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We study interacting bosons in a two-dimensional square bipartite optical lattice. By focusing on the regime
where the first three excited bands are nearly degenerate (i.e., the first-excited p bands in one sublattice are
nearly degenerate with the s band of the other sublattice), we derive a multi-orbital tight-binding model which
captures the most relevant features of the band structure. In addition, we also derive a corresponding generalized
Bose-Hubbard model and solve it numerically under different situations, both with and without a confining trap.
It is especially found that the hybridization between sublattices can strongly influence the phase diagrams and,
in a trap, enable even appearances of condensed phases intersecting the same Mott insulating plateaus.
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I. INTRODUCTION

The understanding that Hubbard models can be realized
with ultracold atoms in optical lattices [1] has stimulated
extensive effort to explore different aspects of quantum many-
body physics in optical lattices [2,3]. The early works focused
on the lowest-energy band and, in a pioneering experiment
by Greiner et al. [4], the Mott-superfluid transition with
ultracold bosons was observed. More recently, experimental
groups have started to probe the properties of ultracold atoms
under circumstances where the excited energy bands [5] can
no longer be ignored. This is most relevant since it has
been demonstrated that the emerging multi-orbital effects can
indeed have crucial effects also on the ground-state phase
diagrams [6]. These excited bands can become important
either when the atom-atom interactions become very large
[7–14] or when atoms are deliberately prepared in the excited
bands. Such “out-of-equilibrium–state” preparation has been
established by using accelerating lattices [15] or Raman
transitions between bands [16]. In the realm of these new
experiments, one hopes to explore the regime where metastable
excited many-body states show very different properties from
those of the ground state [17–23].

The experiment most closely relevant for our purposes is the
one by Wirth et al. [24]. Bosonic atoms were prepared in the
ground state of a bipartite optical lattice and then the lattice was
suddenly changed so that the initial ground-state–band atoms
became (quasi) degenerate with a set of other bands which
were initially separated by a large band gap. This process
drove atoms into bands with nontrivial orbital properties and
enabled the observation of superfluidity on these so-called p

bands. This experiment was followed by others [25,26] where
unconventional superfluidity was observed in the even-more-
excited f bands.

Motivated by these experiments and especially on the as-
pects of the physics when different bands become degenerate,
we study multiband bosons in a bipartite square lattice when
bands cross. Such band crossing can imply topologically
nontrivial band structures [27,28]. In principle, with the help
of artificial gauge fields, such band structures can also be
engineered on the lowest band [29,30], but they might be easier
to engineer in the excited bands were artificial gauge fields may

become unnecessary. For example, in a square bipartite lattice
the band structure can be composed of flat bands intersecting
Dirac cones which, on the one hand, have interesting analogs
with graphene physics, but the flat bands also have interesting
influences on the dynamical properties of the gas [31,32]. The
physics of Dirac fermions have been studied in square optical
lattices also in the absence of the flat band [33].

As in the experiment by Wirth et al. [24], we consider
a bipartite square lattice of deep A sites and more shallow
B sites which, however, have a higher energy offset. Under
such circumstances, the excited (localized) states in A sites
can become resonant with the ground states in B sites. When
this happens, the p bands can be strongly hybridized with
the d band. For vanishing atom-atom interaction, most of the
relevant physics is captured by a tight-binding (TB) model,
which predicts the existence of Dirac points and a flat band.
Proceeding by adding atom-atom interactions, we derive a
generalized multiband Bose-Hubbard model. We solve this
theory from weak to strong interactions as well as in a trap. The
calculated solutions reveal transitions from incompressible
Mott insulators to condensed phases, but due to different atom-
atom interactions the Mott lobes can be very dissimilar from
those predicted by the usual single-band Bose-Hubbard model.
Furthermore, the solution in a trap reveals the possibility that
condensed states in different sublattices occur in different
regions of the trap. Our findings complement some other
very recent ones, like Ref. [34] where p-band bosons in a
shallow bipartite optical lattice in terms of a nonlinear boson
model are studied, and the work [35] analyzing the band
structure renormalized by the presence of interactions and
the condensate in the broken symmetry phase. Finally, Sun
et al. [36] also derived a fermionic tight-binding model which
is quite similar to the one used by us.

