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Echoes and revival echoes in systems of anharmonically confined atoms
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We study echoes and what we call “revival echoes” for a collection of atoms that are described by a single
quantum wave function and are confined in a weakly anharmonic trap. The echoes and revival echoes are
induced by applying two successive temporally localized potential perturbations to the confining potential,
one at time t = 0, and a smaller one at time t = τ . Pulselike responses in the expectation value of position 〈x(t)〉
are predicted at t ≈ nτ (n = 2,3, . . .) and are particularly evident at t ≈ 2τ . While such echoes are familiar
from previous work, a result of our study is the finding of revival echoes. Revivals (but not echoes) occur even
if the second perturbation is absent. In particular, in the absence of the second perturbation, the response to the
first perturbation dies away but then reassembles, producing a response at revival times mTx (m = 1,2, . . .). The
existence of such revivals is due to the discreteness of the quantum levels in a weakly anharmonic potential,
and has been well studied previously. If we now include the second perturbation at t = τ , we find temporally
localized responses, revival echoes, both before and after t ≈ mTx [e.g., at t ≈ mTx − nτ (prerevival echoes) and
at t ≈ mTx + nτ , (postrevival echoes)] where m and n are 1,2, . . .. One notable point is that, depending on the
form of the perturbations, the “principal” revival echoes at t ≈ Tx ± τ can be much larger than the echo at t ≈ 2τ .
We develop a perturbative model for these phenomena, and compare its predictions to the numerical solutions
of the time-dependent Schrödinger equation. The scaling of the size of the various echoes and revival echoes
as a function of the symmetry of the perturbations applied at t = 0 and t = τ , and of the size of the external
perturbations is investigated. The quantum recurrence and revival echoes are also present in higher moments of
position, 〈xp(t)〉, p > 1. Recurrences are present at t ≈ mTx/j , and dominant prerevival and postrevival echoes
occur at fractional shifts of τ [i.e. t ≈ (mTx ± τ )/j ] where the m = 1,2, . . . and the integer values of j are
determined by p. Additionally, we use the Gross-Pitaevskii equation to study the effect of atom-atom interactions
on these phenomena. We find that echoes and revival echoes become more difficult to discern as the size of the
second perturbation is increased and/or as the atom-atom interactions become stronger.
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I. INTRODUCTION

In both classical and quantum systems with nonlinearity,
a distribution of oscillation frequencies leads to dephasing of
the response to a temporally localized system perturbation
and to damping in physical observables of the response.
After this response damps away, application of another
external perturbation can induce subsequent buildup of phase
coherence, causing later temporally localized responses, called
echoes. Examples have been investigated in nuclear magnetic
resonance (spin echoes) [1], coupled oscillators [2], plasma
physics [3–5], cavity quantum electrodynamics [6,7], and
cold-atom systems [8–13]. Additionally, in quantum mechan-
ical systems another phenomena, the so called revivals due to
the discreetness of the energy eigenstates, can occur [14–16].
Revivals are also present in systems with a Jaynes-Cummings-
type interaction, and have been studied both theoretically
[17,18] and experimentally in trapped-ion [19], cavity QED
[20], and circuit QED [21] systems. In particular, revivals are
macroscopic responses that can result due to reconstruction of
phase coherence in the absence of the second perturbation.

*mherrer1@umd.edu

Previous work has investigated, both experimentally and
theoretically, revival [14] and echo phenomena in trapped
atomic systems induced by changes in depth [8] or translations
of [10,11] the confining potential.

Here we consider echo phenomena induced by two impul-
sive successive external perturbations applied to a collection
of atoms in a weakly anharmonic trap. For example, the type
of external perturbation that we consider in most detail is the
application of two translations to the trapping potential, one at
time t = 0 and a smaller translation at time t = τ . We study
the response of the expectation value of position 〈x(t)〉. In the
case of a Bose-Einstein condensate confined by the pondermo-
tive force of a laser beam, translations of the potential can be
realized by switching of the laser beam position or by a change
in phase of two interfering beams [10]. As in previous work
[8,10,11], this method results in the creation of echoes (e.g.,
at t ≈ 2τ ) and in the quantum mechanical revival described
in [14–16] at, for example, t ≈ Tx . In addition, however, we
also find quantum “revival echoes” occurring both before
and after the revival (e.g., at t ≈ Tx ± τ and t ≈ Tx ± 2τ ).
Furthermore, we find that these revival echoes can have much
larger amplitudes than, say, the echo at t ≈ 2τ (conditions
for this to be the case are discussed in Sec. III). In Sec. II
we develop a quantum mechanical perturbative model (in the
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limit of small anharmonicity and small second displacement)
for echoes and revival echoes. We then compare these results to
the numerically solved time-dependent Schrödinger equation.
We study the behavior of echoes and revival echoes at different
choices of anharmonicity and time delay τ , as well as how
the size of the various echoes scale with the size of the
external perturbations. In Sec. III we discuss what effect
the spatial symmetry of the external stimuli has on the echo
phenomena, in particular the echoes’ relative sizes. In Sec. IV
the quantum recurrence and revival echoes are investigated in
higher moments of position, 〈xp(t)〉, p > 1. Recurrences are
present at t ≈ mTx/j , and dominant prerevival and postrevival
echoes occur at fractional shifts of τ [i.e., t ≈ (mTx ± τ )/j ]
where m = 1,2, . . . and the integer values of j are determined
by p. Lastly, we model atom-atom interactions in our system
using the Gross-Pitaevskii equation and study the effect of
interactions on the revival echo phenomena (Sec. V).

The previous references most closely related to our work
are Refs. [8–13] on echoes in systems of confined atoms,
none of which find our revival echoes. Reference [8] presents
a theoretical treatment of echoes in confined cold atoms
induced by successive changes in the depth of the confining
potential. Reference [9] theoretically and numerically studies
the echo phenomena in a Bose-Einstein condensate where
the dephasing is reversed with an external optical potential.
Reference [10] reports on experimental observations of echoes
induced by sudden shifts of the potential well realized by
changing the relative phasing of interfering laser beams,
while Ref. [11] experimentally and numerically compares the
effectiveness of translations with different temporal profiles
in creating echoes. Reference [12] experimentally observes
an echo in a collection of trapped atoms induced by applying
a short microwave π pulse, where the echo is measured via
Ramsey spectroscopy. Reference [13] numerically implements
a Bose-Hubbard model to describe a collection of atoms in an
optical lattice and their echo response to pulses of radiation in
the presence of atom-atom interactions.

