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Thermalization of local observables in small Hubbard lattices

S. Genway,1 A. F. Ho,2 and D. K. K. Lee3

1School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
2Department of Physics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom

3Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
(Received 16 May 2012; published 9 August 2012)

We present a study of thermalization of a small isolated Hubbard lattice cluster prepared in a pure state with a
well-defined energy. We examine how a two-site subsystem of the lattice thermalizes with the rest of the system
as its environment. We explore numerically the existence of thermalization over a range of system parameters,
such as the interaction strength, system size, and the strength of the coupling between the subsystem and the
rest of the lattice. We find thermalization over a wide range of parameters and that interactions are crucial for
efficient thermalization of small systems. We relate this thermalization behavior to the eigenstate thermalization
hypothesis and quantify numerically the extent to which eigenstate thermalization holds. We also verify our
numerical results theoretically with the help of previously established results from random matrix theory for the
local density of states, particularly the finite-size scaling for the onset of thermalization.
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I. INTRODUCTION

Understanding the quantum origins of statistical mechanics
has seen renewed interest over the past few years, in part
motivated by experimental progress in degenerate atomic gases
but also due to independent theoretical advances [1–4]. The
central question is as follows. Consider a closed quantum
system prepared in a pure quantum state. Does it evolve in
time to a thermal state? If so, in what sense is it a thermal
state?

In this paper, we focus on observables that are local
to a subsystem of the full system. Thus, we discuss the
“thermalization” of this subsystem with the rest of the system
as a bath (see Fig. 1). We will discuss the conditions for
the eventual thermalization of this subsystem. This has been
studied in many systems [5–9] and we will study a system
of interacting fermions in this context. The picture of a local
subsystem in a closed system also naturally makes contact
with the conventional framework of statistical mechanics
where thermal equilibrium is achieved by a weak coupling
λV between a system and its environment.

Thermalization in closed quantum systems has been shown
to have its origins in entanglement. To be specific, let us
consider a composite system with a Hamiltonian H = HS +
HB + λV , where HS,B describes the dynamics of subsystem
(S) and the bath (B), respectively, while λV couples the
subsystem to the bath. The exact eigenstates |A〉 of this
Hamiltonian are typically superpositions of many eigenstates
of the decoupled system (λ = 0) which are products of the
subsystem and bath states: |A〉 = ∑

sb csb|s〉S ⊗ |b〉B . The idea
of “canonical typicality” [10–14] states that almost any pure
state composed of many energy eigenstates |A〉 within a narrow
energy window will give rise to a canonical distribution for
the measurements of local or few-body observables within
the subsystem. This emerges because the pure state is an
entangled combination of subsystem and bath eigenstates.
We will consider in this paper a system prepared initially
at time t = 0 in a pure state that is a product state of
the subsystem and bath states. Such a state is typically a
superposition of many closed-system eigenstates: |�(t =

0)〉 = |φ〉S ⊗ |ψ〉B = ∑
A dA(t = 0)|A〉. While this initial

state is special and cannot be considered as “typical,” we expect
the wave function will, in general, evolve in time (|�(t)〉 =
e−iH t |�(0)〉) towards a state that falls into the domain where
canonical typicality applies (h̄ = 1). The sufficient conditions
for this to occur have discussed in recent papers [14–16]. In
this paper, we will investigate conditions for thermalization in
a small Hubbard-model system.

An alternative view is the eigenstate thermalization
hypothesis [17–19] (ETH). The time evolution of any
few-body observable 〈�(t)|O|�(t)〉 involves the inter-
ference of eigenstates at different frequencies, 〈O〉 =∑

AB d∗
AdB〈A|O|B〉ei(EA−EB )t , where EA,B is the energy of

the eigenstates |A〉 and |B〉. The eigenstate thermalization
hypothesis says that destructive interference removes all A �=
B terms and that

〈A|O|A〉 ≈ 〈O〉EA
, (1)

where the right-hand side denotes the thermal average of O

when the total system has energy EA. This paints a very
different picture of thermalization compared to the scenario for
classical statistical mechanics where states diffuse ergodically
through phase space constrained by energy conservation.

These concepts are powerful because they guarantee ther-
malization for closed quantum systems. They depend crucially
on the very high dimensionality of the Hilbert space of
quantum states. In this paper, we aim to gain insight into
these ideas by testing the limits of these hypotheses in terms
of the breakdown of thermalization for a small closed quantum
system. We take our motivation from cold atom experiments
with optical lattices and single-site addressibility [20,21].
We choose a lattice system of interacting fermions in a
normal metallic state. In particular, we present a study of the
thermalization of a composite system consisting of a two-site
subsystem and a (L − 2)-site bath in a one-dimensional
Hubbard ring. We avoid the issue of integrability and the
generalized Gibbs ensemble [22] by choosing parameters such
that it is a nonintegrable system.

In order to study the thermalization of the subsystem, we
need to calculate the long-time behavior of reduced density
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FIG. 1. Schematic diagram of a closed system divided conceptu-
ally into a subsystem and a bath.

matrix ρ of the subsystem,

ρ(t) = TrB |�(t)〉〈�(t)|. (2)

where TrB denotes a trace over the bath degrees of freedom.
A thermalized system corresponds to a diagonal reduced
density matrix with diagonal elements given by the Gibbs
distribution. We explore whether thermalization occurs over
a range of system parameters. We find numerically (Sec. III)
that thermalization occurs in surprisingly small systems. For
a system of a given size, there is a threshold for the onset
of thermalization, both in terms of the coupling strength λ

and the interaction strength. In particular, we study the size
dependence of the threshold λth that the coupling strength has
to exceed to achieve thermalization. We demonstrate that this
threshold for thermalization agrees with the ETH criterion (1)
for thermalization (Sec. III G). Indeed, a theoretical threshold
λETH determined from the ETH criterion has the same size
dependence as the empirical λth (Sec. V A). We also argue
that both of these thresholds mark the onset of nonperturbative
mixing of eigenstates due to the subsystem-bath coupling (at
a threshold λnp).

From a separate perspective [17,18], we can study the
thermalization process in terms of the statistics of the
eigenstates. We study the statistics of the overlap 〈A|sb〉
of the eigenstates |A〉 of the coupled system with the
eigenstates of the decoupled system which are product
states |sb〉 ≡ |s〉S ⊗ |b〉B . Interestingly, at weak subsystem-
bath coupling where the onset of thermalization occurs, the
distribution for the overlaps fits a hyperbolic secant distribution
(Sec. IV A). This is in contrast to previous hypotheses
[17,18,23] from random matrix theory which suggest that these
types of overlaps should follow a normal distribution at weak
coupling.

Using our results for the overlap distribution, we show
numerically (Sec. III G) that the eigenstate thermalization
hypothesis (1) holds for the projection operator Ps =∑

b |sb〉〈sb|, which projects onto the subsystem state s in the
parameter regime where the subsystem is thermalized. This
can be explained theoretically (Sec. IV B) using known results
for the variance of the overlap distribution. This observation
for Ps then leads directly to a thermalized reduced density
matrix (see Sec. III B).

In this paper, we also highlight the importance to ther-
malization of the strength of interaction within the bath.
We find that, at least for our small bath and subsystem, a
finite interaction strength is needed for thermalization. This
is consistent with the expectation that thermalization is aided
by inelastic scattering in the bath. We point out that, although
we have focused on the thermalization of a spatially local
subsystem, one can also study the thermalization of few-body

observables over the entire system. This has been studied
particularly in the context of quantum quenches in a variety of
systems [19,24–27], including integrable systems [22,28–33].
Moreover, one can discuss the dynamics of the relaxation
towards a thermal state [27,34–37]. Both of these issues are
beyond the scope of this paper.

This paper proceeds as follows. The following section intro-
duces the Hubbard model we study, discusses how the system
is prepared initially and provides a framework for studying
thermalization. In Sec. III, we present a comprehensive set of
results for the thermalization of two-site subsystems in small
Hubbard rings. We consider the effects of subsystem-bath
coupling strength on thermalization and link these results to
eigenstate thermalization. We further demonstrate the role
of interactions between fermions before exploring system
size dependence and, finally, the energy width of the initial
prepared state. Section IV introduces results from random
matrix theory concerning the nature of the eigenstates of
the coupled system. From these, we review the arguments
leading to eigenstate thermalization [18] and derive the scaling
behavior associated with the closeness to perfect eigenstate
thermalization. In Sec. V, we present an account of system-size
scaling by considering a threshold for nonperturbative mixing
of uncoupled composite eigenstates for the cases of both
strongly and weakly interacting fermions. In Sec. VI, we
discuss implications for experiments. Finally, in Sec. VII, we
give our conclusions.

II. THE MODEL AND THEORETICAL FRAMEWORK

We will consider closed quantum systems with unitary
time evolution. The system is prepared in an initial state
|�(t = 0)〉 which evolves in time |�(t)〉 = e−iH t |�(0)〉 under
the influence of the Hamiltonian H . In this section, we discuss
the specific model studied in this work and our choice of initial
states. Since we will investigate thermalization of a subsystem
of this closed system, we will also discuss our criteria for a
thermal state.

A. Hubbard Hamiltonian

We divide the system into a local subsystem (S) and a
bath (B). The subsystem (bath) is described by a Hamil-
tonian HS (HB) acting on the subsystem (bath) Hilbert
space. Let us denote the subsystem (bath) eigenstates as
|s〉S (|b〉B) with energies εs (εb). The subsystem and bath
are coupled by a Hamiltonian λV . We will use λ as a
tunable parameter to control the strength of this coupling.
At λ = 0, the eigenstates are products of subsystem and bath
eigenstates, |sb〉, with energies Esb = εs + εb. At nonzero λ,
the eigenstates are in general entangled with respect to the
subsystem-bath partition. We denote these composite eigen-
states by |A〉 (using an uppercase index) and their energies
by EA.