The paper is organized as follows: We begin by outlining
the theory relevant for our purposes in Sec. II. In particular,
Sec. II A presents the tight-binding model to describe the
ideal gas of atoms and in Sec. II B we extend the model to
include atom-atom interactions. In Sec. III the generalized
Bose-Hubbard model is solved within the Gutzwiller ansatz
approach, and in Sec. III we discuss the solution in a harmonic
trap. We end with a few concluding remarks in Sec. IV.
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FIG. 1. (Color online) Symmetric lattice potential with V0 =
10ER over one unit cell. The parameters were chosen as ε = η = 1,
α = 0, and θ/π = 0.556. xR and yR refer to coordinate axes rotated
by π/4 with respect to the laboratory axes x̂ and ŷ. The shallow B site
is in the center while the deeper A sites are in the corners. Distance,
λ/2, between A and B sites was taken as a unit of length.

II. THEORETICAL FORMULATION

A. Ideal system

We will assume a two-dimensional lattice potential similar
to the one used in the experiments by Wirth et al. [24];

V (x,y) = −V0

4
|η{[ẑ cos(α) + ŷ sin(α)]eikx + εẑe−ikx}

+ eiθ ẑ(eiky + εe−iky)|2, (1)

where V0 is the lattice depth, k the lattice wave number, η

accounts for a small difference in the powers directed to
different interferometer branches, ε characterizes the power
reduction in the retroreflected beams due to imperfect optics,
and the angle α tunes the anisotropy introduced if ε �= 1. The
angle θ sets a relative phase between the two standing waves.
x̂, ŷ, and ẑ are the unit vectors in the respective directions.
Furthermore, the transverse ẑ direction has been reduced due
to tight confinement. We will mostly consider a symmetric
lattice with ε = η = 1, and cos(α) = ε, but since different
parameter choices can break the p-band degeneracies we
allow for such possibilities as well. In Fig. 1 we show an
example of a unit cell of this potential. Generally, the lattice
is a bipartite square lattice where the two sublattices have
lattice sites of different depths. Here we are interested in the
parameter regime where the ground state in the shallow sites is
quasiresonant with the first-excited states of the deep sites. The
resulting band structure of this regime is depicted in Figs. 2(a)
and 2(b). Here, and in the following, we scale the energies
in terms of the recoil energy ER = h̄2(2π/λ)2/(2m) of the
atoms with mass m to absorb a photon of wavelength λ. In
particular, Fig. 2 is calculated for V0 = 10ER . In this region,
the two lowest-excited p bands become degenerate with the
d band. When this happens, nontrivial band structures with
Dirac points emerge. Furthermore, one of the bands is almost

flat, suggesting that interactions play a larger role for atoms
prepared in this band.

Restricting our analysis to the three bands of Fig. 2 (i.e., the
localized ground state in the shallow B sites and the first two
excited states in deep A sites), we obtain an effective theory in
terms of three different orbitals. In the absence of an external
trap we can write the ideal gas Hamiltonian in momentum
space as

H =
∑

k

φ
†
kĤ (k)φk, (2)

where

φk =

⎡
⎢⎣

ψ̂B
s,k

ψ̂A
x,k

ψ̂A
y,k

⎤
⎥⎦ (3)

describes the three types of orbitals included in our theory.
There is an s-like orbital in the shallowB sites, ψ̂B

s,k, and p-like
x and y orbitals in the deepA sites, ψ̂A

x,k and ψ̂A
y,k, respectively.

When the energy of the s orbital in the B sites is close to the
energy of the p orbitals in the A sites, the dominant tunneling
process is the one hybridizing orbitals in different sublattices.
This involves nearest neighbors and lower barrier height for
tunneling while other tunneling processes require couplings
over larger distances and are therefore greatly suppressed.
Thus, for sufficiently deep lattices we can ignore tunnelings
within A or B sites. On the other hand, since they only involve
single-particle physics, our theory can naturally include next
nearest-neighbor tunnelings easily when those are required.

In momentum space, this results in a TB model

Ĥ (k)

=

⎡
⎢⎣

EB
s (k) −2itAB

xx sin(kx) −2itAB
yy sin(ky)

2itAB
xx sin(kx) EA

x (k) 0

2itAB
yy sin(ky) 0 EA

y (k),

⎤
⎥⎦ ,

(4)

whose parameters can be deduced from the exact band-
structure calculations (see Fig. 2). In the next section, this
model will also be given in position space. One consequence
of the hybridization can be seen in how the orbital character
of the system enters, for example, in the sine terms in the
above TB model. Hopping occurs between s and p orbitals,
which implies that the tunneling coefficient alternates signs
between neighboring sites giving rise to a sine rather than a
cosine dispersion. In order to simplify notations, we choose
our zero-energy level to be the energy of the s orbital in
the B sites. Since only nearest neighbor tunneling processes
are included, the momentum dependence disappears from the
diagonal terms and we have EB

s (k) = 0, EA
x (k) = EA

x ≡ δ/2,
and EA

y (k) = EA
y ≡ −δ/2.