II. MODEL AND NUMERICAL RESULTS

We begin by looking at echo phenomena present in the
absence of atom-atom interactions. We study the quantum
evolution of an initially Gaussian state in a weakly anharmonic
one-dimensional trap,

i
∂

∂t
ψ = (H0 + H1)ψ, (1)

H0 = −1

2

∂2

∂x2
+ 1

2
x2, (2)

H1 = 1

4
βx4, (3)

where β quantifies the anharmonicity of the trap, with β � 1.
We use harmonic units, x = x̄/(

√
h̄/mω0), t = ω0 t̄ , where x̄

and t̄ are the unnormalized units, ω0 is the frequency of the
harmonic oscillator, and m is the mass. The procedure will be
the following.

(i) Begin with a Gaussian wave packet centered x = 0.
(ii) At t = 0 translate the state by an amount d1, x →

x + d1.
(iii) At t = τ translate the state again in x by an amount d2.

In Sec. III we will discuss another type of perturbation that
is not a translation and we will find that the spatial symmetry
of the perturbations can have important effects. In order to
most clearly stimulate echoes, revivals, and revival echoes, we
will initially take d2 � 1. We first seek the frequencies ωn of
our anharmonic Hamiltonian, H = H0 + H1, for H1 (i.e., β)
small. Expanding ωn to second order in β, we write

ωn = ω(0)
n + δω(1)

n + δω(2)
n . (4)

The corrections to the frequencies are conveniently calculated
using the creation/annihilation formalism of the harmonic
oscillator.

x̂ =
√

1
2 (â† + â), (5)

p̂ = i

√
1
2 (â† − â), (6)

â|n〉 = √
n|n − 1〉, (7)

â†|n〉 = √
n + 1|n + 1〉. (8)

Taking H1 = (β/16)(â† + â)4, perturbation theory [22]
yields

δω(1)
n = 〈n|H1|n〉 = β

16
[3 + 6n(1 + n)], (9)

δω(2)
n =

∑
k �=n

|〈n|H1|k〉|2
(n + 1/2) − (k + 1/2)

(10)

= β2

256

{
[2n(1 − 2n)2(n − 1)]	(n − 2) +

[
1

4
n(n3 − 6n2

+ 11n − 6)

]
	(n − 4) − 2(2 + 3n + n2)(3 + 2n)2

− 1

4
(2 + 3n + n2)(n2 + 7n + 12)2

}
, (11)

where H0|n〉 = ω(0)
n |n〉 defines the state |n〉 of the unperturbed

harmonic oscillator, and 	(n) = 1 for n � 0 and 	(n) = 0 for
n < 0. The position translations described in the procedure can
be implemented using the unitary translation operator,

T (d) = exp[−ip̂d], (12)

where d is the displacement size, d = d1 or d = d2. The matrix
elements of this operator in the harmonic oscillator basis are

〈m|T (d)|n〉 = exp

[
−γ 2

2

] n∑
q=0

(−γ )qγ m−n+q
√

n!
√

m!

(m − n + q)!(n − q)!q!

×	(m − n + q), (13)

where γ = d/
√

2. There are two special cases of Eq. (13) that
will be useful in our analysis. The first is the displacement
of the harmonic oscillator ground state |n〉 = |0〉 (a Gaussian
wave packet centered at x = 0),

〈m|T (d)|0〉 = exp

[
−γ 2

2

]
γ m

√
m!

≡ exp

[
−γ 2

2

]
C(m,γ ),

(14)

where C(m,γ ) = γ m/
√

m!. This expression is the well-known
coefficient for a coherent state formed by displacing the
harmonic oscillator ground state.
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The second useful expression is the case when γ
√

n � 1.
In this case, we can approximate the matrix element as

〈m|T (d)|n〉 = exp

[
−γ 2

2

] [
δm,n + δm,n+1γ

√
n + 1

− δm,n−1γ
√

n	(n − 1) − δm,nγ
2n	(n − 1)

+ δm,n+2

2
γ 2

√
(n + 1)(n + 2)

+ δm,n−2

2
γ 2

√
n(n − 1)	(n − 2) + O(γ 3)

]
(15)

noting that small displacements predominantly excite nearby
states.

We first consider the response of the system due to an initial
displacement at t = 0. Beginning with the harmonic oscillator
ground state (|ψ〉 = |0〉) at t = 0, we apply a displacement d1.
Using the described approximations for the frequencies and
approximating the eigenstates as the unperturbed states |n〉 for
a time 0 < t < τ the quantum state is

|ψ(t < τ )〉 = exp

[
−γ 2

1

2

] ∑
n

C(n,γ1) exp[−iωnt]|n〉. (16)

After the displacement d1, the probability of being in the nth
state is exp[−γ 2

1 ]C(n,γ1)2, a Poisson distribution with mean,

n̄ = γ 2
1 , (17)

and variance

σ 2
n = n̄ = γ 2

1 . (18)

(Physically, the value of n̄ is given as the classical energy
over the harmonic oscillator frequency, ω0 = 1, n̄ = (p2/2 +
x2/2)/ω0 = d2

1/2 = γ 2
1 .)

The response of the system, as measured by the expectation
value, 〈ψ |x|ψ〉, is given by

〈x(t)〉
2A2/

√
2

=
∞∑

n=0

C(n)C(n + 1)
√

n + 1 cos[(ωn+1 − ωn)t],

(19)

where for notational clarity we have dropped γ1 in the
argument of C(n) = C(n,γ1), and A = exp[−γ 2

1 /2].
For comparison, we obtained numerical solutions of the

Schrödinger equation using a split-step operator method [23].
Figure 1(a) shows a plot of 〈x(t)〉 versus t obtained by
numerical solution of the Schrödinger equation in the absence
of the second displacement. We see from Fig. 1(a) that the
displacement at t = 0 leads to a fast oscillatory response whose
envelope decays to small values by t ∼ 1500. At longer time,
the response reassembles with its envelope reaching a peak
value at the “revival time” Tx

∼= 8625. This revival of the
response has been called a quantum revival or recurrence.
(Note that in Fig. 1 the fast oscillations are not visible because
the thickness of the line that is plotted exceeds the period
of the fast oscillations.) Figure 1(b) plots the value of 〈x(t)〉
calculated from Eq. (19) with Eqs. (4), (9), and (11) used for
the frequencies. We note very good agreement between the
model and the numerical solution.
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FIG. 1. (Color online) (a) 〈x(t)〉 found through numerical solution
of the Schrödinger equation for a system with only one initial
displacement at t = 0, β = 0.001, d1 = 5. (b) 〈x(t)〉 found through
the perturbative model, for the same parameters as (a). Note good
agreement between the model and the numerical solution.

