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Light scattering from ultracold gases in disordered optical lattices
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We consider a gas of bosons in a bichromatic optical lattice at finite temperatures. As the amplitude of the
secondary lattice grows, the single-particle eigenstates become localized. We calculate the canonical partition
function using exact methods for the noninteracting and strongly interacting limits and analyze the statistical
properties of the superfluid phase, localized phase, and the strongly interacting gas. We show that those phases
may be distinguished in experiment using off-resonant light scattering.
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I. INTRODUCTION

In 1958, Anderson proposed a mechanism that explained
the absence of conductance in certain types of media [1].
By considering the propagation of matter waves through
a medium containing randomly distributed impurities, he
discovered that under some conditions the single-particle
states become exponentially localized and the propagation
is blocked. Anderson argued that the effect occurs due to
destructive interference of waves, therefore it can be observed
both for quantum matter waves and for classical waves. So
far, Anderson localization (AL) has been reported for acoustic
waves [2], microwaves [3], and light [4]. It has been also
realized in ultracold atomic gases confined in optical random
potentials [5,6]. In comparison to other physical systems,
ultracold atoms offer unique possibilities of control of both
the shape of the external potential and atomic interactions [7].
Disordered potentials can be generated either by use of the
laser-speckle pattern [8,9] or a two-color optical lattice [10,11].
In the former case, the potential is truly random, while in the
latter the system is quasiperiodic.

Localization properties depend strongly on the form of the
potential and the dimensionality of the system. It is known
that in one dimension, AL is present even for arbitrarily small
random potential [12–14]. However, for a pseudorandom po-
tential, such as the two-color optical lattice, there is a transition
to localized states only at certain disorder strength [15].

One of the most important challenges is to understand
the interplay between the disorder and interactions. Adding
the interactions may lead to novel quantum phases, such as the
Bose glass phase, which appears in addition to superfluid and
Mott insulator phases [16,17]. The phase diagram of such
systems can be complicated and hard to obtain theoretically
(see, e.g., [18,19]). Another challenge is to include the role of
finite temperature, which excites the particles and suppresses
localization.

Detecting and studying the correlation properties of the
quantum phases in experiment is not easy as well. The usual
detection scheme is to switch the trap off and let the atoms
expand for a certain time, measuring the interference pattern
[20]. However, the information provided by this method is
very limited [21], in particular in case of disordered lattices.
Therefore, new experimental schemes have been developed,
e.g., based on the noise correlation measurements [22,23].
An alternative approach, which allows for nondestructive
measurements, is based on scattering of light. This has been

recently realized experimentally for atoms in optical lattices
where the far-field pattern in coherent light scattering from a
Mott insulator has been observed [24]. So far, methods based
on atom-light interactions have been proposed for several
various situations, such as detection of the Bose-condensed
phase [25], condensate fluctuations [26], superfluidity, ther-
mometry, and fractional particle-number detection in Fermi
gases [27–30], and for detection of quantum phases in optical
lattices [31–34]. The spectrum of weak and far-detuned light
depends strongly on the static structure factor of the inves-
tigated system [21,32,34], which carries information about
the density-density correlations and the energy spectrum. The
structure factor is also accessible via Bragg diffraction [21,35].
The phases of strongly correlated systems can also be detected
using quantum-noise-limited polarization spectroscopy [36].

In this work, we consider the scattering of light as a
possible tool to detect the effects of Anderson localization
in an ultracold gas of bosons. We show that similarly to
regular optical lattices, the light can be used to discriminate
different phases existing in disordered systems. As a first step
to describe the process of light scattering, we need to determine
the correlation functions in the ultracold gas. To this end,
we consider a one-dimensional Bose gas in a bichromatic
optical lattice. We assume that the size of the external trap
is much larger than the lattice constant, which allows us
to treat the system assuming periodic boundary conditions
without external trap. For simplicity, we focus on two limits
when the partition function can be found exactly. One is the
noninteracting gas described by the Aubry-Andre Hamiltonian
and the other is strongly interacting gas with negligible
interwell tunneling. We calculate the mean, fluctuations, and
correlations of occupation numbers in the lattice wells. In
addition, for the ideal gas, we examine the condensate fraction
and its fluctuations.