In this work, we focus on the Hubbard model away from
half filling as a simple model of interacting fermions. More
specifically, we consist of a two-site subsystem in an L-site
Hubbard ring of fermions such that the Hamiltonian takes the
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FIG. 2. (Color online) Schematic diagram of a two-site subsystem
in a lattice with nine sites (L = 9).

form H = HS + HB + λV with

HS = −
∑

σ=↑,↓
Jσ (c†1σ c2σ + H.c.) + U (n1↑n1↓ + n2↑n2↓),

HB = −
L−1∑
i=3

∑
σ=↑,↓

Jσ (c†iσ ci+1,σ + H.c.) + U

L∑
i=3

ni↑ni↓,

λV = −λ
∑

σ=↑,↓
Jσ [(c†2σ c3σ + c

†
1σ cLσ ) + H.c.], (3)

where c
†
iσ is a creation operator for a fermion with spin σ at site

i and niσ = c
†
iσ ciσ is the number operator on site i with spin

σ . This Hamiltonian describes a ring with the subsystem sites
i = 1,2 and bath sites i = 3 to L with two links between the
subsystem and the bath (see Fig. 2). Note that, in the case of
λ = 1, the Hamiltonian describes a homogeneous ring. We
choose the hopping integrals Jσ = J [1 + ξ sgn(σ )], with ξ =
0.05 to remove level degeneracies associated with spin rotation
symmetry. (We will use J as the unit of energy.) Breaking spin
symmetry and the presence, in general, of modified hopping
integrals between sites i = 2 and 3, as well as between sites
i = L and 1, make this system nonintegrable for nonzero U .

The total particle number, N , and spin component, Sz, are
conserved in addition to the total energy of the composite
system. In the numerical results we present, we consider
lattices with up to L = 9 sites and with eight fermions
of total spin Sz = 0. The two-site subsystem has MS = 16
eigenstates and the seven-site bath has 8281 eigenstates, while
the composite nine-site system has a total of M = 15 876 states
and an average level spacing � � 10−3J .

The spectrum of the composite system has a smooth
quasicontinuous density of states g(E0) for a range of λ and U .
This is illustrated in Figs. 3 and 4. The center of the spectrum
is located at E0 � 1.77J . The spectrum develops peaks for
large λ and U/J . In the case of λ � 1, we attribute this to
single-particle states with a large energy splitting proportional
λJ on the two links connecting the subsystem and bath. This
occurs when λJ exceeds the single particle band width 4J

(for U not much larger than J ). We will see in Secs. III A and
III C that this marks the breakdown of thermalization for the
two-site subsystem. For U/J � 1, we attribute the peaks to a
large energy gap to doubly occupied sites (sometimes referred
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FIG. 3. (Color online) The density of states g(E0) of the system at
composite energy E0 for different coupling strengths, λ (as labeled),
for an L = 9 site lattice where U = J . g(E0) is generated as a
histogram by counting eigenstates in a Gaussian window centered
on E0 with width 0.5J .

to an “upper Hubbard band” in the theory of strongly electron
systems or doublons in the cold atoms literature).

B. Initial states

Throughout this work, we consider the composite system
to be prepared in a pure state which is a product state of a
subsystem state and a bath state,

|�(t = 0),E0〉 = |φ〉S ⊗
bu∑

bi=bl

1√
B

|bi〉B. (4)

The initial subsystem state, |φ〉S , can be, for example, |↑,↓〉S ,
which is prepared with antiparallel spins on sites i = 1 and 2 of
the lattice. The initial bath state contains a linear combination
of B bath eigenstates |bi〉B . These bath states are chosen
to be within an energy window of bath states such that
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FIG. 4. (Color online) The density of composite states g(E0) of
the system at composite energy E0 for different Hubbard interaction
strengths, U (as labeled), for an L = 9 site lattice where λ = 0.5.
g(E0) is generated as a histogram by counting eigenstates in a
Gaussian window centered on E0 with width 0.5J .
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〈�|H |�〉 = E0. The energy window has a width in energy
of δB (specified by the state indices in the range bl < b < bu).
Unless stated otherwise, we choose δB = 0.5J , which is
small on the scale of variations in the density of states.
For a seven-site bath, this window contains about 100 bath
eigenstates.

As the system evolves in time, the state of the subsystem
can be described by the reduced density matrix (RDM) as
defined in Eq. (2). We will study the reduced density matrix
elements using the subsystem eigenstates |s〉S as the basis:
ρss ′ = S〈s|ρ|s ′〉S . We obtain the wave function |�(t)〉 of the
composite system using the eigenstates and energy eigenvalues
from the exact diagonalization of the Hamiltonian H :

|�(t)〉 =
∑
A

e−iEAt |A〉〈A|�(0)〉. (5)

C. Thermalization

To assess whether the subsystem reaches a thermal state, we
must be more precise about the criteria for a thermal state. We
start with the conventional definition of thermal equilibrium
in the canonical ensemble. To define this “canonical thermal
state,” ω, of the subsystem, we set up the composite system at
a total energy E0 in a microcanonical mixed state and consider
the regime where the coupling between the subsystem and
the bath is negligible. In this way, the thermal state of the
subsystem may be determined by counting bath states in an
energy window, conserving the total energy and the global Sz

and particle number N . The reduced density matrix is diagonal
and is given by ωss = S〈s|ω|s〉S ,

ωss = Mb

(
E0 − εs,N − ns,S

z − sz
s

)
∑

s ′ Mb

(
E0 − εs ′ ,N − ns ′ ,Sz − sz

s ′
) , (6)

where Mb(εb,nb,s
z
b) is the number of bath states with nb

fermions of spin sz
b in a window of width ∼δB centered on

energy εb. This thermal RDM is a function of εs , ns , and
sz
s , arising from the global conservation laws of the system.

For fixed sz
s and ns and for a range of subsystem energies

εs small compared with features in the density of states,
the smooth density of states allows us to write the RDM in
the Boltzmann form ωss ∼ e−εs/T (kB = 1), with the inverse
temperature given by

1

T
= ∂ ln MB

(
εb,N − ns,S

z − sz
s

)
∂εb

∣∣∣∣∣
εb=E0

. (7)

We can, in principle, deduce a chemical potential and Zeeman
field by considering variations in ns and sz

s . However, we
are considering small systems where the discreteness of
these quantities cannot be ignored and MB is not a smooth
distribution of sz

s and ns . Nevertheless, Eq. (6) may be used
to specify a thermal state of the subsystem for, in principle,
any bath size. We note that such a Gibbs-like distribution
has just three parameters, differing from the “generalized
Gibbs distribution” for integrable systems [19,22,32], where
the number of parameters extends with system size.

Let us now turn to the RDM that we obtain from the unitary
evolution from an initial pure state. We will be examining the
behavior of the RDM at long times. It is useful to define the

time average,

rss = lim
t−→∞

1

t

∫ t

0
dt ′ ρ(t ′). (8)

If the reduced density matrix reaches a steady state at long
times, this state will be equal to the time average r . We expect
this to become diagonal. Using Eq. (2), we see that the diagonal
elements of the RDM are given by

〈s|ρ|s〉 =
∑
ABb

e−i(EA−EB )t 〈sb|A〉〈A|�(0)〉〈�(0)|B〉〈B|sb〉.
(9)

Averaging over time for long times identifies EA with EB .
Since we have lifted all symmetry-related degeneracies, this
also identifies states A and B in the sum above (barring
accidental degeneracies). So we see that

rss =
∑
A

|〈�(0)|A〉|2〈A|Ps |A〉 with

Ps =
∑

b

|sb〉〈sb| . (10)

The operator Ps projects from the composite Hilbert space
onto the subsystem state |s〉S by tracing over bath states.

The coefficients 〈�(0)|A〉 contain the information about the
initial state. However, this steady state may still be very close to
a state which is independent of initial conditions. A sufficient
condition is given by the “eigenstate thermalization hypothe-
sis” [19]. Recall that from Eq. (4) our initial state |�(0)〉 has
been set up within a narrow energy window. So the overlap of
〈�(0)|A〉 should be only nonzero in a window of eigenener-
gies. (We will give a more quantitative discussion of the width
of this window in Sec. IV A.) The eigenstate thermalization
hypothesis assumes that 〈A|Ps |A〉 for a system with composite
energy E0 that depends only weakly on the choice of |A〉 in this
window of eigenenergies. This allows us to replace 〈A|Ps |A〉
by its average value 〈A|Ps |A〉 over the eigenenergy window. In
that case, rss � 〈A|Ps |A〉∑

A |〈�(0)|A〉|2 = 〈A|Ps |A〉. Thus,
we see that the steady state rss may indeed be independent of
initial conditions.

Furthermore, if 〈A|Ps |A〉 is close to the value ωss(E0) for
the canonical ensemble (6), then Eq. (10) can be written as
rss � ωss(E0). Thus, rss will be close to the canonical thermal
state ω for any initial state with a definite energy.

In summary, we break down the question of whether the
subsystem thermalizes into four criteria similar to the ones in
Ref. [14]. Our criteria are as follows:

(1) First, we should establish that the reduced density
matrix reaches a steady state at long times.

(2) The steady state should be diagonal in the subsystem
energy eigenbasis with all off-diagonal elements falling to zero
for long times. This demonstrates a loss of quantum coherence.

(3) This steady state should have no memory of the initial
state, such as the precise way in which the subsystem or the
bath is prepared.

(4) Finally, we ask if this steady state is close to the
canonical thermal state ω. If this is the case, we will say the
system exhibits “canonical thermalization.”

We are leaving open the possibility that the subsystem
reaches a steady state with no memory of the initial state but
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does not resemble the canonical thermal state. This may be
possible since the canonical state has been derived assuming
the bath states are unperturbed by the coupling with the
subsystem which may not hold in the small quantum systems
studied here when the coupling λ is of order unity.

We explore these questions with numerical studies of the
Hubbard Hamiltonian in the following section. We will discuss
the more sophisticated picture of the eigenstate thermalization
hypothesis separately in Sec. IV.

III. NUMERICAL RESULTS

A. Long-time behavior

We proceed to demonstrate that the first two criteria for
thermalization listed at the end of Sec. II C) are met for a
range of system parameters. These requirements are that the
reduced density matrix ρ should approach a steady state at
long times, with its off-diagonal elements falling to zero.