As we now verify, this term includes the well-known
quantum recurrence [14–16]. (The expression for Eq. (19) does
not capture the fractional revival described in Refs. [24,25].
This revival is much smaller in amplitude than the large revival
at t ≈ Tx and is not visible on the scale used in Fig. 1. We have
verified that a model including O(β) corrections to the energy
eigenstates does reproduce these small fractional revivals). In
order to estimate the quantum recurrence time of 〈x(t)〉, in a
manner similar to Refs. [15,16], we expand our expression for
the frequency difference around a mean value of n, denoted by
n̄. Using Eqs. (9) and (11), the energy difference between two
adjacent states can be approximated as

ωn+1 − ωn ≈ �ωn̄ + a(n − n̄) + . . . , (20)

where

�ωn̄ = 1 + 3
4β(n̄ + 1) + β2

(
9
8 + 51

32 n̄ + 51
64 n̄2

)
(21)

a = 3
32 (8β − 17β2 − 17n̄β2). (22)

�ωn̄ is the difference in the two energies, evaluated at n̄ (and
is independent of n). We can then express cos[(ωn+1 − ωn)t]
as

cos[(�ωn̄ + a(n − n̄))t] ∼= Re{exp[i�ωn̄t]

× exp[ia(n − n̄))t]}. (23)

In the vicinity of n̄, the oscillatory behavior is a product of
a fast oscillation at a frequency �ωn̄, which is independent
of n, and a slow oscillation, which is periodic for all n at a
period 2π/a. Thus the envelopes are periodic at times t = mTx

(m = 1,2, . . .) where

Tx = 2π

a
, (24)

which agrees with the value Tx
∼= 8625 estimated by inspec-

tion of Fig. 1(a).
It should also be noted that the time Tx ≈ Trev/2, where

Trev is the revival time it takes the state to come back to
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approximately its initial condition. The recurrence in 〈x(t)〉
corresponds to a mirror revival [16] (e.g., the quantum state
has reassembled as a mirror image of its initial condition on
the opposite side of the anharmonic well).

Now, including the effect of the second displacement,
the state is allowed to evolve to time t = τ , at which time

it experiences a small second displacement by an amount
d2. In order to utilize the expression in Eq. (15) we define
γ2 = d2/

√
2 and require γ2

√
n � 1. Taking as an upper bound

on n to be n̄ + 3σn, and noting that n̄ = γ 2
1 we require

γ2 � (γ 2
1 + 3γ1)−1/2. Using the expression for 〈m|T (d)|n〉 in

Eq. (15) we find

|ψ(t > τ )〉 = exp

[
−γ 2

1

2

] ∑
m,n

〈m|T (d2)|n〉C(n) exp[−iωnτ ] exp[−iωm(t − τ )]|m〉 (25)

≈ A

{ ∞∑
m=0

C(m) exp(−iωmt)|m〉 + γ2

∞∑
m=1

C(m − 1)
√

m exp[−iωm−1τ ] exp[−iωm(t − τ )]|m〉

− γ2

∞∑
m=0

C(m + 1)
√

m + 1 exp[−iωm+1τ ] exp[−iωm(t − τ )]|m〉 − γ 2
2

∞∑
m=1

C(m)m exp[−iωmt]|m〉

+ γ 2
2

2

∞∑
m=2

C(m − 2)
√

m(m − 1) exp[−iωm−2τ ] exp[−iωm(t − τ )]|m〉

+ γ 2
2

2

∞∑
m=0

C(m + 2)
√

(m + 1)(m + 2) exp[−iωm+2τ ] exp[−iωm(t − τ )]|m〉 + O(γ 3
2 )

}
, (26)

where A = exp[−(γ 2
1 + γ 2

2 )/2]. Using the expression for the
quantum state for t > τ , we can calculate the expectation value
of the position 〈x(t)〉 = 〈ψ |x|ψ〉 and order the terms in 〈x(t)〉
according to their dependence on the second displacement γ2,

〈x(t)〉 = 〈x(t)〉(0) + 〈x(t)〉(1) + 〈x(t)〉(2) + · · · . (27)

The 0th order term 〈x(t)〉(0) is the result in the absence of the
second displacement and is given by Eq. (19). Calculating the
next highest term in γ2 in our sum, we find an expression for
our first revival echo. which can be separated into two parts,

〈x(t)〉(1) = 〈x〉(1)
1 + 〈x〉(1)

−1, (28)

where

1

γ2

〈x〉(1)
1

A2/
√

2
= 2

∞∑
n=0

(n + 1){C(n)2 − C(n + 1)2}

× cos[(ωn+1 − ωn)(t − τ )], (29)

and

1

γ2

〈x〉(1)
−1

A2/
√

2
= + 2

∞∑
n=1

C(n + 1)C(n − 1)
√

n(n + 1)

×{cos[(ωn+1 − ωn)t + (ωn − ωn−1)τ ]

− cos[(ωn−1 − ωn)t + (ωn − ωn+1)τ ]}. (30)

The superscript refers to the power of γ2 (ignoring
the common dependence in the normalization constant A),
and the subscript indicates the time of the echo in units of τ

relative to t = Tx . For example, the first sum 〈x〉(1)
1 has a cosine

dependence similar to the quantum recurrence in Eq. (19),
except t has been replaced with t − τ . Thus, we expect a large
amplitude in this second term at t = τ and t ≈ mTx + τ (m �
1), which we call a postrevival echo. The second sum 〈x〉(1)

−1

has a time dependence, which again depends on the difference
of adjacent frequencies. Note however, that if we take the
spacing between adjacent energy levels to be approximately
independent of n, ωn+1 − ωn ≈ ωn − ωn−1, then cos[(ωn+1 −
ωn)t + (ωn − ωn−1)τ ] ≈ cos[(ωn+1 − ωn)(t + τ )]. Thus, we
expect the second sum to contribute to a prerevival echo at
t ≈ mTx − τ . Note that our expression for 〈x〉(1)

−1 only applies
for t > τ . Thus the m and τ values for prerevival echoes
are restricted by the requirement that mTx > 2τ (e.g., for
τ < Tx/2 we have that m � 1 is permissible).

Continuing on to 〈x(t)〉(2), we can again separate this term
by the location of the dominant echoes,

〈x(t)〉(2) = 〈x〉(2)
0 + 〈x〉(2)

2 + 〈x〉(2)
−2, (31)

where expressions for 〈x〉(2)
0 , 〈x〉(2)

2 , and 〈x〉(2)
−2 are given in

Appendix A.
With a similar argument for the time dependence of the first

order terms, approximating the spacing between levels to be
almost constant, each sum in 〈x〉(2)

0 produces a second order
response at t ≈ Tx . Likewise, the second term 〈x〉(2)

2 produces
an echo at t ≈ 2τ and and a postrevival echo at t ≈ mTx + 2τ ,
while prerevival echoes from the last term 〈x〉(2)

−2 occur at t ≈
mTx − 2τ (m � 1).