We note that a somewhat related TB model was also derived
by Sun et al. [36]. However, in that model the underlying lattice
potential was different and the p orbitals were degenerate
while in our case they can be different to account for the pos-
sible anisotropy of A sites. This anisotropy was indeed an im-
portant ingredient in the experiment by Wirth et al. [24]. In the
symmetric case with δ = 0 the lowest-energy state of the TB
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FIG. 2. (Color online) Dispersions of the three lowest excited bands. (a) and (b) are numerically calculated for a lattice with V0 = 10ER ,
ε = η = 1, α = 0, and θ/π = 0.556. (a) shows the lowest excited band while (b) shows all three excited bands in the same plot. (c) and (d) are
calculated with the TB model with parameters tAB

xx = tAB
yy = 0.064 85ER and δ = 0.

model is fourfold degenerate, but this degeneracy is lifted as
soon as δ �= 0 so that the minima are only twofold degenerate.

Furthermore, in the symmetric case with δ = 0 the sine
dispersions give rise to Dirac points at the origin as well as
on the edges of the first Brillouin zone at (±π/

√
2,0) and

(0, ± π/
√

2). A nonzero detuning δ implies an effective
mass term that splits the Dirac point degeneracies. Similarly,
in graphene the relativistic electrons become massive when
the symmetry between the corresponding two triangular
sublattices is broken [27]. Contrary to graphene, rather than
having a two-level structure, the present model has three bands
and the Berry phase, as a Dirac point is encircled, vanishes.
The additional level appears as a flat band sandwiched between
the other two bands.

Ĥ (k) of Eq. (4) has the same structure as the Hamilto-
nian for a � scheme frequently occurring in light-matter–
interaction models in quantum optics, and we can directly
conclude that states of the flat band correspond to dark states
with zero energy. These eigenstates are superpositions of
p orbitals and have a vanishing amplitude of being in the
(“excited”) s state in B sites [37]. With this in mind, by
considering anisotropic lattices (tAB

xx �= tAB
yy ) we notice that

it would be possible to apply various examples of complete or
fractional stimulated Raman adiabatic passage schemes [38]
to prepare specific orbital states for the atoms. Intriguingly,
the Hamiltonian in Eq. (4) also has a clear connection to
spin-orbit–coupled systems. In the long-wavelength limit we
can expand the trigonometric functions and find that the

coupling between orbitals is linearly proportional to momen-
tum [39–41]. Usually, spin-orbit coupling in ultracold-atom
systems is generated between different atomic hyperfine states
[41,42]. Here the internal states of the atoms are not effected,
but the spin-orbit–like coupling is a band-structure effect that
occurs between different orbitals.

In Figs. 2(c) and 2(d) we demonstrate that the TB model
above is indeed a good approximation close to band degen-
eracy by comparing it with the numerically calculated band
structure [Figs. 2(a) and 2(b)]. As can be seen, for the sym-
metric lattice it reproduces the main features of the real band
structure very well. Corrections beyond nearest-neighbor hop-
ping terms is seen to give rise to higher-order variations in the
dispersions mostly clear in the flat band. The tunneling coeffi-
cients tAB

xx and tAB
yy have been extracted from the band widths

of the numerically obtained bands. While our model does
work well close to resonance, it should be kept in mind that,
generally, the real band structure is more complicated and more
tunneling processes might have to be included in the theory.

B. Interacting system

In the previous section the ideal gas theory was derived and
we now proceed by adding the atom-atom interactions. For
ultracold atoms, interactions can be well modeled by contact
interactions,

U = g

2

∫
drψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r). (5)
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In a deep lattice, the field operator ψ̂(r) is naturally expanded
in terms of the localized orbitals described by the Wannier
wave functions wA

x (x,y), wA
y (x,y), and wB

s (x,y). That is, we
truncate the Hilbert space to contain only the three most
relevant bands (i.e., the expansion is restricted to B-site s

orbitals and A-site p orbitals).
In the usual way, we limit the interaction to include

only the dominant onsite terms. The strengths of various
interactions are proportional to the scattering length, but their
relative magnitudes depend on the orbital wave functions. To
estimate these strengths we approximate the onsite orbitals
with harmonic oscillator wave functions and, in this way, can
analytically solve the integrals describing interaction between
x orbitals in A sites