Initial states of the form in Eq. (4) were constructed with
the initial subsystem state |↑,↑〉S . It was found that evolving
ρ(t) in time under the Hamiltonian H results in almost steady
states for a wide range of λ, provided the composite energy is
not close to the edge of the spectrum. With interaction strength
U = J and bath width δB = 0.5J , this range is 0.05 � λ � 3
for a composite energy E0 = −2J . Examples are shown in the
left panel in Fig. 5. This shows the relaxation of the diagonal
element of ρ corresponding to the initial-state occupation
probability for couplings λ = 0.05, 0.5, and 3. The dynamics
of the relaxation is fast and featureless for λ up to 1. The
temporal fluctuations around the long-time steady state are
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FIG. 5. (Color online) (Left) Time dependence of the initial-state
occupation probability ρss for the initial state |s〉S = |↑,↑〉 for three
coupling strengths λ = 0.05, 0.5, and 0.3. (Right) A measure of the
magnitude of the off-diagonal elements �OD, defined by Eq. (11).
Interaction strength U = J , width of the initial bath state δB = 0.5J ,
total system energy E0 = −2J , size L = 9.

small at this energy E0 = −2J . In fact, if we use an energy
close to the center of the spectrum of the composite system
(E0 = 1.77J ), temporal fluctuations are even smaller for a
given λ. On the other hand, for an energy closer to the edges
of the spectrum, the density of states is small so that few
composite states construct the initial state. The presence of
only a few frequencies in the time evolution limits the closeness
to a steady state achievable.

We see beating oscillations at λ = 3 which we attribute to
the strongly split single-particle states at the two subsystem-
bath links at large λ. Indeed, for even larger λ, ρ(t) no longer
reaches a steady state, and the frequency spectrum begins to
show peaks at frequencies which are integer multiples of λJ .

Let us now investigate the second condition for thermal-
ization that off-diagonal elements fall to zero with only small
temporal fluctuations, as predicted in Ref. [15]. We compute
the root-mean-square sum of these off-diagonal elements,

�OD(t) =
√∑

s<s ′
|ρss ′ (t)|2. (11)

This is shown in the right panel of Fig. 5. By construction, �OD

is larger than any single off-diagonal element. We see that the
effect of off-diagonal elements can be neglected at long times:
�OD is, with decreasing λ, shown to be from ∼10−1 down to
∼10−3 times smaller than each diagonal element.

Having established that, within a range of coupling
strengths, the subsystem RDM does reach a diagonal steady
state with only small temporal fluctuations, we will now use
Eq. (10) to compute the steady-state form r without explicitly
computing ρ(t) at many times and taking a time average. This
is less computationally expensive and provides a definitive
long-time subsystem state without the need for numerically
averaging out small temporal fluctuations.

We will now proceed to explore two further requirements
of thermalization: These are the extent of initial-state inde-
pendence and closeness to the thermal state ω. The effective
temperature of the subsystem may also be estimated from r .

B. Quantifying thermalization

We next develop measures to characterize the extent to
which the third and fourth of our thermalization criteria, listed
in Sec. II C, are met.

Criterion 3 in Sec. II C is concerned with the loss of memory
of the initial state at long times. To quantify the variation in
the steady state due to different initial states, we introduce the
measure �r which measures the root-mean-square variation in
diagonal reduced density matrix elements for different initial
subsystem states,

�r = 1

2

∑
s

[〈
rss

2
〉 − 〈rss〉2

] 1
2 , (12)

with 〈· · ·〉 denoting an average over all 16 initial states in the
subsystem Fock basis, as in Eq. (13). We expect �r to be small
when the long-time steady state no longer depends on how the
system was initially prepared.

Criterion 4 in Sec. II C addresses the closeness of the
subsystem state at long times to the canonical thermal state
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ω. We quantify this with the quantity σω, defined as

σω = 1

2

∑
s

〈|rss − ωss |〉 . (13)

Here, 〈· · ·〉 denotes an average over all 16 initial states in the
subsystem Fock basis (eigenstates at J = 0). As such, this
is a measure of the average distance to the thermal state, ω,
for the set of initial subsystem states spins localized on the
lattice sites. It is a special case of a more general distance
measure [14], 〈 1

2 Tr
√

(r − ω)2〉, which equals σω in the case
where the elements of r in the subsystem eigenbasis form
diagonal matrices. As established above, this is the case for
0.05 � λ � 3. Within this range, we may interpret σω as the
probability, on making measurements on the subsystem, that
rss could be distinguished from ωss [12].

From the definitions of these two measures, it is clear that
if �r is large, then σω is necessarily large, too: If there is a
large variation in r for different initial states, many of these
states must be far from the uniquely defined canonical thermal
state ω. Conversely, it is possible for σω to be large with �r

small, because the subsystem may relax consistently to a state
r other than the canonical state ω.

We will also compute the von Neumann entropy of the
subsystem. Because off-diagonal elements of ρ(t) are virtually
zero at long times even for very small λ, we introduce an
initial-state-averaged subsystem entropy for the equilibrium
state, which we define by

S = −
∑

s

〈rss ln rss〉 , (14)

where 〈· · ·〉 denotes an average over all initial subsystem states
in the subsystem Fock basis.

We would also like to characterize subsystems showing
thermalization with an effective temperature. As discussed in
Sec. II C, if we consider the subsystem at a given particle
number ns and spin sz

s , we expect the steady-state RDM, r ,
to approach the Boltzmann form (7) for ω if the subsystem
relaxes to the canonical thermal state ω. Therefore, we extract
an effective temperature Teff from the RDM, r , of the steady
states that we find using a least-squares fit to the form

ln rss = − εs

Teff
+ const. (15)

We will focus on the four-state subsector with ns = 2 and
sz
s = 0 because it is the subsector with the largest number of

bath states. Note that it is possible that we can have a good fit
to this form with an effective temperature even if the steady
state is not close to the canonical state ω.

C. The role of coupling strength

In the previous section, we discussed how we measure the
memory of the initial conditions (�r) in the steady state,
closeness (σω) to the canonical thermal state, the effective
subsystem temperature (Teff), and the entropy (S) of the
subsystem. We will now discuss how these measures of
thermalization change over a broad range of subsystem-bath
coupling strengths λ. We show results at different total energies
E0 between −4J and 1.77J .
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FIG. 6. (Color online) Memory of initial state �r , closeness to
the thermal state σω and the subsystem entropy S as a function of
coupling strength λ for different composite energies E0. (U = J ,
δB = 0.5J , L = 9.)

In Fig. 6, we present our results for �r , σω, and S as
a function of the coupling strength λ (for a system with
U = J and an initial state of bath width δB = 0.5J ). Our
results for �r demonstrate that the subsystem reaches a steady
state with little dependence on initial conditions over a wide
range of coupling strengths λ. We see significant dependence
on initial state beyond this range at both small and large λ.
Moreover, our results for σω show that the subsystem reaches
the canonical state ω over a similar, albeit slightly narrower,
range of coupling strengths. Outside this range, the long-time
steady state shows strong deviation from the canonical state.

In the coupling range where �r and σω are both small,
we find that the entropy S reaches a plateau as a function
of λ. Beyond this range at low λ, the subsystem entropy S

drops with decreasing λ. This is consistent with the subsystem
retaining information of its initial conditions. On the other
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FIG. 7. A schematic diagram indicating the range in λ where the
subsystem reduced density matrix, r , is diagonal, and where it is close
to the canonical thermal reduced density matrix, ω.

hand, the entropy rises when λ is increased beyond the plateau.
The asymmetry between low and high coupling indicates that
the departure from thermalization at small and large λ have
different physical origins, as we discuss later. The behavior
of the subsystem reduced density matrix as a function of λ is
summarized by the schematic diagram in Fig. 7 for the range
of energies shown in Fig. 6.

We show in Fig. 8 the effective temperature Teff extracted at
different energies E0 using the fit in Eq. (15). We include only
the range of coupling strengths where the fit is reasonable.
It is noteworthy that our results with two lowest energies,
E0 = −4J and −2J , show effective temperatures close to the
degeneracy temperature, approximately 2J for this Hubbard
system near half filling.

We have not shown Teff for the highest energy we used,
E0 = 1.77. This energy corresponds to the center of the energy
spectrum for all λ plotted. At this energy, all the states of the
subsystem have nearly equal statistical weight at this energy. In
other words, the effective temperature is nearly infinite. This is
also reflected in the subsystem entropy (Fig. 6) which is close
to ln 16 at E0 = 1.77, as expected for our 16-state subsystem
at high temperatures.

For systems exhibiting canonical thermalization (small σω),
the effective temperature Teff is approximately independent
of the coupling strength up to λ � 1. In fact, this effective
temperature is close to the canonical temperature defined in
Eq. (7) by counting bath states in the limit of λ → 0, as
reported in Ref. [36]. As already mentioned, we find in this
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FIG. 8. (Color online) Effective temperature Teff as a function of
coupling strength λ in the thermalized regime for different composite
energies E0. (Inset) Example of fit of rss to the Boltzmann form (15).
(U = J , δB = 0.5J , L = 9.)

regime that the subsystem entropy (Fig. 6) is also roughly
independent of λ.

We will now turn to the crossover from nonthermalization
to thermalization as we increase the coupling strength from
zero. We can choose a rough measure of the threshold,
λth, for this crossover as the coupling strength at which σω

drops below 25%. Alternatively, we can use the coupling
strength at which the subsystem entropy reaches a plateau in
Fig. 6. At E0 = −2J , we find λth � 0.05. At the lower energy
E0 = −4J , λth is higher at approximately 0.1. At the energy
E0 = 1.77J corresponding to the center of the spectrum,
λth is smallest at 0.03. The crossover between memory and
lack of memory of the initial state also occurs around this
characteristic coupling λth. (We discuss this criterion further in
Sec. V.) That thermalization does not occur for small coupling
strengths is because of the finite level spacing, �, in the finite-
size bath. Physical intuition might suggest that subsystem-bath
couplings, however weak, allow relaxation in subsystems. This
is a reasonable assertion for systems with macroscopic baths
where the bath spectrum is quasicontinuous. However, for a
small system with a nonzero level spacing at weak coupling,
the eigenstates of the composite system may only be slightly
perturbed from the decoupled subsystem-bath product states
|sb〉 if the typical matrix elements mixing these product states
are small, 〈sb|λV |s ′b′〉 � �. In this weak-coupling limit,
thermalization cannot occur from an initial subsystem state
|φ〉S when the composite eigenstates are all close to product
states of the form |φ〉S ⊗ |b〉B . The system would retain
strong memory of the initial state. Therefore, we expect a
nonzero threshold for thermalization for a finite system. We
will examine more quantitatively the overlap of the composite
eigenstates with the decoupled product states in Sec. IV and we
will compare the empirical λth extracted here with a theoretical
estimate in Sec. IV B.