Figures 2 and 3 compare numerical solutions of the
Schrödinger Equation [Figs. 2(a,b) and Fig. 3(a)] with pre-
dictions [Figs. 2(c,d) and Fig. 3(b)] of the perturbation theory
model [i.e., Eqs. (19), (27)-(30),(A1)-(A4) for 〈x(t)〉, with
Eqs. (4), (9), and (11) for ωn] for different choices in β, τ , and
d2 parameters. In Fig. 2, 〈x(t)〉 is calculated for β = 0.001,
τ = 1499, d2 = 0.05. There is good agreement between the
numerics and the model, with the model reconstructing the
quantum recurrence at t ≈ Tx , and the echo and revival echoes
at t ≈ 2τ , t ≈ Tx − τ and t ≈ Tx − 2τ .
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FIG. 2. (Color online) (a) 〈x(t)〉 solved numerically for the full
Schrödinger equation for β = 0.001, d1 = 5, d2 = 0.05, τ = 1499.
(b) Same as (a), but zoomed in to display the smaller echoes.
(c) The model 〈x(t)〉 plotted for the same parameters. (d) Same as (c),
but zoomed in to display the smaller echoes. We note that the model
reconstructs the t ≈ Tx − τ prerevival echo, as well as the echo at
t ≈ 2τ and the prerevival echo at t ≈ Tx − 2τ .

Similarly, Fig. 3 plots 〈x(t)〉 for a larger β = 0.002 and
d2 = 0.1, and a smaller value of τ = 1200, showing more
than one quantum revival echo. There is again good agreement
between the model and the numerics in capturing the behavior
of the quantum recurrence at t ≈ mTx (m = 1,2) and the echo
and revival echoes at t ≈ 2τ , t ≈ Tx + τ , t ≈ mTx − τ , and
t ≈ mTx − 2τ (m = 1,2).

Additionally, the model indicates that one should expect
the amplitude of the prerevival echo a t ≈ Tx − τ to scale
linearly with the second displacement d2. As seen in Eq. (29)
the term 〈x〉(1)

1 is proportional to γ2 (and therefore d2) if we
ignore the weak dependence due to the normalization constant
A. Similarly, the echo at t ≈ 2τ and the prerevival echo at
t ≈ Tx − 2τ (represented by 〈x〉(2)

2 and 〈x〉(2)
−2) are expected

to increase quadratically with d2, as shown in Eqs. (A3)
and (A4) of Appendix A. We study the scaling of these echoes
using the full numerical Schrödinger equation with the choice
of β = 0.001, τ = 1899, d1 = 5, and various values of d2. This
value of τ is chosen to avoid the coincidence of the t ≈ 2τ echo
and the t ≈ Tx − 2τ prerevival echo with the small fractional
revival described in Refs. [24,25]. The amplitudes of the
echoes and prerevival echoes as a function of d2 are plotted in
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x
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FIG. 3. (Color online) (a) 〈x(t)〉 solved numerically for the full
Schrödinger equation for β = 0.002, d1 = 5, d2 = 0.1, τ = 1200.
(b) The model 〈x(t)〉 plotted for the same parameters. The model
reconstructs the quantum recurrence at t ≈ mTx , as well as the echo
and revival echo responses at t ≈ 2τ , t ≈ Tx + τ , t ≈ mTx − τ , and
t ≈ mTx − 2τ (m = 1,2).

Fig. 4, and compared to the amplitude scaling predictions of the
perturbative model. We note that indeed the prerevival echo at
t ≈ Tx − τ appears to behave linearly with d2, while the echo
at t ≈ 2τ and the prerevival echo t ≈ Tx − 2τ appear to grow
quadratically, as expected. In general, the model suggests that
echoes at t ≈ nτ and revival echoes at t ≈ mTx ± nτ (m � 1,
n � 1) should have lowest-order scalings of (d2)n. (It should
be noted, however, that the scaling of very small echoes may
be affected by revivals and echoes occurring due to corrections
in the energy eigenstates.)

An approximate dependence of the prerevival echo at t ≈
Tx − τ on the first perturbation d1 can also be obtained, and can
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FIG. 4. (Color online) The amplitude of three echoes present
at different times as a function of d2 for d1 = 5, β = 0.001, τ =
1899, (t ≈ Tx − τ : circles; t ≈ Tx − 2τ : squares; t ≈ 2τ : triangles).
The solid lines are echo response amplitudes extracted from the
perturbation theory model. The dotted lines are guides to the eye
indicating linear and quadratic behavior. We note that the prerevival
echo at t ≈ Tx − τ scales linearly with d2, while the echo responses
at t ≈ 2τ and t ≈ Tx − 2τ scale quadratically.
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FIG. 5. (Color online) The amplitude of the prerevival echo at
t ≈ Tx − τ as a function of d2

1 d2 for β = 0.001, τ = 2499, and
various values of d1 (d1 = 3.5: circles; d1 = 4.0: squares; d1 = 4.5:
asterisks; d1 = 5.0: triangles; d1 = 5.5: stars; d1 = 6.0: ×’s). d2 is
allowed to vary between 0.001 � d2 � 0.07. The dotted lines are
echo amplitudes extracted from the model equations. We note that
the prerevival echo at t ≈ Tx − τ scales linearly with d2

1 d2. (Inset)
The amplitude of the revival echo as a function of d2, where lines link
simulations done at equal values of d1.

be understood by studying Eq. (29). At the time of maximal
〈x(t)〉 (in the vicinity of t ≈ Tx − τ ), one expects that for n

near n̄, the cosine terms will be approximately in phase and
only depend weakly on n. Thus, taking the cosine terms to be
roughly constant, and independent of n,

〈x〉(1)
−1 ∼ γ2 exp

[−γ 2
1

]
exp

[ − γ 2
2

]
×

∞∑
n=1

C(n + 1)C(n − 1)
√

n(n + 1) (32)

and using definitions of C(n), A, and exp[γ 2
1 ] =∑∞

n=0(γ 2
1 )n/n!, we find

〈x〉(1)
−1 ∼ γ 2

1 γ2 exp
[−γ 2

2

] ∼ γ 2
1 γ2 ∼ d2

1d2. (33)

Note that we ignore any dependence on d1 contained in the
cosine terms (arising from dependence on n̄ of the expansion
of ωn+1 − ωn, which in turn is related to d1). Figure 5 plots the
amplitude of the prerevival echo as a function of d2

1d2. Note
that echo amplitude appears to scale linearly with d2

1d2. For
comparison, in the inset we plot the amplitude as a function of
d2, where lines connect simulations with equal values of d1.