Uxx = U0

∫
dxdy

∣∣wA
x (x,y)

∣∣4
, (6)

between y orbitals in A sites

Uyy = U0

∫
dxdy

∣∣wA
y (x,y)

∣∣4
, (7)

between x and y orbitals in A sites

Uxy = U0

∫
dxdy

∣∣wA
x (x,y)

∣∣2∣∣wA
y (x,y)

∣∣2
, (8)

and finally between s orbitals in B sites

UsB = U0

∫
dxdy

∣∣wB
s (x,y)

∣∣4
. (9)

We take that the remaining prefactor U0 is tunable either by
changing the lattice depth or by changing the effective scat-
tering length. In the harmonic approximation Uxy = Uxx/3.
This condition can sometimes lead to accidental degeneracies,
which are removed as soon as the condition is broken [23].
However, in this work this does not play a major role. Since
the shallow sites are wider than the deep sites, their orbitals are
also more extended. This implies that UsB is often surprisingly
close to the values of Uxx and Uyy even though these involve
wider excited-state orbitals. For concreteness, in the following
we choose the lattice depth as V0 = 10ER , in which case it
turns out that Uxx = Uyy ≈ 0.95UsB .

With the above-introduced interaction strengths, we are
now in a position to write down a many-body Hamiltonian
describing multi-orbital bosons in a bipartite optical lattice.
The corresponding Hamiltonian takes the form

HT = H0 + HI,B + HI,A, (10)

where

H0 = δ

2

∑
i∈A

(
n̂A

x,i − n̂A
y,i

)

− 1

2

∑
αβ

∑
〈i,jβ+ 〉

(
tAB
αβ ψ̂

B†
s,jβ+

ψ̂A
α,i + H.c.

)

+ 1

2

∑
αβ

∑
〈i,jβ− 〉

(
tAB
αβ ψ̂

B†
s,jβ−

ψ̂A
α,i + H.c.

)

−μ
∑
i∈A

(
n̂A

x,i + n̂A
y,i

) − μ
∑
i∈B

n̂B
s,i (11)

describes the energy offsets and nearest-neighbor tunneling
giving rise to hybridization between orbitals. Here, i = (ix,iy)
labels the lattice sites and μ is the chemical potential. n̂A

x,i,
n̂A

y,i, and n̂B
s,i are the number operators for x and y orbitals

in an A site i and s orbitals in a B site i. The notation jβ+
(jβ−) indicates a nearest neighbor of i = (ix,iy) to the right
(left) in the direction β ∈ {x̂,ŷ}. For example, jx+ = (ix + 1,iy)
while jx− = (ix − 1,iy). Finally, “H.c.” indicates the Hermitian
conjugate. The hopping term must be written in this way
since, in this case tunneling, is sensitive to the left and right
difference. Intuitively, this is easy to understand by considering
a p orbital with a node. This orbital wave function changes
sign as one moves along the axis towards the neighboring
site with s-orbital wave function. The overlap of these two
wave functions is predominantly positive if the neighbor is to
the left (for example), but predominantly negative if it is to
the right. Note how such “space dependence” in the hopping
term also appears in lattice models exposed to (synthetic)
magnetic fields [41]. The tunneling parameters tAB

αβ denotes
the strength of tunneling of α orbitals in the A sublattice
in the direction β into the nearest neighbor s orbital in the
B sublattice. In the theory used here tAB

xy = tAB
yx = 0. In the

momentum representation, the term H0 corresponds to the TB
Hamiltonian encountered in the previous subsection.

The remaining terms describe interactions.

HI,B = UsB
2

∑
i∈B

n̂B
s,i

(
n̂B

s,i − 1
)

(12)

accounts for the interactions in the B sites and

HI,A =
∑
i∈A

[
Uxx

2
n̂A

y,i

(
n̂A

y,i − 1
) + Uyy

2
n̂A

y,i

(
n̂A

y,i − 1
)]

+ Uxy

2

[
ψ̂A†

x,i ψ̂
A†
x,i ψ̂

A
y,iψ̂

A
y,i + ψ̂A†

y,i ψ̂
A†
y,i ψ̂

A
x,iψ̂

A
x,i

]
+ 2Uxyn̂

A
x,in̂

A
y,i (13)

accounts for the interactions within the A sites. This term is
somewhat more complicated than the corresponding term in
the shallow sites since x and y orbitals interact and (for bosons)
can change into one another. Finally, we note that, when δ = 0,
the total Hamiltonian supports a symmetry corresponding to
swapping of x- and y-flavor atoms in the A sites.