Let us now turn to the strong-coupling regime of λ � 1.
As already discussed in Sec. III A, the system does not reach
a steady state at very high λ, and so it is not thermalized.
This is a boundary effect in the sense that the dynamics in
our “subsystem” consisting of sites 1 and 2 become altered at
very large λ because of the very large hopping on the links
between sites 2 and 3 and between sites 1 and L. As already
discussed in Sec. II A, single-particle states localized on these
links become visible as a feature the composite density of
states at λ = 10 (Fig. 3). The four sites (i = L,1,2,3) should
thermalize as a cluster in the sense that it has a canonical
diagonal reduced density matrix, provided that the bath of size
L − 4 is sufficiently large. Nevertheless, since the eigenstates
of the two-site cluster and the four-site cluster are very different
at large λ, the thermalization of the four-site cluster does not
imply a diagonal RDM for the two-site cluster. In other words,
we cannot discuss meaningfully the thermalization of the two-
site cluster if the coupling at the boundary significantly alters
the internal dynamics of the subsystem. It will be interesting to
investigate how this depends on the subsystem size but that is
beyond the scope of this paper. In any case, we wish to make
the point that this lack of thermalization at large coupling
differs qualitatively in origin from the lack of thermalization
at small coupling.

It is interesting to examine more closely the departure from
thermalization as we increase λ in the range of λ between 1 and
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FIG. 9. (Color online) Gaussian width of the density of states,
σBW (solid circles), and effective temperature Teff (hollow squares)
as a function of coupling strength λ. (E0 = 0, U = J , δB = 0.5J ,
L = 9.) Both quantities are normalized to their values at λth.

3 for U = J (see σω in Fig. 6). In this crossover region, we find
steady states that have lost memory of the initial state (small
�r) but these states deviate from the canonical thermal state
ω, as can be seen in a rising σω as λ is increased beyond unity.
Moreover, the RDM has a reasonable fit to the Boltzmann form
(15), although the fitted temperature departs significantly from
the canonical temperature (7). One can say that the system is
still in an “effective” thermal state in this crossover regime.
We will return to this in Sec. III G.

Interestingly, we observe that this crossover regime tracks
closely a decrease in the density of states of the composite
system. The density of states (Fig. 3) can be approximated as
a Gaussian,

g(E0) ∝ exp

[
− (E0 − E0)2

2σ 2
BW

]
, (16)

where E0 is the energy of the band center and σBW can be used
as a measure of the width of the Gaussian. We see in Fig. 9
that σBW rises sharply as we increase λ beyond unity, similarly
to the behavior of the fitted effective temperature (Fig. 6). In
fact, Teff ∝ σ 2

BW(λ), as seen in Fig. 9, where we show the two
quantities normalized to their (λ-independent) values at small
λ. Note that, at weak coupling and at fixed energy E0, the
derivative

∂ ln g(E)

∂E

∣∣∣∣
E=E0

= E0 − E0

σ 2
BW

(17)

can be associated with the inverse temperature of a bath
of size L = 9. In other words, it appears that the effective
temperature of the subsystem is better described by the
canonical temperature of the whole system, instead of just
the bath. This result is not surprising in this regime where the
coupling of our two-site subsystem to the L = 7 chain is of
order unity, since the distinction between subsystem and bath
is blurred.

D. Dependence on interaction strength

We now turn to the effects of the particle-particle interaction
strength, U , on thermalization. In the results which follow, the
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FIG. 10. (Color online) Memory of initial state, �r , and closeness
to the canonical thermal state, σω, as a function of interaction U/J

for λ = 0.5. The composite energy E0 is chosen to be fixed on the
central maximum in g(E0), which lies close to 2U (δB = 0.5J ).

coupling strength is fixed, as previously, at λ = 0.5 and we
will also fix the bath width at δB = 0.5J . The energy of the
composite system, E0, will be fixed such that it is always at
the peak in the center of the composite spectrum, at E0 ≈ 2U .
This is necessary since the shape of the spectrum is a strong
function of U and the density of states at a given energy can
vary significantly. The effects of the interaction strength on
the composite density of states are shown in Fig. 4. We find
that for U � 4J , peaks separated by U appear. If comparisons
were to be made between different U for initial states at fixed
E0, the features in the density of states which evolve with U

would introduce unwanted artifacts. Even in the center of the
spectrum, it should be noted that there is a fall in the density
of states at the central peak at E0 ≈ 2U , which occurs over a
range 1 � U/J � 4 due to an overall broadening of the density
of states (see Fig. 3).

To measure thermalization at different U , we will again
employ the measures �r and σω as defined in Eqs. (12) and
(13). The effective temperature is not shown since the initial-
state energy is at a maximum in the density of states which
corresponds to infinite subsystem effective temperature. In
Fig. 10, we demonstrate that thermalization, independent of the
initial state, is found for U � 0.1. There is a broad minimum in
plots of both �r and σω, defined by the lack of thermalization
at small U and a small increase in the plotted quantities over
the range 1 � U/J � 5.

The slight increase in �r and σω above U � J coincides
with the falling density of states in the center of the spectrum
shown in Fig. 3. So the increase may be partly associated with
the reduction in the number of states in the fixed bath window
of our initial state.

The behavior at small U � 0.1J cannot be similarly
related to the density of states. However, the nature of the
coupling differs markedly in the limit of U → 0 because
the bath states are Slater determinants single-particle states.
The single-particle level spacing is large compared to λJ if
λ � 1. So we expect that thermalization is poor for weakly
interacting systems (U � J ). In other words, for small U ,
we need larger system sizes to observe thermalization and we
return to discuss this in Sec. V B. We will present our data
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for different system sizes for systems in the next subsection
(Fig. 12).

E. System-size dependence

It is interesting to study thermalization as a function
of system size. Due to the exponential dependence of the
Hilbert-space dimension on lattice size, it is not possible to find
the full spectrum of large lattice. We will instead concentrate
on the loss of thermalization as we reduce the system size.
If we use even smaller systems, reducing the number of sites
rapidly leads to Hilbert spaces so small that thermalization
is not observed at all. Nevertheless, our results show that
thermalization is possible in surprisingly small systems, as
long as U � J so the system is not close to the noninteracting
limit and as long as the density of states is not too low.
To attempt to see some effects of reducing system size on
thermalization, we consider composite states prepared with
energies E0 in the center of the band where the density of states
is highest. As with our studies of the effects of interaction
strength, this also eliminates unwanted effects due to the
changing bandwidth with system size.

First, let us consider how our results in Sec. III C for the
dependence on coupling strength changes with system size.
Shown in Fig. 11 are plots of σω for different lattice sizes
down to six sites. In each case, the subsystem size was fixed
at two sites and the initial bath width was fixed at δB = 0.5J .
Interestingly, for λ � 1, thermalization is maintained down to
a four-site bath. However, the range of couplings over which
thermalization occurs is greatly reduced. We return to system-
size scaling in Sec. V.

We can also see how our results in Sec. III D for the
dependence on interaction strength, U , change with system
size. We see in Fig. 12 that the larger systems have a
wider range of interaction strengths over which the system
approaches the canonical thermal state (small σω). Moreover,
σω is lower for larger systems at a given U . This is consistent
with our expectation that weakly interacting systems require
larger system sizes for thermalization. We will explore system-
size scaling in Sec. V.
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FIG. 11. (Color online) Closeness to canonical thermal state, σω,
as a function of coupling strength λ for different system sizes L, for
composite energies E0 in the center of the composite energy spectrum.
The number of particles was selected to keep Sz = 0 with the number
of particles equal to L and L − 1, respectively, for even and odd L

(U = J , δB = 0.5J ).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.001  0.01  0.1  1

σ ω

U/J

6 sites
7 sites
8 sites
9 sites

FIG. 12. (Color online) Closeness to canonical thermal state, σω,
as a function of interaction U/J for different system sizes (λ = 0.5).

F. Dependence on initial bath state

The thermal state should not depend on the microscopic
details of the initial bath state. We will now demonstrate that
the thermalization behavior found at long times is independent
of the initial bath state. More specifically, we will vary the
energy width δB of the initial bath state. For all of the numerical
results presented thus far, we have considered initial states of
the form (4) where the initial bath state is a pure state, with
components in the bath eigenbasis nonzero only in a window
of width δB = 0.5J . This was chosen because it is small
compared with changes in the density of states. In Fig. 13,
we show plots of σω, �r , and Teff against λ for values of
δB spanning almost two orders of magnitude. In other words,
these are results for vastly different bath states with the only
constraint that they should be centered at the same energy.

We find that the thermalization behavior is essentially δB

independent for a broad range in δB . Remarkably even up to
δB = 8J , approximately half of the width of the composite
eigenspectrum, we see δB makes virtually no difference to
the initial-state memory, quantified by �r , and the effective
temperature Teff . The distance to the thermal state at long times
is modified slightly by choosing a very large δB , but it should
be noted that ω is itself dependent on the energy width of the
state when this becomes large on the scale of changes in the
density of states.

Conversely, we can make δB so small that there is just one
initial bath eigenstate in the initial product state and virtually
identical behavior to Fig. 13 is seen when λ � 1. However, for
smaller values of λ, fluctuations appear as a function of λ, thus
necessitating a finite δB .

G. Eigenstate thermalization

We now discuss our results in relation to the eigenstate
thermalization hypothesis (ETH). As discussed in Sec. II C,
this hypothesis requires the eigenstate expectation values of
the subsystem projection operator, Ps [defined in Eq. (10)], to
depend only weakly on the exact choice of the eigenstate |A〉.

We expect ETH to be valid in the regime where we found
thermalization in the previous sections; for U = J , this regime
covers a wide range of coupling strengths, 0.1 � λ � 2, with
λ ∼ 1 exhibiting behavior closest to the canonical picture of
thermalization. So, we will now study the dependence of
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FIG. 13. (Color online) �r , σω, and Teff as functions of coupling
strength λ for different bath-window widths δB in units of J . The
composite energy E0 = −2J . The average level spacing � ≈ 10−3J .

eigenstate projections 〈A|Ps |A〉 on the coupling strength at
U = J . We will focus on the projection on to the ground state
of the subsystem in the (ns = 2, sz

s = 0) sector at U = J .
“Perfect eigenstate thermalization” corresponds to the

projection values forming a smooth quasicontinuous function
of composite eigenenergy EA. When this occurs, complete
independence of the initial subsystem state exists. Figure 14
shows histograms of 〈A|Ps=1|A〉. We see that there is some
scatter in 〈A|P1|A〉 for different eigenstates |A〉 that are
close together in energy. There is the least scatter when the
subsystem is closest to the canonical thermal state (small
�r and σω) at λ � 1 for U = J . Greater scatter in the
values of 〈A|P1|A〉 is found when the system starts to lose
thermalization (by our other measures of thermalization) at
small λ � λth = 0.1 and at large λ � 2.