Our paper is organized as follows. In Sec. II, we introduce
the Aubry-Andre model, review its single-particle properties,
and analyze the energy spectrum. Section III is devoted to the
statistical properties of the gas in two-color optical lattice and
the impact of temperature on the localization properties. We
consider the strongly interacting gas in Sec. IV. Section V
studies the properties of the off-resonant light scattered on
noninteracting and strongly interacting gases in disordered
potentials systems and discusses distinguishability of different
phases with this method. Section VI presents the conclusions
and three appendices give some technical details on exact

023607-11050-2947/2012/86(2)/023607(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.023607


KRZYSZTOF JACHYMSKI AND ZBIGNIEW IDZIASZEK PHYSICAL REVIEW A 86, 023607 (2012)

calculations of the statistical quantities in the canonical
ensemble.

II. BOSE-HUBBARD MODEL FOR DISORDERED SYSTEM

We consider a one-dimensional (1D) Bose gas in the optical
lattice in the presence of a weak disorder. We assume that the
gas is sufficiently cold and its dynamics takes place only in the
lowest Bloch band. In such a case, the dynamics is governed
by the Bose-Hubbard Hamiltonian [37]

H = −J
∑
〈i,j〉

g
†
i gj + U

2

∑
i

ni(ni − 1) +
∑

i

niεi (1)

with an additional term describing the onsite energies εi due
to the disorder [17,18]. Here, gi and g

†
i are the annihilation

and creation operators of bosons at lattice site i, respectively,
ni = g

†
i gi is the particle-number operator at site i, and J and U

are the energy scales corresponding to the tunneling between
wells and the onsite interaction. In our approach, we consider
disorder induced by a bichromatic optical lattice potential [15]

V (x) = s1Er1 sin2(k1x) + s2Er2 sin2(k2x + φ). (2)

Here, ki = 2π/λi are the wave numbers of the light beams
creating the standing wave, Ei = h2/2mλ2

i are the recoil
energies, si are the heights of the two lattice potentials in
units of recoil energies, φ is a relative phase between two laser
beams, and m is the atom mass. We will denote the ratio of
the wave numbers k1/k2 as β. For s1Er1 � s2Er2, the first
lattice generates the periodic structure of the potential, while
the second lattice generates weak quasiperiodic modulation of
the potential wells. In this case,

εi = � cos(2πβi + 2φ). (3)

Here, � is the measure of the disorder strength. It
can be expressed in terms of the Wannier states w(x)
localized in the wells of the first lattice [38]: � =
Er1

s2β
2

2

∫
dξ cos(2βξ ) |w(ξ )|2.

The case of an ideal gas U = 0 at zero temperature has been
extensively studied in the literature [15,38,39]. The disorder
introduced in this Hamiltonian is pseudorandom, and it has
been shown that even in one dimension the eigenstates of the
single-particle Hamiltonian are not localized for low �, in
contrast to the standard Anderson localization [14]. Instead,
if β is an irrational Diophantine number, there is a transition
from extended to localized states. In particular case of β =
(
√

5 − 1)/2, the transition occurs at � = 2 J , which is a self-
dual point [15,40]. In practice, the system of atoms in an
optical lattice has a finite size, therefore, it is sufficient that β

is a rational number and the periodicity of the onsite energy
modulation εn is larger than the system size.

III. IDEAL GAS

In this section, we consider the statistical properties of
an ideal gas confined in a quasiperiodic potential. We start
by studying the single-particle properties, then we study the
statistics of the gas at finite temperatures.