III. GUTZWILLER RESULTS

The Gutzwiller ansatz [43] for the many-body wave func-
tions provides a reasonably accurate description of interacting
bosonic systems, especially in dimensions D > 1. Due to the
bipartite lattice and multiple flavors in one sublattice, the
approach is slightly generalized compared to that of the usual
Bose-Hubbard model. The Gutzwiller ansatz we use is given
by

|ψ〉 =
∏
i∈A

∑
nA

a
(i)
nA |nA〉i

∏
j∈B

∑
nB

s

b
(j)
nB

s

∣∣nB
s

〉
j. (14)

The expansion coefficients a
(i)
nA = a

(i)
nA

x ,nA
y

and b
(j)
nB

s
are the

Gutzwiller amplitudes of the corresponding onsite Fock state.
For our purposes, in the A sites, the relevant subspace is
spanned by Fock states of the form |nA〉 = |nA

x ,nA
y 〉, where
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nA
α is the occupation number of the α orbital. In the B sites,

the wave function is expanded in terms of Fock states |nB
s 〉

associated with s orbitals. The Gutzwiller ansatz captures the
onsite physics exactly, but ignores some correlations between
sites. In the limit where the onsite wave functions are taken
to be coherent states, it recovers the Gross-Pitaevskii limit of
weakly interacting bosons. This limit is approached as inter-
actions relative to kinetic energy become small. In the limit of
strong interactions, the Gutzwiller ansatz can predict different
insulating phases. Depending on the problem, the insulating
states predicted by the Gutzwiller ansatz can be degenerate and
these degeneracies can in principle be broken due to the weak
intersite correlations not encountered for in this approach. This
was demonstrated for the square and cubic lattices by treating
the kinetic energy terms as perturbations [23].

Calculating the energy expectation value 〈ψ |HT |ψ〉, using
the ansatz in Eq. (14), gives us an energy functional in terms
of the unknown (complex) amplitudes a

(i)
nA and b

(j)
nB

s
. This

energy functional must then be minimized to find the ground
state. Even though this functional is very complex and the
minimization is not always easy, we have found that standard
conjugate gradient methods work with few caveats. First, the
energy functional can have many local minima into which the
minimization algorithm can become stuck and consequently
fail to converge into the global minimum. In order to build up
confidence in the results it is important to try different initial
states. Second, the minimization algorithm might have trouble
in converging to the correct phase ordering. For example,
complex amplitudes give rise to different phase factors in
the condensate order parameters and, in an energy minimum,
these phase factors should be properly ordered throughout the
lattice [24]. If the conjugate gradient method is used as a black
box, it might not converge to optimal phase ordering. To get
around this, it is important to impose different orderings into
the initial state of the minimization routines and finally pick
the solution that has the lowest energy. In the absence of a trap
we find the solution in a 4 × 4 lattice where each sublattice
has 8 sites. We use periodic boundary conditions and choose
to truncate the Fock-state expansion of the Gutzwiller ansatz
so that the maximum onsite occupation number is 8.

In the superfluid region we find that the ground-state phases
of the condensate order parameters are arranged in the same
way as discussed by Wirth et al. [24] for an isotropic lattice.
Here, the phase of the condensate order parameter in theB sites
changes by ±2π as one moves around B-sublattice plaquettes.
Neighboring plaquettes have an opposite phase winding. In
the A sites, the onsite order parameters are superpositions of
x and y orbitals. These superposition are vortex-like states
proportional to eiφ(x ± iy) and the vorticity has an opposite
sign in neighboring A sites so that onsite angular momenta
are ordered “antiferromagnetically.” Similarly to the B sites,
the phase φ of the prefactor eiφ varies by ±2π as one travels
around A site plaquettes and neighboring plaquettes have an
opposite winding of this phase factor. Far in the superfluid
phase where the onsite states can be approximated by coherent
states, atoms in the A sites can be pictured as clockwise-
or counterclockwise-rotating condensates with a quantization
〈L̂z〉 = ±1 where L̂z is the angular momentum operator in the
transverse z direction.