Let us examine the case of λ = 0.5 at U = J more
closely. This shows little scatter, and, hence, good eigenstate
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FIG. 14. (Color online) Histograms (plotted as color scale) of
eigenstate projections p1 = 〈A|P1|A〉 on to the two-site subsystem
ground state for different subsystem-bath coupling λ (U = J , δB =
0.5J ).

thermalization, over a wide range of energies. We quantify the
extent to which eigenstate thermalization holds by measuring
the mean and the standard deviation, σEP, of the scattered
values in each vertical column of histogram bins on the plot
in Fig. 14. This is computed using values within an energy
window of 0.5J . (This reduces the fluctuations in the measured
σEP.) Figure 15 shows the positions of the mean values of
〈A|P1|A〉 and the positions of ±σEP from the mean. We see that
there is indeed good agreement between the mean eigenstate
projections at any particular energy E0 and the canonical
thermal value ω11 as defined in Eq. (6).

Let us now study the departure from eigenstate thermaliza-
tion, measuring it by the increase in the scatter in the eigenstate
projection values. To reduce any bias due to changes in the
density of composite states with λ, we used eigenstates at the
energy E0 = 1.77J which is near the maximum in the density
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FIG. 15. (Color online) The same histogram of eigenstate pro-
jections p1 = 〈A|P1|A〉 from Fig. 14 with λ = 0.5 is shown with
a modified color scale, comparing the thermal values ω11 (black
line) with the mean eigenstate projection from each vertical array
of histogram bins (green line). Positions of one standard deviation
(σEP) either side of the mean of the eigenstate projection are also
shown (blue lines).
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FIG. 16. (Color online) The spread of projection values, σEP, as
a function of subsystem-bath coupling strength λ (hollow squares).
The values of σEP were found by averaging over composite energies
in a window of width 0.5J centered on E0 = 1.77J . (Solid line)
Theoretical estimate (27) for small λ illustrating the scaling σEP ∝
λ−1.

of states for all coupling strengths considered here. The results
are presented in Fig. 16. First, we observe that a minimum in
σEP indeed occurs over the same range of coupling strengths
where other measures of thermalization also show that the
subsystem is close to a canonical thermal state. Second, we find
that, as the subsystem departs from eigenstate thermalization
at low coupling strengths, the increase in σEP with decreasing
λ obeys the relationship

σEP ∝ 1

λ
for λ � 1. (18)

We will discuss this scaling in Sec. IV B.
We also lose eigenstate thermalization if we increase the

coupling strength to λ � 1. As discussed before, we this is
a particular feature of our model where the properties of the
coupling dominate the Hamiltonian.

Finally, recall that we found in Sec. III C that, as λ is
increased beyond unity at U = J , the steady state of the
subsystem departs from the canonical thermal state but the
RDM follows a good fit to the Boltzmann form. This seems to
indicate that the subsystem is in an effective thermal state that
is noncanonical. We can see an indication of this crossover
regime in Fig. 14 for 1 � λ � 3, where the scatter in the
eigenstate projections is still relatively low but the mean
eigenstate projections as a function of E0 depart significantly
from the canonical thermal value ω11, in contrast to the case
at λ = 0.5 (Fig. 15).

In summary, we have shown that eigenstate thermalization
holds and agrees well with other measures of thermalization.
We will demonstrate in Sec. IV B that the statistical behavior of
the eigenstate projections 〈A|Ps |A〉 is consistent with a simple
model of the eigenstates |A〉 as random vectors in the basis of
the subsystem-bath product states |sb〉.

IV. EIGENSTATE OVERLAPS AND THE EIGENSTATE
THERMALIZATION HYPOTHESIS

In Sec. III G, we showed that the eigenstate thermalization
hypothesis holds over a wide range of parameters for our
Hubbard-model system. Deutsch [17] and Srednicki [18]

have suggested that eigenstate thermalization occurs if the
composite system is quantum chaotic. This was demonstrated
theoretically for weak subsystem-bath coupling using results
for the eigenstates of generic (random) Hamiltonians. In
this section, we summarize these arguments and demonstrate
numerically their agreement with our results for our Hubbard-
model lattice. We will then use this framework to explain
the dependence of eigenstate thermalizaton on the coupling
strength discussed in Sec. III G, namely the scaling of the
spread of eigenstate projections, σEP, with coupling strength λ

for λ < 1.

A. The overlap distribution and the local density of states

To be more specific, eigenstate thermalization is concerned
with the eigenstate projections 〈A|Ps |A〉 = ∑

b〈A|sb〉〈sb|A〉.
So, we need to understand the overlap 〈sb|A〉 of the eigenstates
|A〉 of the composite system at nonzero coupling with the
eigenstates |sb〉 of the decoupled system at λ = 0. As for the
eigenstate projections 〈A|Ps |A〉, the overlaps will fluctuate if
we change EA or Esb. However, we can study averages over
energy windows that are narrow on the scale of variation in
the density of states but contain enough states to smooth out
fast fluctuations.

The overlaps themselves are not invariant under a global
gauge transformation and so should have mean zero. Let us
consider, first, the squared overlap |〈A|sb〉|2 whose average
is the variance of the overlaps. This can be interpreted as
the weight of the product state |sb〉 at energy Esb in the
decomposition of the eigenstate |A〉 at energy EA using all
the product states as the basis. In this picture of the composite
eigenstate in energy space, |〈A|sb〉|2 is called the “local density
of states.”

We now discuss some known results for the local density
of states. For a coupling λV between subsystem and bath, we
expect that an eigenstate |A(λ)〉 at EA will consist mainly of
product states |sb〉 with energies Esb close to EA. If the cou-
pling is not strong (λ < 1), the energy range should scale with
the strength of the coupling matrix elements λ|〈sAsB |V |sb〉|,
where |sAbA〉 is the product state corresponding to |A〉 in the
limit λ → 0. To leading order in λ, this can be written as
λ|〈A|V |sb〉|. In this weak-coupling regime, we expect that the
density of state of the bath spectrum is nearly constant over
this range. The mean value, |〈A|sb〉|2, then should be a strong
function of the energy difference �EAsb = EA − Esb but has
only a weak dependence on EA and Esb separately. For a
generic random coupling, we expect a Lorentzian form in the
dependence on the energy difference,

σ 2
Asb ≡ |〈A(λ)|sb〉|2 = λ2|〈A|V |sb〉|2

W 2
L + (EA − Esb)2

(19)
WL = πλ2g(Esb)|〈A|V |sb〉|2,

where g is the density of states of the composite system evalu-
ated at the total energy Esb, taken to be approximately constant
over the energy width of this Lorentzian so g(EA) � g(Esb)
in this range of energy. It may be related to straightforward
perturbation theoretic results [38] to second order in λ. This
result was originally established [39] over half a century
ago for a specific model of random coupling. This result
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FIG. 17. (Color online) Local density of states, σ 2
Asb, as a function

of �E = EA − Esb for the Hubbard model with U = J , at weak
coupling λ = 0.1. The averaging uses the overlaps of all eigenstates
|A〉, with |s〉S = |↑,↑〉 and |b〉B selected within energy J from the
center of the bath spectrum. (Solid line) Lorentzian with width WL

as given by Eq. (20).

was later shown to hold more generally. However, we note
that this result does not take into account the specific case
of coupling a bipartite system. Moreover, Eq. (19) is only
strictly accurate in the general case for energy differences
where |EA − EB | > WL. At smaller energy scales, nonpertur-
bative mixing occurs and it is no longer possible to associate
eigenstates with a specific unperturbed state. However, the
presence of nonperturbative mixing between states separated
by less than WL leads us to make the assumption that structures
in the coupling matrix, such as elements which are identically
zero because of the precise nature of the Hubbard-model
coupling, are washed out by this mixing. We should also
stress that this Lorentzian form is not expected to hold when
λ ∼ 1. However, this is sufficient for us to use this form in
the discussion of this section where we are concerned with
the behavior of the system at weak coupling. We note that,
at stronger coupling, we find a Gaussian form for the local
density of states.1

We can make an estimate for the width WL in the Lorentzian
form (19). As discussed above, the overlap 〈A|V |sb〉 can be
approximated by 〈sAbA|V |sb〉 to leading order in λ. So, we
see that its mean-square value should be the mean-square value
V 2 of an element of the coupling matrix 〈s ′b′|V |sb〉. We will
see in Eq. (31) in Sec. V that V 2 � J�/2 for an interacting
system near half filling. If we further approximate the density
of states g(Esb) with the average level spacing �, we see that

WL � πλ2J

2
(for U ∼ J ). (20)

The local density of states, σ 2
Asb, for the Hubbard model at

λ = 0.1 and U = J is shown in Fig. 17. It fits well to the
Lorentzian form (19) with WL given by Eq. (20).

We can also discuss the full distribution of the overlaps
〈sb|A〉. For a system with time reversal symmetry, 〈sb|A〉 can
be constructed to be real. Our numerical results for a system at
U = J and λ = 0.1 are shown in Fig. 18. This is a histogram
using the overlaps of all the eigenstates |A〉 with a subset of

1In preparation.
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FIG. 18. (Color online) Two-dimensional histogram showing the
distribution of the overlaps 〈A|sb〉 as a function of the energy differ-
ence EA − Esb for the Hubbard model with U = J at weak coupling
λ = 0.1. The histogram includes the overlaps of all eigenstates |A〉,
with |s〉S = |↑,↑〉 and |b〉B selected within energy J from the center
of the bath spectrum. The histogram bin widths are 0.02J and 0.002J

on the energy and overlap axes, respectively.

product states |sb〉 where the bath states are within an energy
J of the center of the bath spectrum. We can see that the width
of the distribution is a strong function of the energy difference
�EAsb between |A〉 and |sb〉. The widest distribution is found
at EA = Esb. In this case, the states |sb〉 effectively form a
random basis for the eigenstates |A〉.