A. Single-particle states

In the case of an ideal gas (U = 0), the elementary
excitations of the Hamiltonian (1)

H = −J
∑
〈k,l〉

g
†
kgl + �

∑
k

nk cos(2πβk) (4)

have been already studied by Aubry and Andre [15]. As
the Hamiltonian is quadratic, it can be easily diagonalized
in the basis of states describing atoms localized in a single
potential well. In this way, the single-particle states |	n〉 and
corresponding single-particle energies εn can be expressed as

H |	n〉 = εn|	n〉, (5)

|	n〉 =
∑

i

cn
i g

†
i |�〉, (6)

where |�〉 denote the vacuum state, and cn
i are expansion

coefficients. We calculate the energy spectrum and eigenstates
of the model numerically. In the original formulation of
the Aubry-Andre model, β is irrational and the system is
quasiperiodic. In this case it is impossible to use periodic
boundary conditions. In practice, however, it is sufficient to
use a rational β with sufficiently large system so that the
periodicity of the energy modulation εm is equal to the system
size. A practical way to do that is to use Fibonacci numbers
fi , setting β = fn−1/fn and M (the number of lattice sites)
to fn. Most of the numerical results in this work are obtained
using M = 144 and β = 89/144, which is a sufficiently good
approximation.

Figure 1 shows the energy spectrum for different strengths
of the disorder. When � = 0, the energy spectrum is just a
lowest Bloch band, as in the Bose-Hubbard model. When the
disorder increases, some energy levels tend to form groups,
separated from the others by energy gaps. The effect is
strongest for � = 2 J , for even larger � the spectrum becomes
more regular again. The behavior of the ground and the
first excited states for different values of � is shown on
Figs. 2 and 3. The ground state for � = 0 is almost uniformly
distributed over the whole lattice. When � gets larger, the
probability distribution becomes nonuniform and some lattice
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FIG. 1. Energy spectrum of the Aubry-Andre Hamiltonian (4)
for M = 610 lattice sites and for different values of the disorder
amplitude �.
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FIG. 2. Probability distribution |c0
i |2 of finding atoms in different

lattice sites for atoms in the ground state and for various disorder
strengths �. We use logarithmic scale for the y axis to show
exponential localization.

sites are favored. Finally, for � = 2 the ground state becomes
exponentially localized in a single site. In contrast, for the same
value of �, the first excited state exhibits two maxima localized
in two distant lattice wells. For even larger �, however, the
first excited state becomes localized in a single lattice well. We
have verified that a similar behavior occurs for higher excited
states.

B. Statistical properties at finite temperatures

We now examine the properties of noninteracting gas in
a bichromatic lattice at finite temperature. As the grand-
canonical ensemble predicts unphysically large condensate
fluctuation at ultralow temperatures when the ground state is
macroscopically populated, the ultracold ideal gas of atoms has
to be described either in the microcanonical or the canonical
ensemble [41–43]. The microcanonical ensemble assumes the
perfect isolation of the system from the environment, while the
canonical assumes that the system is in contact with a heat bath
of certain temperature: kBT = 1/β. Both ensembles correctly
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FIG. 3. Similar to Fig. 2, but for the first excited state. For � =
4.5 J , the dominating left peak is two orders of magnitude stronger
than the other.

describe the fluctuations and correlations of an ideal gas at
low temperatures. In our approach, we apply the canonical
ensemble. Its partition function Z(β,N ) can be defined as

Z(β,N ) =
∞∑

n1=0

∞∑
n2=0

. . .

∞∑
n∞=0

e−β
∑

ν nνεν δ(
∑

i ni ,N), (7)

where ni denote the number of particles occupying the
eigenstate with energy εi , and N is the total number of
particles. The presence of a discrete delta function δ assures
that only partitions with the total number of particles equal
to N contribute to the sum. For a noninteracting system, the
partition function and all the other statistical quantities may be
computed using the recurrence formulas (see Appendix A for
details), based on the formula obtained in [44]:

Z(β,N ) =
N∑

n=1

∑
ν

e−nβεν Z(β,N − n), (8)

where we should take Z(β,0) = 1. All the calculations in this
paper were performed in canonical ensemble.