Note that the swapping symmetry of x- and y-flavor atoms
implies a flip of the vorticity in each site. Closer to the
insulating phases where the interaction begins to dominate, the
picture is more complex and the onsite x- and y-flavor atoms
can become highly entangled. While the Gutzwiller ansatz
(14) is not able to predict intersite entanglement, it indeed
captures such intrasite entanglement. As an example, looking
at the Mott insulating phase with nA = 3 atoms in the A sites,
the Gutzwiller method gives degenerate ground states in the A
sites. For example, the states with |ψ〉L = ∏

i∈A a
(i)
3,0|3,0〉i +

a
(i)
1,2|1,2〉i or |ψ〉R = ∏

i∈A a
(i)
0,3|0,3〉i + a

(i)
2,1|2,1〉i, with a

(i)
3,0 =

a
(i)
0,3 ≈ 0.6 and a

(i)
1,2 = a

(i)
2,1 ≈ −0.8 are degenerate. As dis-

cussed above, in the Gutzwiller method these two states
are decoupled in the insulating phase and breaking the
degeneracies requires an improved ansatz and/or higher-order
perturbation theory in the tunneling. It is clear that these two
examples of insulating states are not eigenstates of L̂z.

We show an example of the magnitudes of the relevant
observables in the phase diagram for the isotropic case
with degenerate p orbitals in Fig. 3. As is clear, the
phase diagram is very different from the usual sequence of
ever-lower Mott lobes corresponding to higher onsite atom
numbers [44]. In our case there are insulating states with
integer occupation numbers, but since interactions in different
sublattices are different and the other sublattice has several
flavors, the positions of the boundaries for different Mott
states are not expected to be in same positions for different
sublattices in the limit of weak tunneling. The hybridization
of orbitals in different sublattices complicates the picture
further.

This interplay between sublattices gives rise to superfluid
“fingers” extending into the region where each sublattice alone
would be expected to be in a Mott insulator. For example, B
sites make a transition from 1 atom per site to 2 atoms per site
at μ/UsB = 1. This is apparent in the order parameter 〈ψ̂B

s,i〉
being nonzero in the narrow region around μ/UsB = 1 even
when tunneling becomes weak. With these parameters and
weak tunneling the A sites are expected to be in an insulating
state with 2 atoms per site (|nA

x = 1,nA
y = 1〉), but coupling

with the condensate order parameter in the B sites can induce
a nonzero order parameter 〈ψ̂A

β,i〉. Similar observations apply
around μ/UsB ≈ 1.25 where the A sites undergo a transition
to 3 atoms per site. This transition can induce a nonzero
condensate order parameter in the B sites.

It should be noted that the number fluctuations in x and y

flavors in the A sites can be nonzero even in Mott insulating
regions. For example, the Mott insulating state with 3 atoms
in the A sites is a superposition of different basis states with
the total of 3 atoms per site. Only the total number of atoms
is fixed to an integer value. The local order parameter breaks
the time-reversal symmetry and the angular momentum in A
sites is nonzero and equal to ±1 in the condensed region.
The angular momentum in neighboring A sites points in
opposite directions. The nonzero value of angular momentum
in the condensed phase is not surprising since the interaction
energy is minimized for onsite states with (x ± iy)-type vortex
superpositions of p orbitals [23,45].

In Fig. 4 we show an example of the phase diagram for the
anisotropic case with a p-orbital splitting δ/UsB = 1. In the
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FIG. 3. (Color online) Condensate order parameters and onsite atom numbers parametrized by chemical potential and hybridization
tunneling tAB = tAB

xx = tAB
yy when p orbitals are degenerate. (However, in order to make the plot clearer we did add a very small anisotropy

of δ = 10−4 to break the degeneracy of states in A sites with only one atom per site.) The left-hand plots (a), (c), and (e) display condensate
densities |〈ψ̂B

s,i〉|2 and |〈ψ̂A
β,i〉|2 (β ∈ {x,y}), while (b), (d), and (f) show atom-flavor densities nB

s,i and nA
β,i. The roughness that is visible,

especially for higher chemical potentials, indicates the level of numerical uncertainties in these regions. (In the Mott insulating region with
nA = 1 we choose nA

x,i = 1, but since interactions do not contribute here other choices are also possible.)

superfluid regions both p orbitals are nonzero, but the order
parameter (and density) for the y orbital is smaller in magni-
tude. In the Mott insulating regions with 1 or 2 atoms per site,
the onsite interactions (with these parameters) are not strong

enough to induce large fraction of atoms into the higher y

orbitals and therefore only the x orbitals are substantially pop-
ulated. However, as the atom number in the A sites increases
to 3 or more the y-orbital population also becomes substantial.