A similar procedure can be implemented for the response at
t ≈ τ and the echoes at t ≈ Tx + τ , t ≈ 2τ , and t ≈ Tx ± 2τ .
The response at t ≈ τ and the revival echo at t ≈ Tx + τ are
given by Eq. (29). Summing over the coefficient gives

〈x〉(1)
1 ∼ d2 (34)

with approximately no d1 dependence, which we numerically
verify but do not show. For the echo at t ≈ 2τ and the revival
echoes at t ≈ Tx ± 2τ , the oscillatory terms in Eqs. (A3) and
(A4) are assumed to be in phase, and the summations are done
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FIG. 6. (Color online) The amplitude of the echo at t ≈ 2τ (red,
solid) and the prerevival echo at t ≈ Tx − 2τ (blue, unfilled) as a
function of d3

1 d2
2 for, β = 0.001, τ = 1699, and various values of d1

and d2. 3.5 � d1 � 6 and 0.001 � d2 � 0.07. The dotted lines are
echo amplitudes extracted from the model equations. We note that
the t ≈ 2τ echo and the prerevival echo at t ≈ Tx − 2τ scale linearly
with d3

1 d2
2 .

over the coefficients, leading to

〈x〉(2)
2 ∼ d3

1d2
2 + O

(
d1d

2
2

)
(35)

〈x〉(2)
−2 ∼ d3

1d2
2 . (36)

Thus we expect the echoes and revival echoes to approximately
scale as d3

1d2
2 . Figure 6, which plots the echo amplitudes as

functions of d3
1d2

2 , for β = 0.001, 3.5 � d1 � 6 and 0.001 �
d2 � 0.07 and τ = 1699, confirms this expectation. (The
postrevival echo at t ≈ Tx + 2τ is the recurrence of the echo
at t ≈ 2τ . It has an amplitude very similar to the t ≈ 2τ echo
and is not shown in Fig. 6 for clarity.)

Increasing d2 to be ∼1 (where we no longer expect our
perturbative model to be valid), Fig. 7 plots the values of
〈x(t)〉 for β = 0.001, τ = 1499, d1 = 5, and different values
of d2 ranging from d2 = 0.1 to d2 = 0.5. As d2 is increased,
we see that the amplitude of the quantum recurrence at t ≈ Tx

diminishes. Further, the amplitude of the prerevival echo at
t ≈ Tx − τ is also suppressed, while the amplitude of 〈x(t)〉
increases for shorter times.

Finally, we note that from numerical experiments solving
the Schrödinger equation, at larger d1 we clearly see an
echo at t ≈ 3τ and revival echo at t ≈ Tx − 3τ . An example
illustrating this is shown in Fig. 8.

III. DEPENDENCE ON THE SYMMETRY OF THE
EXTERNAL PERTURBATIONS

In Sec. II we considered echoes and revival echoes induced
by two successive displacements of a the trapping potential
by amounts d1 and d2. For d2 small, we found that the revival
echoes at t ≈ mTx ± τ can be much larger [i.e., O(d2) as
opposed to O(d2

2 )] than the first ordinary echo (i.e., the echo
occurring at t ≈ 2τ ). A possibly significant point is that for
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FIG. 7. (Color online) 〈x(t)〉 for β = 0.001, τ = 1499, d1 = 5,
and different values of d2, (a) d2 = 0.1, (b) d2 = 0.2, (c) d2 = 0.3,
(d) d2 = 0.4, and (e) d2 = 0.5. Note that both the quantum recurrence
at t ≈ Tx and the prerevival echo at t ≈ Tx − τ are suppressed as d2

increases. Further, the amplitude of 〈x(t)〉 is larger for shorter times
as d2 increases.

small displacement d and symmetric traps, V (x) = V (−x), the
perturbation may be viewed as being antisymmetric: V (x +
d) − V (x) = d(dV/dx) + O(d2). Thus, a natural question is
whether our result for the relative sizes of the t ≈ 2τ echo and
the revival echoes at t ≈ mTx ± τ depends on the symmetry
of the stimuli. In what follows we consider this question and
show that the answer is affirmative.

We have considered a different type of perturbation at t = τ ,
which is symmetric in x, an impulse squeeze [i.e., we add a
term α2x

2δ(t − τ ) to the potential]. Taking β = 0.001 and
τ = 1299, we numerically calculate the response to an initial
shift (d1 = 5) and a small impulse squeeze (α2 = 0.005).
We display the results in Fig. 9. In this case, echoes and
revival echoes are evident in 〈x(t)〉, at t ≈ 2τ and t ≈ Tx − 2τ ,
with no responses in 〈x(t)〉 at t = τ and t ≈ Tx − τ . Model
expressions for the echoes can be found in the same manner
as in Sec. II, and predict that the t ≈ 2τ echo and t ≈ Tx − 2τ

revival echo both scale linearly with α2 (see Appendix B).
Figure 10 plots the amplitude of the echo as a function of
α2, demonstrating that the echo amplitudes depend linearly on
α2. This behavior is due to the impulse squeeze only exciting
states of like parity (e.g., the impulse squeeze acting on an even
eigenstate only excites the other even eigenstates). Note that
unlike our result in Sec. II, the first 〈x(t)〉 echo (i.e., at t ≈ 2τ )
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FIG. 8. (Color online) (a) and (b) 〈x(t)〉 solved numerically for
the full Schrödinger equation for β = 0.001, d1 = 8, d2 = 0.05, and
τ = 1299. Note that an echo at t ≈ 3τ and a prerevival echo at
t ≈ Tx − 3τ are clearly evident. (b) is the same as (a), plotted on
a different scale to better display the echoes.

and the first revival echo (i.e., that at t ≈ Tx − 2τ ) both scale
linearly with the strength α2 of the second perturbation. (In
fact it can be shown that all revival echoes at t ≈ mTx ± 2τ

scale linearly with α2.)

IV. QUANTUM RECURRENCES AND REVIVAL
ECHOES IN 〈x p(t)〉

Returning to the response to two successive displacements
(as in Sec. II), we now examine the behavior of the revival and
the revival echoes in the response of 〈xp(t)〉, for p � 1. For
example, if one were to measure the width of the cloud of cold
atoms, the necessary observable would be w2(t) = 〈x2(t)〉 −
〈x(t)〉2. Performing an analysis analogous to that of Sec. II
(described in detail in Appendix C), we find that quantum
recurrences (in the absence of the second perturbation) are
to be expected at fractional times of t = Tx . In particular,
for the observable 〈xp(t)〉, recurrences are expected at times
t ≈ mTx/j with m � 1. The values of j are contingent on
whether p is even or odd; for p even: j = 2,4, . . . ,p, and for
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FIG. 9. (Color online) 〈x(t)〉 solved numerically for the full
Schrödinger equation with a displacement at t = 0 (d1 = 5), and
an impulse squeeze at t = τ = 1299 (α2 = 0.005). Notice there is
no response at t = τ or a prerevival echo at t ≈ Tx − τ . An echo
at t ≈ 2τ and a prerevival echo at t ≈ Tx − 2τ are evident and are
comparable in size.
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FIG. 10. (Color online) The amplitude of the echo at t ≈ 2τ (tri-
angles) and the prerevival echo at t ≈ Tx − 2τ (squares) as a function
of α2 for, d1 = 5, β = 0.001, τ = 1299, and various values of α2. The
dotted line is a guide to the eye indicating linear behavior. We note that
both echoes scale linearly with α2. The solid lines are echo amplitudes
extracted from a perturbation theory model (see Appendix B).

p odd: j = 1,3, . . . ,p. The amplitude of the recurrences is
smaller for larger values of j .