C. Ground-state population behavior

Having calculated the partition function, we can get the
ground-state population and its fluctuations. The numerical
results are presented on Fig. 4. First, we observe the growth
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FIG. 4. (Color online) Top: number of ground-state atoms ob-
tained in canonical ensemble for different values of �, compared with
the analytical model predictions. Bottom: fluctuations of the number
of ground-state atoms. Dashed lines show the results obtained within
the Maxwell-Demon approach. N = 300.
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of fluctuations. However, as the ground-state population
decreases with temperature, so should its fluctuations. The
maximum of δN0 occurs at certain characteristic temperature
which depends on disorder strength. We have developed
a simple analytical model to explain this behavior and to
give some estimate on the characteristic temperature of
the maximum of fluctuations. This model is based on two
observations. First, one may notice that the shape of the
energy spectrum for the lowest states may be approximated
by a parabola. Second, the occupation of the ground state
is large at low temperatures and thus it can be treated as a
particle reservoir for excited states. For such a system, we
may use the technique of Maxwell-Demon ensemble [43,45].
When applied to the system we consider, one may obtain a
characteristic temperature Tc = 6aN/π2, which determines
the regime when the ground state becomes macroscopically
populated (see Appendix B for details), and below Tc the
ground-state population may be described by the formula

〈N0〉CN

N
≈ 1 − T

Tc

. (9)

Above the characteristic temperature, too many atoms become
excited and the Maxwell-Demon method is not applicable. We
observe that the model is reliable below temperature at which
about a half of the particles become excited.

D. Mean number and fluctuations

In this section, we analyze the mean and fluctuations of
the number of particles in the wells of the optical lattice.
In Figs. 5 and 6, we show the mean occupation numbers
and its fluctuations calculated for some sample parameters:
N = 300 particles, disorder amplitude � = 2.5 J , and for
various temperatures of the atomic gas. The peaks correspond
to localized states that are centered at various lattice sites.
At low temperatures, the peaks are distributed symmetrically
around the central peak, corresponding to the ground state.
The remaining peaks result from the contribution of excited
states. As the temperature increases, the number of populated
states gradually grows and so does the number of peaks. A
similar effect can be observed for fluctuations. It turns out that
the behavior of fluctuations can be qualitatively understood
assuming thermal character of the fluctuations for each lattice
site separately:

〈δ2ni〉 = 〈ni〉 (〈ni〉 + 1). (10)

This formula works particularly well at high temperatures. The
comparison between the exact results and the model is shown
on Fig. 6.

E. Correlations between sites

For completeness of the analysis, we present the correla-
tions 〈ninj 〉 − 〈ni〉〈nj 〉 between the number of particles in
different lattice sites, calculated in the canonical ensemble.
The correlations for various values of disorder strength are
shown in Fig. 7. It appears that the correlations between
strongly occupied sites are the largest. For large disorder,
the correlations are mainly negative, which results from the
conservation of the total number of particles in the canonical
ensemble: the more particles occupy a certain localized state,
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FIG. 5. Mean number of particles in each lattice obtained in the
canonical ensemble for M = 144 sites, N = 300 particles, fixed
value of the disorder strength � = 2.5 J , calculated for various
temperatures.

the less are left for the other states. The positive values appear
only between the lattice sites where the localization occurs.
In contrast, at low disorder, the correlations are positive only
between neighboring sites, which correspond to the diagonal
and to the corners of the graph. This results from the fact that
at low disorder all the excited states are spread along several
sites.

IV. STRONGLY INTERACTING GAS
IN A QUASIPERIODIC POTENTIAL

A. Hamiltonian

When the particles are strongly interacting, we may neglect
the tunneling term in the Hamiltonian (1) in comparison to the
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FIG. 6. (Color online) Number fluctuations of particles in each
lattice site obtained in the canonical ensemble for M = 144 sites,
N = 300 particles, fixed value of the disorder strength � = 2.5 J ,
calculated for various temperatures. The blue (dotted) lines show the
thermal approximation.

remaining terms. This yields

H = U
∑

k

nk(nk − 1) + �
∑

k

nk cos(2πβk). (11)

Now, there are only two energy scales given by U and �, and in
the subsequent analysis we will express � in units of U . In the
Hamiltonian (11), the different lattice sites are decoupled, thus
the only correlation between sites is due to the conservation of
the total number of particles. For such a system, the partition
function

Z(N,β) =
∑
n1

. . .
∑
nM

e−β
∑

εini−βU
∑

ni (ni−1)/2δ∑
ni ,N (12)

can be calculated exactly using a recurrence relation. We have
developed a recurrence algorithm to calculate the partition
function (12), which can be derived by adding one lattice site
in each step of the recurrence (see Appendix C for details).