023611-6



MULTIORBITAL BOSONS IN BIPARTITE OPTICAL LATTICES PHYSICAL REVIEW A 86, 023611 (2012)

μ/U
Bs

t A
B
/U

B
s

(a): |ψ
s
B|

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2

0.4

0.6

0.8

1

1.2

μ/U
Bs

t A
B
/U

B
s

(b): n
s
B

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

μ/U
Bs

t A
B
/U

B
s

(c): |ψ
x
A|

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2

0.4

0.6

0.8

1

1.2

1.4

μ/U
Bs

t A
B
/U

B
s

(d): n
x
A

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

μ/U
sB

tA
B
/U

sB

(e): |ψ
y
A|

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

μ/U
sB

tA
B
/U

sB

(f): n
y
A

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 4. (Color online) Condensate order parameters and onsite atom numbers parametrized by chemical potential and hybridization
tunneling tAB = tAB

xx = tAB
yy for the anisotropic case with δ/UsB = 1. The plots to the left [(a), (c), and (e)] show condensate densities |〈ψ̂B

s,i〉|2
and |〈ψ̂A

β,i〉|2 (β ∈ {x,y}) while the ones to the right [(b), (d), and (f)] display atom-flavor densities nB
s,i and nA

β,i. The small amount of scatter
visible, especially in (e), is indicative of numerical uncertainties.

When we choose δ �= 0 we break the degeneracy of the
x and y orbitals. In the limit of zero tunneling we expect
that if splitting becomes in some sense large relative to
onsite interactions, atoms would prefer to reside on the x

orbital only. It is easy to show that with 2 atoms per A
site, the transition occurs at δ = Uxx/3. It is important to

keep in mind that, for the case of nonzero tunneling, the
situation becomes much more complex and the results may
actually depend on the system size. With the Gutzwiller
ansatz we find that, in the superfluid regime (we typically
had tAB

xx /UsB ∼ 0.2 to 0.5), the onsite angular momentum
(which vanishes if only one orbital is occupied) per particle is
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FIG. 5. (Color online) Angular momentum per particle in the A
sites as a function of energy difference δ between p orbitals. We
choose tAB

xx /UsB = 0.2, μ/tAB
xx = 1, and tAB

xx as the unit of energy.
(The staircase structure at larger δ is due to numerical limitations in
finding the global energy minimum for larger onsite atom numbers
with a finite basis set.)

smoothly reduced from its value ±1 at δ = 0 to zero. This is
demonstrated in Fig. 5. Vanishing onsite angular momentum
is reached when δ/tAB

xx ∼ 2 which corresponds fairly well
to what would be predicted from the onsite results with a
particle number fixed to an integer value (remember that
UsB ≈ Uxx):

δ/tAB
xx = (δ/UsB)

(
UsB/tAB

xx

) ≈ 1
3

(
UsB/tAB

xx

)
. (15)

As expected, the onsite angular momentum also drops faster
for larger tAB

xx /UsB since this implies smaller onsite interaction
strengths.

If we replace the operators with complex numbers ψα

to derive a Gross-Pitaevskii equations for each orbital, we
find that, for the onsite problem, the effective chemical
potential and thus also the density of y orbitals vanish
when δ/2 = μ − Uxynx at which point the density of the
x orbital is related to the chemical potential through nx =
(μ + δ/2)/Uxx . This implies that, in this limit, the tran-
sition from states with orbital angular momentum to pure
x-orbital condensate happens at δc = (Uxx − Uxy)nx , where
nx = |ψx |2.

A. Trapped system

Typical experiments would most likely involve the pres-
ence of a confining trapping potential and, for this reason,
it is important to also discuss the behavior with inho-
mogeneous density distributions. Our predictions for the
phase diagram in a homogeneous system suggest an in-
teresting possibility in a trap. Usually, the solution of the
Bose-Hubbard model in a trap gives rise to a “wedding-
cake” structure where Mott plateaus corresponding to dif-
ferent integer fillings are sandwiched between superfluid
regions [46].

If we were to apply a local-density approximation to our
system, we could think of the chemical potential as a local
quantity μ = μcenter − Vtrap(ix,iy), where Vtrap(ix,iy) would
typically be a harmonic trap. Traversing from the center of
the cloud to its edge would correspond to moving in the phase
diagram from some high value of μ/UsB towards zero. If the
starting point is in the Mott insulating phase we could indeed
have a wedding-cake structure for each sublattice, but their
Mott plateaus do not always coincide. Furthermore, we can
have situations when a condensate order parameter appears
inside the same Mott plateau. We will next demonstrate that
these simple observations are valid in a trap also beyond the
local-density approximation.

