic Josephson
junctions [8]. We therefore expect that the findings reported
here will be checked against new experiments soon.
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APPENDIX: EXPECTATION VALUES OF Ĵi AND Ĵ2
i

First note that the action of the spin operators Ĵi and Ĵ 2
i on

the general state |�〉 of Eq. (3) gives

〈k,N − k|Ĵx |�〉 = 1
2 [bk ck+1 + bk−1 ck−1],

〈k,N − k|Ĵy |�〉 = i
2 [bk−1 ck−1 − bk ck+1], (A1)

〈k,N − k|Ĵz|�〉 = 1
2 [2k − N ]ck

and

〈k,N − k|Ĵ 2
x |�〉 = 1

4

[
bkbk+1 ck+2 + [

b2
k + b2

k−1

]
ck

+ bk−1bk−2 ck−2
]
, (A2)

〈k,N − k|Ĵ 2
y |�〉 = − 1

4

[
bkbk+1 ck+2 − [

b2
k + b2

k−1

]
ck

+ bk−1bk−2 ck−2
]
,

〈k,N − k|Ĵ 2
z |�〉 = 1

4 (2k − N )2ck

×〈k,N − k|Ĵy Ĵz + ĴzĴy |�〉

= i

(
2k − N − 1

2
bk ck+1 − 2k − N + 1

2
bk−1 ck−1

)
,

(A3)

where bk = √
(k + 1)(N − k). We will assume that the states

� are such that either their ck vary smoothly (when the initial
state is �π/2,0), or it is their (−)kck that vary smoothly (when
the initial state is �π/2,π ). Also, we assume that the number
of atoms is large, h = 1/N 	 1. This allows us to introduce a
continuous variable x and a continuous function ψ(x) such that
ψ(x = k/N) = √

Nck or
√

N (−)kck [21,30–32]. The factor√
N guarantees that

∑N
0 |ck|2 = 1 becomes

∫ 1
0 dx|ψ(x)|2 = 1

in the large-N limit. With these notations and using b(x) =√
(x + h)(1 − x),

c∗
k〈k,N − k|Ĵx |�〉 = ±1

2
ψ∗(x)[b(x) ψ(x + h) + b(x − h) ψ(x − h)〉],

c∗
k〈k,N − k|Ĵy |�〉 = ± i

2
ψ∗(x)[b(x − h) ψ(x − h) − b(x) ψ(x + h)], (A4)

c∗
k〈k,N − k|Ĵz|�〉 = 1

2
ψ∗(x)(2x − 1) ψ(x),

c∗
k〈k,N − k|Ĵ 2

x |�〉 = N

4
ψ∗(x){b(x)b(x + h) ψ(x + 2h) + [b(x)2 + b(x − h)2]ψ(x) + b(x − h)b(x − 2h) ψ(x − 2h)},

c∗
k 〈k,N − k|Ĵ 2

y |�〉 = −N

4
ψ∗(x){b(x)b(x + h) ψ(x + 2h) − [b(x)2 + b(x − h)2] ψ(x) + b(x − h)b(x − 2h) ψ(x − 2h)},

c∗
k 〈k,N − k|Ĵ 2

z |�〉 = N

4
ψ∗(x)(2x − 1)2ψ(x), (A5)

c∗
k〈k,N − k|Ĵy Ĵz + ĴzĴy |�〉 = ± i N

2
ψ∗(x) [(2x − h − 1)b(x) ψ(x + h) − (2x + h − 1)b(x − h) ψ(x − h)] ,

(A6)

where the sign is + (−) for states close to �π/2,0 (�π/2,π ). No approximation has yet been made. Now, we expand these
expressions in powers of h = 1/N up to order h2, introduce the variable z = 2x − 1, and change ψ(x) → √

2 ψ(z) to fulfill∫ 1
−1 dz|ψ(z)|2 = 1. In the large-N limit, by replacing the sum over k by an integration over z times N/2 one finds

h〈�|Ĵx |�〉 � ±
∫ 1

−1
dz ψ∗(z)

[(
h2(−1 − z2)

4(1 − z2)3/2
+ h

2
√

1 − z2
+

√
1 − z2

2

)
ψ(z) − h2z√

1 − z2
ψ ′(z) + h2

√
1 − z2ψ ′′(z)

]
,

h〈�|Ĵy |�〉 � ±
∫ 1

−1
dz ψ∗(z)

[(
ih2z

2(1 − z2)3/2
− ihz

2
√

1 − z2

)
ψ(z) − 2

(
− ih2

2
√

1 − z2
+ ih(−1 + z2)

2
√

1 − z2

)
ψ ′(z)

]
,

h〈�|Ĵz|�〉 =
∫ 1

−1
dz ψ∗(z) zψ(z),
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h2〈�|Ĵ 2
x |�〉 �

∫ 1

−1
dz ψ∗(z)

[(
h

2
+ 1

4
(1 − z2) + 2h2(−2 + z2)

8 − 8z2

)
ψ(z) − 2h2zψ ′(z) + h2(1 − z2)ψ ′′(z)

]
,

h2〈�|Ĵ 2
y |�〉 �

∫ 1

−1
dz ψ∗(z)

[
h2(−2 + z2)

4(−1 + z2)
ψ(z) + 2h2zψ ′(z) + h2(−1 + z2)ψ ′′(z)

]
,

h2〈�|Ĵ 2
z |�〉 =

∫ 1

−1
dz |ψ(z)|2 z2

4
, (A7)

h2〈�|{Ĵy,Ĵz}|�〉 � ±
∫ 1

−1
dz ψ∗(z)

[(
ih

2
√

1 − z2
− ih2(−1 + 2z2)

2(1 − z2)3/2

)
ψ(z) − 2

(
ih2z

2
√

1 − z2
+ 1

2
ihz

√
1 − z2

)
ψ ′(z)

]
.

Note that this approximation still fulfills

〈�|Ĵ 2
x + Ĵ 2

y + Ĵ 2
z |�〉 = N

2

(
N

2
+ 1

)
. (A8)
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