The distributions appear to be controlled by a single
variable, the local density of states. In other words,

P (X = 〈sb|A〉) = σ−1
AsbF (X/σAsb) (21)

for a normalized distribution F (u) with unit variance. This is
demonstrated in Fig. 19 for our data at five different �EAsb.
The data have been scaled using the expected width σAsb

given by Eqs. (19) and (20). So this data collapse contains
no adjustable parameters. The distribution F (u) has an excess
kurtosis γ = 〈u4〉 − 3〈u2〉2 � 2 numerically. (γ would be zero
for a normal distribution.) In Fig. 19, we see that our data are
well approximated by a hyperbolic secant distribution which
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FIG. 19. (Color online) Distribution of overlaps X = 〈A|sb〉 at
weak coupling λ = 0.1, scaled by the width σAsb(�E = EA − Esb)
at different values of �E. (Same system parameters as in Fig. 18.)
(Solid line) Hyperbolic secant distribution with zero mean and unit
variance. (Inset) Log plot of the same data.
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has an excess kurtosis of 2,

F (u) = 1

2 cosh(πu/2)
. (22)

We should point out that the data collapse to this distribution
fails at strong coupling. This may be due to the fact that the
width of the distribution σAsb becomes large enough that each
eigenstate |A〉 involves bath states in a wide range of energies
over which the bath density of states varies significantly.

We note that our form for the overlap distribution differs
from what may be expected from random matrix theory
[17,18,23] for similar types of overlaps, which suggests that
they should follow a normal distribution at weak coupling. This
indicates that the overlap distribution may depend details of the
coupling Hamiltonian or details of random matrix ensemble.

Accepting the distribution (21) as the distribution for
the overlaps, the distribution P (2) for the squared overlaps
|〈sb|A〉|2 can be derived,

P (2)(|〈A|sb〉|2 = Y ) = F (
√

Y/σAsb)

σAsb

√
Y

, (23)

which has a mean of σ 2
Asb and a variance of (2 + γ )σ 4

Asb. In
the case where the overlap distribution is so wide that |A〉 is
effectively a random vector in the basis of |sb〉, we have a
Porter-Thomas distribution for the local density of states.

To summarize, we have shown that our numerics agree
with results for the local density of states arising from generic
random Hamiltonians. This controls the overlap distribution.
We point out that in this simple picture of the statistics of
the overlaps, any correlations between different eigenstate
overlaps are implicitly neglected. We will now proceed to
understand eigenstate thermalization in terms of this simple
picture of eigenstate overlaps 〈ab|A〉.

B. Scaling of eigenstate thermalization with coupling strength

In Sec. III G, we found that the degree of eigenstate
thermalization improves on increasing the strength of the
subsystem-bath coupling. In the previous section, we have
seen (19) that, in parallel, increasing the coupling strength
broadens the local density of states. We expect that, as the
distribution of overlaps 〈sb|A〉 broadens such that more basis
states |sb〉 participate in each eigenstate, the fluctuations in the
projection values 〈A|Ps |A〉 will be reduced in accordance with
the law of large numbers. We will show this to be the case and
find the λ dependence for the spread of eigenstate projections
σEP, found numerically in Sec. III.

From its definition (10), the projection operator Ps sums
over all bath states. In our model of the overlaps, 〈A|Ps |A〉 =∑

b |〈sb|A〉|2 is a sum over many independent variables. Its
mean and variance are given by

μEP =
∑

b

σ 2
Asb, σ 2

EP = (2 + γ )
∑

b

σ 4
Asb. (24)

For the full distribution of these quantities, see Appendix A,
which applies the central limit theorem to our model distribu-
tion for the overlaps.

First, we consider the mean μEP,As for a given subsystem
state s. From our model (19), this is the sum over all bath
states (with the necessary spin and particle number) using

a Lorentzian window of energy centered at εb = EA − εs .
In other words, the answer should be proportional to the
bath density of states at EA − εs . Furthermore, we have the
normalization condition 〈A|A〉 = ∑

sb σ 2
Asb = ∑

s μEP,As =
1. So, at fixed A, μEP should give the normalized probability
of finding the subsystem in state s according to the Gibbs
distribution,

μEP =
∑

b

σ 2
Asb =

∑
b σ 2

Asb∑
s

∑
b σ 2

Asb

� gB

(
EA − εs,N − ns,S

z − sz
s

)
g(EA,N,Sz)

= ωss(EA), (25)

where EA, N , and Sz are the energy, number, and spin of the
state |A〉, gB(εb,nb,s

z
b) is the density of bath states with energy

in an interval about εb, nb particles, and spin sz
b . Thus, we

see that a simple model of the eigenstate overlaps gives the
canonical thermal distribution [10,17,18].

We next address the spread of the projection values σEP.
Using the Lorentzian form (19) for the local density of states
with width WL, and following the same approximations as
above, the sum over σ 4

A,sb is

∑
b

σ 4
A,sb =

∫
gB(εb)W 2

L

/
π2g2(EA)[

W 2
L + (EA − εs − εb)2

]2 dεb

� gB(EA − εs)

g2(EA)

∫ (
W 2

L

/
π2

)
dεb[

W 2
L + (EA − εs − εb)2

]2

= ωss(EA)

2πWLg(EA)
. (26)

This means that the spread of the projection values is given by

σEP =
√

(2 + γ )ωss(EA)

2πWLg(EA)
= 1

πλ

√
(2 + γ )μEP,As

Jg(EA)
, (27)

where we have used our estimate (20) for the Lorentzian width
WL. Note that 1/g(EA) is of the order of the average level
spacing �.

Therefore, we find that σEP is proportional to λ−1 as shown
numerically in Fig. 16. Moreover, we see that σEP ∼ √

� so
the fluctuations in the projection values are small for large
systems, in accordance with the law of large numbers for a
quantity that is a sum over many states.

We stress that the above results hold for any distribution of
matrix elements 〈A|sb〉, of sensible form, where the central
limit theorem applies. Furthermore, the result (25) holds quite
generally for any sensible form of σ 2

Asb which is a function
of EA − Esb with a peak at EA − Esb = 0. Although we have
not derived it here explicitly, it should also be noted that the
off-diagonal elements of the reduced density matrix, which
were found to be virtually zero numerically, are expected to be
zero from this model of eigenstate overlaps. Indeed, the mean
values of the eigenstate expectation values for off-diagonal
elements are clearly zero due to the random signs of eigenstate
overlaps.

V. CROSSOVER TO THERMALIZATION

In this section, we will try to understand the onset
of thermalization using simple theoretical arguments. In
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particular, we explore the effects of system size on the
thermalization for the cases of strong and weak interactions
in the Hubbard model. The extent to which the effects of
system size on thermalization may be seen numerically is
limited, as discussed in Sec. III E. We proceed to identify a
minimum coupling strength λnp below which thermalization
cannot occur.

To begin to see thermalization, the coupling Hamiltonian
λV must be large enough to mix the λ = 0 eigenstates
nonperturbatively. Otherwise, the system would have memory
of its initial state. This will provide a theoretical lower bound
to the coupling strength needed for thermalization. We will
then compare this with the threshold for thermalization from
our numerical results.

For small coupling strength (λ � 1), the overlap between
an eigenstate |A〉 and a subsystem-bath product state |sb〉 takes
the form

〈sb|A〉 � δsAsδbAb + λ

[ 〈sb|V |sAbA〉
EsAbA

− Esb

]

+ λ2

[ ∑
s ′b′ �=sAbA

〈sb|V |s ′b′〉〈s ′b′|V |sAbA〉(
EsAbA

− Esb

)(
EsAbA

− Es ′b′
)

−1

2

|〈sb|V |sAbA〉|2(
EsAsB

− Esb

)2

]
(28)

to second order in λ, where the state |sAbA〉 is the composite
eigenstate |A〉 to zeroth order in λ. (Note that V has no diagonal
elements in this basis.) The threshold for nonperturbative
mixing may be considered to be met when the second-order
term equals the first-order term in magnitude. Note that the bath
states |b〉B coupled by V have different quantum numbers from
the given state |bA〉B so there is no level repulsion between |b〉B
and |bA〉B . We expect the nearest bath state is on average �B/4
away in energy. Generically, this occurs around a coupling
strength λnp which we define by

λnp[V 2]
1
2 = �B

4
, (29)

where �B is the bath level spacing and V 2 = |〈s ′b′|V |sb〉|2
is the typical magnitude of the square of a coupling matrix
element. We will estimate these below for interacting and
noninteracting systems.

The quantity λnp should be the coupling strength at which
one starts to see a departure from complete memory of the
initial state at long times. We therefore expect that this quantity
should be similar to the quantity λth, introduced in Sec. III,
which measures the crossover from the nonthermalized regime
to thermalization. Note that λth has been defined with an
arbitrary choice of a threshold for σω at 25%. Its actual value
will change with the specific criterion chosen to mark this
threshold. However, one can use the data from Fig. 11 to show
that the relative values for λth for different system parameters
are approximately the same for a range of choice of thresholds.
So, it is reasonable to discuss a relationship between λnp and
λth. In particular, it is expected that the two quantities should
be proportional to each other for a given subsystem size.

The rest of this section is dedicated to understanding the
scaling of λnp with system size. First, we will consider the
case of finite interactions U ∼ J before, in the subsection

following, discussing the case of virtually free fermions where
U � J .

A. System-size scaling for interacting fermions

We will now deduce the scaling of λnp with system size
for the Hubbard model with interactions U ∼ J . To find
the theoretical scaling of λnp with system size requires a
knowledge of the scaling of both the energy spacing between
coupled states and the scaling of the magnitude of the typical
matrix elements 〈sb|V |s ′b′〉 with system size. A characteristic
submatrix of the coupling matrix 〈sb|V |s ′b′〉, with s and
s ′ fixed, is shown in Fig. 20 for the Hubbard model with
interaction strength U = J . The nonzero elements of the
coupling matrix form a band. This can be explained by the
single-particle nature of the coupling. In the limit of zero
interactions, the coupling involves a single particle hopping
into, or from, one of the single-particle states in the bath.
Therefore, the full width, 2W , for bath states into which a
particle may hop is 4J , the single-particle bandwidth. The
presence of interactions preserves the banded structure of the
coupling matrix and, provided U � J , the banded matrix is not
significantly broadened beyond 4J . However, when U ∼ J ,
the details of single-particle bath states are blurred as the
single-particle quasiparticle weight is significantly reduced
from unity.