Additionally, revival echoes are also present in 〈xp(t)〉. The
dominant echoes (those that scale as d2), are also described by
our model in Appendix C. Prerevival echoes are expected at
t ≈ (mTx − τ )/j and postrevivals at t ≈ (mTx + τ )/j , where
again m � 1 and the possible values of j are different for even
and odd p; for p even: j = 2,4, . . . ,p, and for p odd: j =
1,3, . . . ,p. For example, for p = 3, recurrences are expected
at t ≈ mTx/3, as well as larger revivals at t ≈ mTx , m � 1.
Additionally there are dominant prerevival and postrevival
echoes at t ≈ (mTx ± τ )/3 and t ≈ mTx ± τ , for m � 1. The
model suggests that echoes at t ≈ nτ/j , (t � τ ), and revival
echoes at t ≈ (mTx ± nτ )/j will scale as γ n

2 .
Figures 11(a) and 12(a) display the values of 〈xp(t)〉

calculated by solving the Schrödinger equation, for p = 2,

and p = 3 after an initial shift perturbation, d1 = 5, at t = 0,
and a second shift perturbation, d2 = 0.05, at t = τ = 1499,
with β = 0.001. Displayed in solid lines are the expected times
of the quantum recurrences, and in dashed lines, the expected
times of the prerevival and postrevival echoes. For p = 2,
echoes at t ≈ 3τ/2 and t ≈ 4τ/2 are expected to be very small,
scaling as (d2)3 and (d2)4, and are not readily evident upon
examination of Figure 11(a). Regarding the scaling, as for the
p = 1 case, we note that the scaling of very small echoes may
be affected by revivals and echoes occurring due to corrections
in the energy eigenstates.

In Fig 12, the prerevival at t ≈ Tx − τ/3 is not visible
because of the large quantum recurrence at t ≈ Tx . A con-
ventional echo is expected at t ≈ 2τ , scaling as (d2)2 but is
obscured by the revival at t ≈ Tx/3. For larger values of d2,
and shorter values of τ , we have numerically observed the
t ≈ 2τ echo.

Using the model expressions described in Appendix C,
we compare the numerically calculated values of 〈x2(t)〉
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FIG. 11. (Color online) (a) 〈x2(t)〉 solved numerically for the
full Schrödinger equation for β = 0.001, d1 = 5, d2 = 0.05, and
τ = 1499. Note that recurrences are present at t ≈ Tx and t ≈ Tx/2
(solid lines). Also, prerevival echoes at t ≈ (mTx − τ )/2, m = 1,2
and a postrevival echo t ≈ (Tx + τ )/2 are evident (dotted lines).
(b) The value of 〈x2(t)〉 calculated using the model in Appendix C.

and 〈x3(t)〉 to those obtained from our model, as shown in
Figs. 11(b) and 12(b). Note that there is good agreement
between the numerics and the model. In both the 〈x2(t)〉
and 〈x3(t)〉 cases, the response is dominated by the quantum
recurrences, and the prerevival and postrevival echoes.

V. ATOM-ATOM INTERACTIONS

Finally, we include a cubic nonlinear term in the Hamilto-
nian and numerically solve for the wave function. This can be
considered as the mean-field approximation for the condensate
wave function of a Bose-Einstein condensate with interactions,
and is known as the Gross-Pitaevskii equation (GPE) [26–28],

i
∂

∂t
ψ = (H0 + H1 + Hint)ψ

(37)
Hint = u|ψ |2.
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FIG. 12. (Color online) (a) 〈x3(t)〉 solved numerically for the full
Schrödinger equation for β = 0.001, d1 = 5, d2 = 0.05, and τ =
1499. Note that recurrences are present at t ≈ Tx and t ≈ mTx/3,
m = 1,2 (solid lines). Also, prerevival echoes can be seen at t ≈
(mTx − τ )/3, m = 1,2 as well as t ≈ Tx − τ . Postrevival echoes are
evident at t ≈ (mTx + τ )/3, m = 1,2 (dotted lines). (b) The value of
〈x3(t)〉 calculated using the model in Appendix C.
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FIG. 13. (Color online) The value of 〈x(t)〉 as a function of time
with d1 = 5, d2 = 0.05, β = 0.001, τ = 2499, for various values of
u. (a) u = 0.05, (b) u = 0.10, (c) u = 0.15, (d) u = 0.20. We note
that while increasing interactions causes damping to occur faster, it
also leads to nonzero values of 〈x(t)〉 before the second kick at t = τ .
Further, as u is increased, both the quantum recurrence t ≈ Tx and
the prerevival echo at t ≈ Tx − τ are suppressed.

Here u is a nonlinear interaction strength, which quantifies
repulsive (u > 0) or attractive (u < 0) interactions in the con-
densate. Again considering echo responses to two successive
displacements (as in Sec. II) and taking d1 = 5,d2 = 0.05, τ =
2499, and β = 0.001 for various values of u, we numerically
investigate the behavior of the echoes and revival echoes. The
results are plotted in Fig. 13. As the interaction strength is
increased, we note that the damping immediately after t = 0
is increased, as compared to the u = 0 case. Additionally, for
larger values of u, the value of 〈x(t)〉 does not fully damp
away before the application of the second displacement. This
observation has been made previously for similar systems [29].
The inclusion of interactions also suppresses the quantum
recurrence at t ∼ Tx , as well as the amplitude of the revival
echo at t ∼ Tx − τ . The time at which the quantum recurrence
occurs is also shifted from the predicted value of t ≈ Tx in the
noninteracting case.

VI. SUMMARY AND CONCLUSION

In this paper, we study echoes and revival echoes for a
collection of cold atoms in a weakly anharmonic potential

subjected to two external stimuli, one at t = 0 and the other at
t = τ . In the case where the two external stimuli are sudden
displacements of sizes d1 at t = 0 and d2 at t = τ , we observe
responses in the expected value of position 〈x(t)〉, and find that
responses occur not only at t ≈ nτ , (n � 1) and at well-known
quantum recurrences at t ≈ mTx , but also at t ≈ mTx − nτ >

τ (prerevival echoes) and t ≈ mTx + nτ (postrevival echoes).
Again, in the case where the external stimuli are sudden
displacements, we have formulated a perturbation theory
model and note good agreement between our model and the
numerical results. We numerically verify that for small d2, the
revival echo at t ≈ Tx ± τ scales linearly with d2 while echoes
at t ≈ 2τ and revival echoes at t ≈ Tx ± 2τ scale as (d2)2. As
expected from our perturbative model, and seen numerically,
this scaling suggests that for a sufficiently small d2 the revival
echoes at t ≈ Tx ± τ can be substantially larger than the echo
at t ≈ 2τ . In addition, our perturbation theory model shows
that for small d1 and d2, the revival echo at t ≈ Tx − τ scales as
d2

1d2, (which we numerically verify), while the echo at t ≈ 2τ

and the revival echoes at t ≈ Tx ± 2τ scale as d3
1d2

2 (which we
numerically verify).