B. Statistics of the strongly interacting gas in the
presence of disorder

We have analyzed the mean particle number and fluctua-
tions in the wells in the case of strongly interacting gas in
quasiperiodic potentials. As the tunneling process is neglected,
the localization is not present and the only effects influencing
the mean and fluctuations results form the variation of the
chemical potential at different lattice wells. This statement is
confirmed by the analysis of numerical results shown in Fig. 8.
We have performed numerical calculations for a moderate-
size system containing M = 89 sites and N = 2M particles.
We observe that both mean and fluctuations vary stronger
from site to site as the amplitude of disorder increases. The
correlations between occupation numbers at different sites for
some example value of � are presented in Fig. 7. As the sites
are uncoupled in the Hamiltonian (11), the correlations result
only from the constraint on the total number of particles, and
they are strongest for sites with highest occupation numbers.

V. PROBING THE STATISTICAL PROPERTIES
OF THE SYSTEM WITH LIGHT SCATTERING

We consider the possibility of distinguishing between
different many-body phases of ultracold atoms in disordered
potentials. This can be done, for instance, by measuring the
properties of the correlation functions. One of the possible
tools that can bring information about the correlation function
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FIG. 8. (Color online) Sample graph for mean occupation number
(top) and its fluctuations (bottom) for M = 89 sites, N = 2M , kBT =
0.5 U , and various �.

is the measurement of the properties of light scattered on
ultracold atoms. Previously, the atom-light interactions were
suggested as a method to detect Bose-Einstein condensation in
an ultracold gas [25], BCS transition in ultracold fermions [27],
statistics of ultracold atomic gases [26], or distinguishing
between quantum phases of ultracold atom in optical lattices
[31–34].

Let us consider the gas of ultracold atoms in an external
potential interacting with a weak and far-detuned laser with
frequency ωL. Treating the atoms as two-level systems, it is
possible to adiabatically eliminate the excited state and obtain
the effective Hamiltonian. In this way, we can calculate the
mean number of scattered photons with wave vector k and
polarization ε per unit time per solid angle [32]

∂2N

∂t∂�
= �2c2

k

δ2
L

π

2
F (q), (13)

where � = ElεLd/h̄ is the Rabi frequency, δL is the detuning
of the laser, ck = gkεkd/h̄, q = k − kL, |k| = |kL| (elastic
scattering), El stands for the electric field of the laser with
polarization εL, d is the atomic dipole moment, gk is the
coupling constant, and

F (q) =
∫

d3x

∫
d3y eiq·(x−y)〈ψ†(x)ψ(x)ψ†(y)ψ(y)〉 (14)

carries the information about the statistics of the system.
Function F (q) is defined as the Fourier transform of the second
correlation function. It is equivalent to the static structure
factor [32], and in the rest of the work we will refer to F (q) as
the static structure factor.

A. Light scattering from bosons in an optical superlattice

We now show how to extract the information on correlations
from the intensity of light scattered at different angles. For a
single atom, one can show that F (q) = 1 [26], so F represents
the difference between scattering from one atom and from the
many-body system. In the following, we will focus solely on
the properties of the structure factor. By expanding the field
operators into Wannier states, we get an equivalent formula
for F :

F (q) =
∑

n,n′,m,m′
〈n|eiq·r|n′〉〈m|e−iq·r|m′〉〈g†

ngn′g†
mgm′ 〉 (15)

The matrix elements 〈n|eiq·r|n′〉 are calculated between
Wannier states localized in sites n and n′. We will consider
the deep lattice regime where Wannier states are strongly
localized and hence the terms with n 	= n′ are negligible. This
approximation is valid when the lattice potential depth is of the
order of several recoil energies. In this regime, we may also
use Gaussian approximation of the Wannier states. Formula
(15) simplifies to