First, we estimate the magnitude of a matrix element
〈sb|V |s ′b′〉. To keep the description straightforward, we
consider the case of exactly half filling. We will compute this
from the average for the sum of all the squared matrix elements
TrV 2 = ∑

ss ′bb′ |〈sb|V |s ′b′〉|2. The calculation of this trace
can be found in Appendix B. We find

Tr(V 2) = 2MJ 2, (30)

where M is the dimension of the Hilbert space of the composite
system. We now need to count the number of nonzero matrix
elements in the coupling matrix 〈sb|V |s ′b′〉. Since the coupling
involves the hopping of a single particle of a given spin state
between the subsystem and bath, any given subsystem state s,
will only have nonzero matrix elements with at most four other
subsystem states s ′, corresponding to changing the particle
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FIG. 20. (Color online) Coupling matrix elements linking the
ns = 3, sz

s = 1
2 and ns = 2, sz

s = 1 subsectors for the Hubbard model
with U = J . Color scale indicates the magnitude of the matrix
elements. The banded diagonal structure is typical for the coupling
of all subsystem states. Sizeable matrix elements lie within a band of
width 4J , with some very small matrix elements lying outside of the
band due to the finite interaction strength U .
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number or spin by ±1. So, there should be approximately
4MS such nonzero blocks in the coupling matrix where MS is
the dimension of the subsystem Hilbert space. Each block has
a banded structure similar to the one shown in Fig. 20. Note
that the bath states, b and b′, connected by 〈sb|V |s ′b′〉, belong
to subsectors of the bath spectrum with different quantum
numbers. For a band of full width 2W , the banded block should
have MB(2W/�B) nonzero elements, where �B is the average
bath level spacing and MB is the total number of bath states
in the bath subsector of a given number and spin. So the
total number of nonzero elements in the coupling matrix V

is approximately 4MSMB(2W/�B) � 8MBW/�. Therefore,
the mean-squared value of each coupling matrix element, V 2,
is

V 2 � 2MJ 2

(8WMSMB/�B)
� J 2�B

4W
� J�B

8
, (31)

using 2W = 4J which is valid for the case in Fig. 20
where U ∼ J as discussed above. So, from (29), we see that
nonperturbative mixing occurs when λ reaches

λnp =
√

�B

2J
�

√
MS�

2J
. (32)

For the purposes of understanding how this threshold scales
with system size, we have approximated the bath level spacing
as a simple multiple of the average level spacing � of the
composite system, �B ≈ MS�.

We have arrived at this condition using simple arguments
based on perturbation theory. A similar criterion can be
obtained using our results for eigenstate thermalization. In
terms of the eigenstate projection values, the system does not
thermalize if the spread of the projection values, σEP, becomes
comparable to the mean μEP. We have shown in Eq. (25) that
the latter gives the canonical state ω which is of the order of
1/MS , where MS is the number of states in the subsystem.
Thus, from Eq. (27), the condition that σEP < μEP for a given
total energy E0 and a subsystem state s becomes the criterion
that λ > λETH(E0,εs) where

λETH =
√

2 + γ

JgB(E0 − εs)
. (33)

Since 1/�B is simply the average of gB over the bath sector,
we see that the thresholds λnp and λETH, based on different
criteria, describe essentially the same crossover. λETH is larger
than λnp, as might be expected, since the latter marks the loss
of memory of the initial state while the latter marks the onset
of the canonical thermal state.

It remains to establish how the level spacings � depends
on the system size. Assuming the cosine dispersion for a
tight-binding band and neglecting the broadening due to finite
U , the many-body bandwidth for L sites is 8JL/π at half
filling. This is found approximately by finding the maximum
and minimum composite energy eigenvalues, ±4JL/π , by
summing the energies of the L/2 highest and L/2 lowest
single-particle eigenstates. Therefore, the mean level spacing
is

� = 8JL

Mπ
. (34)
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FIG. 21. (Color online) A comparison of λth, λnp, and λETH for
different system sizes L when U = J . λth is set as the coupling
strength for which σω falls to 0.25 for composite energies E0 in the
center of the band. λnp is found using (32) with (34). λETH is obtained
from Eq. (33).

At half filling, the Hilbert-space dimension is

M =
[

L!(
L
2

)
!
(

L
2

)
!

]2

. (35)

Therefore, using (32) and Stirling’s approximation for large L,
we find that the threshold for the loss of memory of the initial
state which allows the onset of thermalization occurs at

λnp(U ∼ J ) = 4
√

2L 2−L. (36)

Reassuringly, λnp tends to zero as L tends to infinity so, for
baths in the thermodynamic limit, arbitrarily small couplings
lead to thermalization, as we expect [40]. For a lattice of nine
sites we estimate this sets λnp � 0.054.

We now compare λnp, for different lattice sizes, with λth.
To allow easy comparison between different system sizes, the
composite energy in the center of the band will be considered
in each case. As already discussed, the value of σω where the
value λth is recorded is somewhat arbitrary. However, we find
good agreement between λth and λnp, as is shown in Fig. 21,
with λth defined using a threshold of σω = 25%. If thresholds
other than σω = 25% are considered, we find that λth changes
approximately by a multiplicative constant for all L. Therefore,
the good agreement between the explicit values for λth and
λnp is not a remarkable feature of Fig. 21. However, that the
two quantities are found to scale in virtually the same way
for the limited numerical data available provides numerical
evidence to support the system-size scaling of thermalization
(36) derived above.

B. System-size dependence for weakly interacting fermions

For the case of almost free fermions (0 < U � J ), ther-
malization was not seen in the nine-site Hubbard ring. First,
we expect that the system does not thermalize to a canonical
distribution at all at exactly U = 0. This is because it is an
example of an integrable system with many extra conserved
laws. In this case, the occupancies of the single-particle
eigenstates are conserved. However, the system should be
able to thermalize for nonzero interactions which will scatter
particles between single-particle eigenstates. Thus, the system
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FIG. 22. (Color online) Coupling matrix elements linking the
ns = 3, sz

s = 1
2 and ns = 2, sz

s = 1 subsectors for the Hubbard model
with U = 0.01J . Color scale indicates the magnitude of the matrix
elements. The banded diagonal structure is typical for the coupling
of all subsystem states. The finite matrix elements lie within a band
of width 4J but, in contrast to Fig. 20, the matrix appears striped.

should eventually reach a steady state. This may take a long
time at small U , determined by a time scale that diverges
as U → 0. A discussion for the time scale for relaxation is
beyond the scope of this paper.

For canonical thermalization, this steady state should have
no memory of the initial state, provided that the coupling λ

is large enough to mix in many eigenstates of the decoupled
system. We can now repeat the argument for nonperturbative
mixing in the previous section for the case of small but nonzero
U . The major difference from the case of U ∼ J above is
the structure of the coupling matrix. Shown in Fig. 22 is the
striped form of the coupling matrix. Without interactions, the
bath eigenstates are simply Slater determinants of free-fermion
single-particle states. Therefore, for each spin, the coupling
Hamiltonian has nonzero matrix elements only at energies
corresponding to the L − 2 single-particle bath states for each
spin.

When considering the threshold for nonperturbative mix-
ing, it must now be noted that coupled states differ not by the
level spacing � but by the bath single-particle level spacing
�1, where �1 ≈ 4J/(L − 2). The magnitude of TrV 2, as given
by Eq. (30), is independent of U . Therefore, using (32) with
� replaced by �1, we see that λnp for U � J should be given
by

λnp(0 < U � J ) = 2

√
2

L − 2
. (37)

This yields a value λnp � 1.1 for the nine-site lattice. It is,
therefore, clear why initial-state independence is not seen
for the nine-site lattice when U � J : The threshold for
nonperturbative coupling occurs at a coupling strength some
20 times bigger than for the Hubbard model with interactions
U ∼ J . Equation (37) indicates that the U � J case needs a
lattice with 2700 sites in order that λnp falls to the same value
as for the U ∼ J interacting case.

We have argued that thermalization for small systems
occurs at smaller system sizes for the interacting system
compared to the noninteracting system. We will now ask how
the crossover from the U � J regime to the U ∼ J regime
occurs. This should occur when the width of the stripes in the
coupling matrix elements seen in Fig. 22 becomes comparable

to the single-particle level spacing �1. The stripe width should
be the quasiparticle decay rate due to interparticle collisions.
At small U , the decay rate can be estimated using Fermi’s
golden rule. The matrix elements are proportional to U and
the density of single-particle states is proportional to 1/J . So
for single-particle energies far from the Fermi level so we can
neglect effects from Pauli exclusion, the decay rate should be
∼U 2/J . This becomes comparable to �1, when U reaches
Uth ∼ √

J�1 ∝ 1/
√

L − 2. This estimate gives the scale for
the interaction strength beyond which we see thermalization
in the numerical results shown in Fig. 12. We have only four
system sizes and there is a strong even-odd effect in the system
size, making it difficult to verify our prediction quantitatively.

VI. EXPERIMENTAL IMPLICATIONS

Models such as the Hubbard model studied in this work can
be simulated readily using cold atoms in optical lattices [41].
Thanks to recent rapid progress in addressing single sites in
optical lattices [20,42–44], models similar to those we studied
here can now, in principle, be implemented and measured
in systems of ultracold atoms trapped in optical lattices. In
particular, single-site imaging capability means that atom
occupation (albeit up to number modulo two) and the spin
species can be determined accurately at a few lattice sites that
will form the subsystem. This means the state of the subsystem
can be probed directly. Single-site addressability means the
subsystem and the bath can be initialized with pure quan-
tum states with well-defined number and spin. Furthermore,
instead of focusing the probe laser beam on a single site,
the laser can be aimed accurately (to within a tenth of the
lattice spacing [43]) between two neighboring sites, to tune
the lattice potential locally and thus adjust the coupling λJ

between the subsystem and bath. Both λ � 1 or λ < 1 regimes
can be accessed with a blue- or red-detuned laser focused
between the sites.

We expect our findings to be seen for bath state with a
relatively well-defined energy (which overlaps bath eigenstates
only within a range of energies much smaller than the many-
body bandwidth), far from a strongly correlated ground state.
We should point out that, although we focused on a specific
Hamiltonian with specific initial conditions, we believe that
our results are generally applicable. For instance, we obtain
similar results for Bose and fermion Hubbard models. Also,
although we have used an initial bath state (4) consisting
of bath eigenstates within a narrow energy window, our
results (Fig. 13) are not sensitive to the width of this energy
window. Our results should hold for initial states spanning
a larger window of bath energies which would be easier to
prepare experimentally. Our results also do not change if we
introduce random coefficients in the linear superposition of
bath eigenstates or change the shape of the window, consistent
with the results of Ref [14].