We numerically demonstrate the suppression of the
quantum revival t ≈ Tx and the revival echo at t ≈ Tx − τ ,
when the size of the second displacement is increased, d2 ∼ 1.
We also investigate how the echoes and revival echoes depend
on the form and symmetry of the external stimuli. One result
is that, in the case where the first stimuli is a displacement, the
domination of the size of the revival echoes at t ≈ mTx ± τ

over the echoes at t ≈ 2τ does not occur when the small
second external stimulus has different symmetry than that of
a small displacement.

The presence of quantum recurrences and revival echoes in
responses observed in higher moments of position xp was also
studied. Quantum recurrences of 〈xp(t)〉 appear at fractions of
the p = 1 revival time, t ≈ mTx/j , where m = 1,2, . . ., and
the value of j is determined by p. Revival echoes are also
present in xp, with dominant echoes (scaling as d2) at 〈xp(t)〉
at times t ≈ (mTx ± τ )/j .

Finally, the inclusion of interactions, modeled with the
Gross-Pitaevskii equation, demonstrates that the quantum
recurrence and the revival echoes are suppressed as the
nonlinear interaction strength u, is increased.

Imaging is the natural way to resolve revivals of x. Revivals
and echoes in momentum, p, may be found by a similar
calculation. In this case, these revivals and echoes may be
observed if the trap is switched off at a revival or echo time.
The cloud of atoms will move together since all atoms have
nearly the same momentum. If instead, the trap is turned off
at a time not coinciding with a revival or echo, the cloud of
atoms will simply spread.
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APPENDIX A: EXPRESSIONS FOR 〈x〉(2)
0 , 〈x〉(2)

2 , AND 〈x〉(2)
−2

Continuing the procedure outlined in Sec. II, we can find the terms in the expectation value of 〈x(t)〉 which are
quadratic in γ2. These can again be separated into the location of their dominant echoes,

〈x(t)〉(2) = 〈x〉(2)
0 + 〈x〉(2)

2 + 〈x〉(2)
−2. (A1)

The expressions for 〈x〉(2)
0 , 〈x〉(2)

2 , and 〈x〉(2)
−2 are found to be

1

γ 2
2

〈x〉(2)
0

A2/
√

2
= 2

∞∑
n=0

C(n + 1)C(n + 2)(n + 1)
√

n + 2 cos[(ωn+1 − ωn)(t − τ ) + (ωn+2 − ωn+1)τ ]

+ 2
∞∑

n=1

C(n − 1)C(n)(n + 1)
√

n cos[(ωn+1 − ωn)(t − τ ) + (ωn − ωn−1)τ ]

− 2
∑
n=0

C(n)C(n + 1)(n + 1)3/2 cos[(ωn+1 − ωn)t] − 2
∑
n=2

C(n)C(n − 1)
√

n(n − 1) cos[(ωn − ωn−1)t], (A2)

1

γ 2
2

〈x〉(2)
2

A2/
√

2
= − 2

∑
n=0

C(n)C(n + 1)(n + 1)3/2 cos[(ωn+1 − ωn)(t − τ ) + (ωn − ωn+1)τ ]

+
∞∑

n=1

C(n)C(n − 1)(n + 1)
√

n cos[(ωn+1 − ωn)t + (ωn−1 − ωn+1)τ ]

+
∞∑

n=1

C(n)C(n + 1)n
√

n + 1 cos[(ωn − ωn−1)t + (ωn−1 − ωn+1)τ ], (A3)

and

1

γ 2
2

〈x〉(2)
−2

A2/
√

2
= −2

∞∑
n=2

C(n − 2)C(n + 1)
√

n(n2 − 1) cos[(ωn − ωn−1)(t − τ ) + (ωn+1 − ωn−2)τ ]

+
∞∑

n=3

C(n)C(n − 3)
√

(n)(n − 1)(n − 2) cos[(ωn − ωn−1)t + (ωn−1 − ωn−3)τ ]

+
∞∑

n=0

C(n)C(n + 3)
√

(n + 1)(n + 2)(n + 3) cos[(ωn+1 − ωn)t + (ωn+3 − ωn+1)τ ]. (A4)

In order to get the approximate scaling for the echo at
t ≈ 2τ and the revival echo at t ≈ Tx − τ , we take the above
expressions for the echoes and take the cosine terms to be in
phase and independent of n. Doing the summations for the
coefficients, we find for 〈x〉(2)

2 ,

∞∑
n=0

C(n)C(n + 1)(n + 1)3/2 = exp
[
γ 2

1

](
γ 3

1 + γ1
)

(A5)

∞∑
n=1

C(n)C(n − 1)(n + 1)
√

n = exp
[
γ 2

1

](
γ 3

1 + 2γ1
)

(A6)

∞∑
n=1

C(n)C(n + 1)n
√

n + 1 = exp
[
γ 2

1

](
γ 3

1

)
, (A7)

and for 〈x〉(2)
−2,

∞∑
n=2

C(n − 2)C(n + 1)]
√

n(n2 − 1) = exp
[
γ 2

1

](
γ 3

1

)
(A8)

∞∑
n=3

C(n)C(n − 3)
√

n(n − 1)(n − 2) = exp
[
γ 2

1

](
γ 3

1

)
(A9)

∞∑
n=0

C(n)C(n + 3)n
√

(n + 1)(n + 2)(n + 3) = exp
[
γ 2

1

](
γ 3

1

)
.

(A10)

The factor exp[γ 2
1 ] is canceled by the γ1 dependence of A2,

leading to the d1 dependence described in Sec. II.