F (q) =
∑
n,m

〈n|eiq·r|n〉〈m|e−iq·r|m〉〈nnnm〉

=
∑
n,m

|f0(q)|2eiq(rn−rm)〈nnnm〉, (16)

where

f0(q) =
∫

d2r |w0(r)|2 eiq·r. (17)

The term q · (rn − rm) may be rewritten as γ (n − m), where

γ = π
λ

λL

(cos β − cos α), (18)

λ is the wavelength of the laser forming the primary optical
lattice, and λL is the wavelength of the probing laser. Angle β

FIG. 9. (Color online) Experimental setup for light scattering.
The optical lattice is illuminated by the laser set at angle α. The
detector is set at angle β.
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FIG. 10. (Color online) The averaged spectrum of scattered photons for the Aubry-Andre model for different values of � and T . The
probing beam is set at the angle α = π/2. For � < 2 J , the system is in the superfluid state, while for larger � it is in the localized regime.

is the angle at which the detector is set and α is the angle of
the probing laser (see Fig. 9).

It is instructive to split F (q) into two parts Fclass and Fquant

[31], where

Fclass(q) = |f0(q)|2
∣∣∣∣∣
∑
m

eiq·rm 〈nm〉
∣∣∣∣∣
2

(19)

represents the so-called classical component of the scattered
light. It is obtained by calculating the average |〈akλ〉|2, which is
proportional to the amplitude of the electric field square. The
difference between the total function F (q) and the classical

part defines the quantum component [31]

Fquant(q) = |f0(q)|2
∑
n,m

eiq(rn−rm)(〈nnnm〉 − 〈nn〉〈nm〉). (20)

It gives information about quantum statistical effects in the
system. Splitting F (q) into these two parts is particularly
useful when comparing Mott insulator and superfluid phases,
as both of them are homogeneous so they differ only in the
quantum component [31,32]. Here, this will not be the case,
as the system is inhomogeneous and already the classical
components of various quantum phases are different.
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For the homogeneous phase with density n, the classical
part of F can be expressed as

Fclass(q) = |f0(q)|2 n2 sin2 [Mπλ/2λL(cos β − cos α)]

sin2 [πλ/2λL(cos β − cos α)]
, (21)

which gives us intuition that as M or λ/λL increases,
F (q) should oscillate faster. This quantity has already been
measured in experiment for a two-dimensional Mott insulator
[24].

B. Scattering from localized and delocalized phases

We now use the method described above to analyze the
possibility to distinguish localized and delocalized phases in
the Aubry-Andre model. We will use the results obtained in
the canonical ensemble and presented in the previous chapter.
There are many parameters which can be varied in calculations
and in experiment: the number of particles N , number of lattice
sites M , temperature T , primary lattice depth s1, probe laser
wavelength λ, and the angle at which the detector is set α.
We set N = 300, M = 144, s1 = 5, λ = λl (the lattice laser
wavelength), and α = π/2 and examine how the spectrum of
scattered photons changes with growing � and temperature.

As shown on Fig. 10, the growth of � causes additional
interference peaks to emerge. This results from the influence
of the second lattice, which generates additional momenta k2,
k1 − k2, etc., in the system. Similar observation was made
in [11], where the impact of the second lattice on the noise
correlations was studied experimentally. As � crosses the
transition point, due to incommensurability of the lattices,
the angular distribution flattens as the number of interference
peaks goes to infinity. As a result, we are able to detect
localization for high � as well as observe the growing impact
of the secondary lattice for low disorder.

High temperature rises the number of excited particles
and disturbs the angular distribution of photons in two ways.
Below the transition point � = 2 J , it reduces the visibility
of the interference peaks. For higher �, the presence of
several localized states produces the interference peaks in the
distribution which would not be present at T = 0.