Moreover, experimental systems will be larger and contain
many more atoms than in our simulation. We have shown
that the threshold λth in the coupling strength is exponentially
small in the system size for large systems. So, we believe
it would be possible to see thermalization at smaller λ in
experimental systems, even if the initial bath state is simply a
single eigenstate.
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We should also ensure that the time needed for thermaliza-
tion to be seen should be within the lifetime of an optical lattice
experiment, typically hundreds of milliseconds or more. Our
previous work [36] for systems with U � J shows that the
relaxation towards equilibrium occurs with a relaxation rate
∼λ2J for weak coupling (showing exponential decay) and
∼λJ when λ ∼ 1 (showing Gaussian decay). (See Fig. 4 of
Ref. [36].) For current optical lattice experiments with 40K,
using an optical lattice laser wavelength of 1064 nm, the
hopping matrix element J is approximately 380 Hz for a laser
strength V0 of 5 times the recoil energy (ER), and ≈100 Hz
for V0 = 10ER . Hence, expected relaxation time scales when
V0 = 5ER range from about 3 ms at λ = 1 in the Gaussian
regime, to about 30 ms at λ = 0.1 in the exponential regime.
(The corresponding time scales for V0 = 10ER range from
10 ms to 100 ms.) For the other commonly used species 6Li,
the lighter mass means shorter time scales than for 40K. For an
optical lattice laser wavelength of 1064 nm, the corresponding
Gaussian relaxation time scale is about 0.4 ms and 1.5 ms for
exponential regime, with V0 = 5ER . Hence, for optical lattice
laser strengths that are not too large, the relaxation times are
well within experimental lifetime of the cold atom systems.

Finally, we point out that it is not necessary to use a ring
or one-dimensional geometry (as studied in this paper) to see
the thermalization physics we have presented. As long as the
inelastic scattering length is small compared to the size of the
bath, we expect the qualitative aspects of thermalization to
survive, although the precise values for the various crossovers
and thresholds will change depending on the dimensionality
of the bath and the nature of subsystem-bath coupling.

VII. CONCLUSIONS

We have presented an account of the thermalization of a
local subsystem within a closed quantum system described by
a lattice of interacting fermions. The subsystem thermalizes
in the sense that its reduced density matrix approaches
the form expected for a canonical thermal ensemble. This
thermalization occurs over a wide range of system parameters
for surprisingly small systems. The equilibrium state depends
very little on the strength of subsystem-bath coupling provided
it meets the following two conditions. Most importantly,
the coupling strength needs to be large enough to mix
the eigenstates of the uncoupled system nonperturbatively.
Second, the coupling strength must not be so large that the
boundary effects associated with the coupling dominate the
behavior. We also find that small lattice clusters thermalize for
a range of interaction strengths, provided U is large enough
that the system is away from integrability at U = 0. We were
also able to demonstrate that the energy width of the initial
pure state of the bath has virtually no effect on the subsystem
state at long times. This was found for a range of energy widths
spanning nearly two orders of magnitude.

Numerically, we demonstrated the relationship between
subsystem thermalization at long times and the eigenstate
thermalization hypothesis. We further quantified the extent to
which eigenstate thermalization holds by measuring the spread
of eigenstate expectation values for subsystem occupation
probabilities. Using generic results for the eigenvectors of
perturbed quantum systems in random matrix theory, we were

able to derive theoretically a coupling-strength threshold λETH

for thermalization which is in qualitative agreement with
our numerical threshold λth. This establishes a link between
the eigenstates of weakly coupled bipartite quantum systems
and eigenstate thermalization. As this result employed only
random matrix theory, our conclusions should be quite general
for nonintegrable systems, provided that the system is prepared
at an energy far from the ground state where correlations may
become important.

We were also able to understand the system-size scaling
of the breakdown of thermalization seen in our numerics
for interacting fermions by considering a coupling-strength
threshold, λnp, below which nonperturbative mixing of λ = 0
eigenstates does not occur. We demonstrated that this non-
perturbative threshold λnp has virtually the form as λETH.
Moreover, these have the same system-size scaling as the
empirical λth.

We deduced that these thresholds for thermalization should
tend to zero exponentially in the system size. We also
attribute the lack of nonperturbative mixing as the reason for
the lack of thermalization for the weak-interaction limit of
the small systems we studied. For very large Hubbard rings,
we predict that nonperturbative mixing does occur for any
nonzero interaction U .

Note added in proof. Recently, we became aware of
unpublished work by Neuenhahn and Marquardt [45] which
also studies eigenstate thermalization using random-matrix-
theory results for eigenstate overlaps. The authors study the
momentum distribution of interacting fermions on an entire
closed system, in contrast to the local observables on bipartite
quantum systems considered in this work.
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APPENDIX A: OVERLAPS AND RELATED
DISTRIBUTIONS

We start with the distribution of overlaps X = 〈sb|A〉 in
Eq. (21) with zero mean, variance 〈X2〉 = σ 2

Asb, and fourth
moment 〈X4〉 = (3 + γ )σ 4

Asb. Since the projection P A
s is given

by
∑

b〈A|sb〉〈sb|A〉, we first consider the distribution, P (2) for
|〈A|sb〉|2,

P (2)(|〈A|sb〉|2 = YAsb)

=
∫ ∞

−∞
dXAsbP (XAsb)δ

(
YAsb − X2

Asb

)

= 1

σAsb

√
YAsb

F

(√
YAsb

σAsb

)
, (A1)
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which has mean σ 2
Asb and variance (2 + γ )σ 4

Asb. The eigenstate
projection values then have the distribution P EP, given by

P EP
(
P A

s = W
) =

MB∏
i=1

[∫ ∞

0
dYiP

(2)(Yi)

]
δ

(
W −

MB∑
b=1

Yb

)
,

(A2)

where MB is the total number of bath states and, since A and
s are fixed, the notation is abbreviated such that YAsb −→ Yb.
Since this is a sum of many independent random variables,
albeit from different probability distributions, it is reasonable
to ask if a central limit exists. Indeed, the Lyapunov condition
for a generalized central limit does hold [46]. To find this
central limit, we adopt the standard procedure of factorizing
the integrals in Fourier space. On taking the Fourier transform

P̃ EP(k) =
∫ ∞

0
dWeikWP EP(W ), (A3)

the contributions from each of the bath states factorize such
that

P̃ EP(k) =
∏
b

P̃
(2)
b (k), (A4)

where

P̃
(2)
b (k) =

∫ ∞

0
dYb eikYb P (2)(Yb)

� 1 + ikσ 2
Asb − 3 + γ

2

(
kσ 2

Asb

)2
, (A5)

where the series has been truncated to second order in k. The
logarithm of P̃ EP(k) takes the form of the series

ln P̃ EP(k) �
∑

b

[
ikσ 2

Asb −
(

1 + γ

2

)(
kσ 2

Asb

)2
]
. (A6)

The coefficient to the term linear in k is simply iμEP and the
coefficient to the k2 term is −σ 2

EP/2, where μEP and σEP are
defined in Eq. (24). We have dropped terms of higher order
of the form

∑
b(kσ 2

Asb)n. Using (19) and following the same
argument that leads to Eq. (26),

kn
∑

b

σ 2n
A,sb ∼ knμEP,As

[WLg(EA)]n−1
, (A7)

where g(EA) is the density of states at EA and ωss(EA) is
the reduced density matrix for the canonical thermal state (6).
Therefore, we see that the truncation of the series is reasonable
for k � gWL ∝ λ2J/�.

On re-exponentiating the series, we see the bulk of the
distribution P̃ EP(k) may be described accurately with k up to
the scale of 1/σEP ∝ (J/�)1/2, since the central limit only
breaks down at k ∼ J/�. (This condition is readily met in
our numerics when the coupling strength λ is large enough
for the subsystem to approach thermalization.) Exponentiating
and inverting the Fourier transform yields the distribution for
eigenstate expectation values,

P EP(W ) = 1√
2πσEP

exp

[
− (W − μEP)2

2σ 2
EP

]
, (A8)

which is a normal distribution with mean μEP and variance
σEP.

APPENDIX B: COUPLING MATRIX

In this section, we estimate the magnitude of a matrix
element of the coupling matrix V as defined in Eq. (3).
As discussed in Sec. V, the coupling matrix involves only
single-particle hopping between the subsystem and the bath.
So it should connect states not further apart in energy than the
single-particle bandwidth 4J .

We will consider the coupling matrix to be a banded
matrix where the nonzero elements form a band of full width
2W = 4J . While enumerating the size of individual matrix
elements is not possible without full diagonalization of the
λ = 0 Hamiltonian, the quantity Tr V 2 is basis independent
and may be found readily in the Fock basis, with states
|Fi〉, where particles are localized. In this case, Tr(V 2) =∑

ij |〈Fi |V |Fj 〉|2.
The matrix V does not change the total particle number. To

keep the description straightforward, we consider the case of
exactly half filling. This is demonstrated in Fig. 23. For each
basis state 〈Fi |, there are at most only four other basis states
|Fj 〉 which are related by hopping a single fermion (spin up
or down) between the subsystem and the bath via either one
of the two subsystem-bath links. As the lattice is taken to be
exactly half filled, for each spin and for each topological link
between subsystem and bath, half of the Fock states have a
filled site adjacent to an empty site across each coupling link.
This diagram shows four possible occupations of two sites
(across the coupling link at i = 2 and 3) by spin-up fermions,
irrespective of the configuration of spin-down fermions on
these sites. At half filling, the full L-site Fock states may
be divided up into four groups containing equal numbers of
states, with each group having the spin-up occupations A,
B, C, and D (as labeled in the figure). Each state in groups
A and B can couple to one other Fock state, with matrix
element λJ , but states in groups C and D couple to no other
Fock states. Spin-down fermions do not affect these matrix
elements.

Therefore, each spin and each subsystem-bath link con-
tributes MJ 2/2 to the trace where M is the dimension
of the Hilbert space of the composite system. There are
contributions from two links and two spin species. Hence, we
obtain

Tr(V 2) = 2MJ 2. (B1)

B

A

C

D

Subsystem

site i=2

Bath

site i=3

FIG. 23. (Color online) A diagram showing four possible occupa-
tions of two sites (across the coupling link at i = 2 and 3) by spin-up
fermions, irrespective of the configuration of spin-down fermions on
these sites.
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