APPENDIX B: MODEL EXPRESSIONS FOR AN INITIAL
DISPLACEMENT, FOLLOWED BY AN IMPULSE SQUEEZE

In a manner analogous to the calculation presented in
Sec. II, the response of 〈x(t)〉 to an initial displacement at
t = 0 (d = d1) and an impulse squeeze at time τ (α = α2,
α2(n̄ + 3σn) � 1) can also be estimated. Approximating the
matrix elements of the squeeze operator in the unperturbed
anharmonic oscillator basis, we find

〈m| exp[−iα2x
2|n〉

≈ δm,n − i
α2

2
{(2n + 1)δm,n +

√
n(n − 1)δm,n−2

+
√

(n + 1)(n + 2)δm,n−2}. (B1)
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From this, the responses proportional to α2 can be calculated,

〈x〉(1) = 〈x〉(1)
2 + 〈x〉(1)

−2 (B2)

where

〈x〉(1)
2

exp
[ − γ 2

1

]
α2/

√
2

=
∞∑

n=1

C(n)C(n + 1)n
√

n + 1

× sin[(ωn − ωn−1)t + (ωn−1 − ωn+1)τ ]

+
∞∑

n=1

C(n)C(n − 1)(n + 1)
√

n

× sin[(ωn − ωn+1)t + (ωn+1 − ωn−1)τ ]

(B3)

and

〈x〉(1)
−2

exp
[ − γ 2

1

]
α2/

√
2

=
∞∑

n=0

C(n)C(n + 3)
√

(n + 1)(n + 2)(n + 3)

× sin[(ωn − ωn+1)t + (ωn+1 − ωn+3)τ ]

+
∞∑

n=3

C(n)C(n − 3)
√

n(n − 1)(n − 2)

× sin[(ωn − ωn−1)t + (ωn−1 − ωn−3)τ ]. (B4)

APPENDIX C: MODEL EXPRESSIONS FOR 〈x p(t)〉 AFTER
TWO SHIFT PERTURBATIONS

In the case of a shift perturbation d1 at t = 0, and a smaller
shift perturbation d2 at time t = τ , we derive model equations
for both the quantum recurrence, as well as revival echoes in
the quantity

〈xp(t)〉 = 〈ψ |xp|ψ〉 (C1)

for p � 1. Using the definition of x in Eq. (5) one can write the
matrix elements of xp, in the unperturbed harmonic oscillator
basis, as

〈m|xp|n〉 =
(

1√
2

)p

〈m|(â + â†)p|n〉 (C2)

=
(

1√
2

)p p∑
j=0

B(n,p − 2j,p)δm,n+p−2j (C3)

where B(n,p − 2j,p) are coefficients that can be found via
application of the annihilation and creation operators. For
example, for p = 3, the coefficients are

B(n, − 3,3) = √
n(n − 1)(n − 2) (C4)

B(n, − 1,3) = 3n
√

n (C5)

B(n,1,3) = 3(n + 1)
√

n + 1 (C6)

B(n,3,3) = √
(n + 1)(n + 2)(n + 3). (C7)

It can be shown that these coefficients obey the relation
B(n, − d,p) = B(n − d,d,p). Using Eq. (C3) and the expres-
sion for the quantum state after two displacements, Eq. (26),
one can again find the time dependence of the expectation value
of xp(t), and order the terms according to their dependence on
γ2,

〈xp(t)〉 = 〈xp(t)〉(0) + 〈xp(t)〉(1) + · · · . (C8)

The term 〈xp(t)〉(0)is again the quantum recurrence in the
absence of the second displacement and, if p is even, is given
by

〈xp(t)〉(0)

2A2(1/
√

2)p
=

p∑
j = 0
j even

∞∑
n=0

(
1 − δ0,j

2

)
C(n)C(n + j )

× cos[(ωn+j − ωn)t]B(n,j,p) (C9)

and, if p is odd,

〈xp(t)〉(0)

2A2(1/
√

2)p
=

p∑
j = 1
j odd

∞∑
n=0

C(n)C(n + j )

× cos[(ωn+j − ωn)t]B(n,j,p). (C10)

Employing the same argument for the behavior of the quantum
recurrence in Sec. II, one finds

(ωn+j − ωn) = (ωn+j − ωn+j−1) + (ωn+j−1 − ωn+j−2)

+ · · · + (ωn+1 − ωn)

≈ j�n̄ + ja(n − n̄ + q). (C11)

where q is a constant independent of n. Compared to the j = 1
case of Sec. II, the slow envelope maxima are now periodic
for all n at 2π/(ja). Thus, each cos[(ωn+j − ωn)t] will give
rise to a recurrence at time

t ≈ mTx

j
, (j � 1,m � 1). (C12)

If p is even, then the j = 0 case is a constant, which increases
the value of 〈xp(t)〉. Note that the expectation value of 〈xp(t)〉
contains recurrences not only at t ≈ mTx/p, but also at the
values of j < p as seen in Eqs. (C9) and (C10).

The expression for the revival echoes that are approximately
linear to d2 can also be found, for p even,

〈xp(t)〉(1)

2γ2(1/
√

2)pA2
= 〈xp〉(1)

0 +
p∑

j = 2
j even

{〈xp(t)〉(1)
j+ + 〈xp(t)〉(1)

j−
}
,

(C13)

and p odd,

〈xp(t)〉(1)

2γ2(1/
√

2)pA2
=

p∑
j = 1
j odd

{〈xp(t)〉(1)
j+ + 〈xp(t)〉(1)

j−
}

(C14)

where,

〈xp〉(1)
0 =

∞∑
n=0

C(n + 1)C(n)
√

n + 1 cos[(ωn+1 − ωn)τ ]

× [B(n + 1,0,p) − B(n,0,p)], (C15)
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〈xp(t)〉(1)
j+ =

∞∑
n=j

C(n − 1)C(n − j )
√

nB(n, − j,p)

× cos[(ωn−j − ωn)t + (ωn − ωn−1)τ ]

−
∞∑

n=0

C(n + 1)C(n + j )
√

n + 1B(n,j,p)

× cos[(ωn+j − ωn)t + (ωn − ωn+1)τ ], (C16)

and

〈xp(t)〉(1)
j− =

∞∑
n=1

C(n − 1)C(n + j )
√

nB(n,j,p)

× cos[(ωn+j − ωn)t + (ωn − ωn−1)τ ]

−
∞∑

n=j

C(n + 1)C(n − j )
√

n + 1B(n, − j,p)

× cos[(ωn−j − ωm)t + (ωn − ωn+1)τ ]. (C17)

The term 〈xp〉(1)
0 is a time-independent offset. The quantity

〈xp(t)〉(1)
j+ represents a postrevival echo at time t ≈ (mT x +

τ )/j . Similarly the term 〈xp(t)〉(1)
j− gives rise to a prerevival

echo at t ≈ (mTx − τ )/j , j � 1 and m � 1. As can be seen
from Eqs. (C13) and (C14), revival echoes will be present and
at various fractional shifts of τ from the different recurrences.
For example, for p = 3, recurrences are expected at t ≈ mTx

3 ,
as well as larger recurrences at t ≈ mTx , m � 1. Additionally
there are dominant prerevival and postrevival echoes at t ≈
(mTx ± τ )/3 and t ≈ mTx ± τ , for m � 1 (see Fig. 12).
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