We can do this within the theoretical framework used so
far, but replacing the chemical potential μ with μcenter −
Vtrap(ix,iy) in the Hamiltonian in Eq. (12) and then solving
the problem with the trapping potential

Vtrap(ix,iy) = γ {[ix − (Nx + 1)/2]2 + [iy − (Ny + 1)/2]2},
(16)

with Nx and Ny being the number of sites along x and
y, respectively. [The minima of the harmonic potential is
shifted to ((Nx + 1)/2,(Ny + 1)/2) since we choose iα ∈
{1, . . . ,Nα}.] As an example, we choose an isotropic lattice
with t/UsB = 0.015 and the chemical potential in the center
μcenter/UsB = 1.5 so that, in the center of the cloud, we expect
the A sites to be in an insulating state with three atoms per
site. The trap coefficient γ we choose in such a way that
μcenter − Vtrap(ix,iy) becomes negative at the edge of the lattice
so that the density vanishes there.

We demonstrate the resulting ground state of the trapped
bosons in Fig. 6. The bosons arrange themselves into the
familiar wedding-cake structure with Mott insulating regions
separated by superfluid regions. Remarkably, as suggested
by the results in the absence of a trapping potential, since
our system has two different sublattices with different onsite
interactions, superfluid “rings” can occur in different locations
for different orbitals. For example, closest to the center we
have a region where the A sites are Mott insulators with
nA = nA

x + nA
y = 3 while the B sites are insulating with

nB = 2. The transition to an nA = 2 phase occurs via a
superfluid phase in the A sites. However, in this region the
condensate order parameter in B sites is still very small. Also,
there is a condensed phase between regions with nB = 2 and
nB = 1 while the condensate order parameters in A sites are
negligible. Consequently, the physics predicted by using the
theory without the trapping potential can also persist in trapped
systems.

Recently, the trapped system of p-band bosons in a square
lattice was analyzed and it was found that the density of
different x- or y-orbital atoms were elongated in one direction
and the symmetry of the confining trap was broken [45]. The
present system is different due to the hybridization of s and p

orbitals, which implies that the condensate cloud preserves
the symmetry for an isotropic trap. On the other hand, if
one prepares the system so that the tunneling coefficients tAB

xx

and tAB
yy are unequal in magnitude, similar anisotropies are

expected also here.
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FIG. 6. (Color online) Condensate and flavor densities in a trap. The left hand plots (a) and (b) give the condensate densities |〈ψ̂B
s,i〉|2 and

|〈ψ̂A
x,i〉|2 while (c) and (d) show atom-flavor densities nB

s,i and nA
x,i, respectively. We choose t/UsB = 0.015, μcenter/UsB = 1.5, and γ in such

a way that the density vanishes at the edge of the lattice. Since the lattice is isotropic the densities for the y orbital are the same as for the
x orbital and are not plotted here. The axes give the lattice sites in the two laboratory directions. (Plotted quantities are only defined in their
respective sublattices. However, to make the figure clearer we filled in the relevant values also to the other sublattice by taking the average over
the 4 neighboring sites.)

IV. CONCLUSIONS

In this paper we have derived a TB model to describe
ultracold atoms in a bipartite optical lattice with three hy-
bridized orbitals. We have also solved the resulting generalized
Bose-Hubbard model and found strong modifications to the
Mott-insulator-superfluid phase diagram which is found in
the simplest lowest-band Bose-Hubbard model. Interesting
phenomena were also demonstrated for the confined system
that includes a harmonic trap. From that solution we found
that the unusual phase diagram of the multiband Bose-Hubbard
model can be reflected as possessing a nontrivial wedding-cake
structure of Mott insulating regions for different sublattices.
In particular, a nonzero condensate order parameter in one
sublattice can coexist with a Mott plateau in another sublattice
and also appear inside the same Mott plateau. Such effects
are observable since Mott insulating regions can be detected
in situ and atoms in optical lattices can be manipulated
even at a single-site resolution [47–50]. Furthermore, since

different sublattices have different atom-atom interactions the
states with more than one atom per site would generally
give rise to different mean-field shifts if transitions to other
hyperfine states are considered. This suggest a possibility
of addressing different sublattices with microwave fields of
different frequencies, for example.

In this paper we have not addressed the dynamical behavior
of bosons in a bipartite lattice. However, using the theoretical
framework derived here, that would be not only doable, but
also interesting since, in the experiments conducted so far,
bosons have been initially prepared in an excited state whose
dynamical behavior is poorly understood.
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