C. Scattering from strongly interacting gas

We now analyze the scattered spectrum for the strongly
interacting gas, keeping the parameters of the bichromatic
lattice unchanged and setting M = 89 and N = 2M . Sample
pictures are shown on Fig. 11. In the absence of disorder
� = 0, the ultracold Bose gas forms a Mott insulator, and in
such a case it was predicted that the angular distribution of
scattered photons should exhibit the pattern of interference
fringes, with a set of minima where there are no scattered
photons [31]. This is due to the contribution from the classical
component, while the quantum part is zero due to the absence
of the correlations. In contrast to the previous works, in our
calculations we include the effects of the correlations between
wells due to the constraint on the total number of particles in
the canonical ensemble. This gives rise to the nonzero quantum
component, and as the result the minima are no longer present
in the angular distribution.
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FIG. 11. (Color online) The angular distribution of scattered
photons for the strongly interacting gas for different values of �

and T . The probing beam is set at the angle α = π/2.

For growing disorder, we again observe the appearance of
new peaks in the spectrum. In this case, they reflect the fact that
the additional lattice of different period was added and the gas
has a new density profile. However, there is no localization,
so there is no qualitative change for growing �. The angular
distribution will flatten only in the limit � → ∞. This means
that in principle it should be possible to distinguish the strongly
interacting phase from the localized phase, which may be
useful in examining the role of interactions in disordered
systems.

VI. CONCLUSIONS

In conclusion, we studied the statistical properties of a
Bose gas confined in a bichromatic optical lattice at finite
temperature. We considered two limits when the Hamiltonian
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can be diagonalized exactly: the ideal gas, when there are
no interactions, and strongly interacting gas, when one can
neglect the interwell tunneling. We analyzed the mean,
fluctuations, and correlations between lattice site occupation
numbers for the Bose-condensed phase, localized phase, and
strongly interacting phase. We have shown that some important
information about the structure factor can be extracted using
light scattering, which makes it possible to distinguish different
phases and explore the phase diagram experimentally.
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APPENDIX A: CALCULATING THE STATISTICAL
QUANTITIES FOR AN IDEAL GAS

In this appendix, we derive a recurrence formula allowing
for calculation of the canonical partition function of the
noninteracting gas exactly [44]. Let us denote the probability
of finding exactly n particles in a given state μ as pμ(n). It may
be calculated as p�

μ (n) − p�
μ (n + 1), which represent the prob-

abilities of finding at least n (or n + 1, respectively) particles
in an eigenstate μ. Probability p�

μ (n) is given by the formula

p�
μ (n) = 1

Z(β,N )

∞∑
n1=0

. . .

∞∑
n∞=0

e−β
∑

ν nνεν δ(
∑

i ni ,N). (A1)

By changing the summation index ñμ = nμ − n, we obtain
exactly a formula for the partition function of a subsystem of
N − n particles Z(β,N − n) with prefactor e−nβεμ/Z(β,N ).
Therefore,

pμ(n) = e−nβεμ
Z(β,N − n)

Z(β,N )
− e−(n+1)βεμ

Z(β,N − n − 1)

Z(β,N )
.

(A2)

With this result, we can easily calculate the mean
occupation number of state μ directly from its definition
〈nμ〉 = ∑N

n=1 npμ(n) and using (A2), obtaining

〈nμ〉 = 1

ZN

N∑
n=1

e−βnεμZN−n. (A3)

Summing 〈nμ〉 over all states, we obtain the desired formula
for the partition function

Z(β,N ) =
N∑

n=1

∑
ν

e−nβεν Z(β,N − n). (A4)

For calculating the fluctuations of the occupation number for
a single site, as well as the correlations of the occupation
numbers between different sites, we need to express 〈nknl〉 in
terms of the partition function. Let us denote the probability
of finding exactly n particles in state α and m particles in state
γ by pαγ (n,m). This parameter may be calculated similarly
to (A2), using p�

αγ (n,m) defined as the probability of finding
at least n particles in state α and at least m in state γ . This

quantity fulfills the following relation:

pαγ (n,m) = p�
αγ (n,m) + p�

αγ (n + 1,m + 1)

−p�
αγ (n,m + 1) − p�

αγ (n + 1,m). (A5)

Similar calculations as for the mean occupation yield

p�
αγ (n,m) = e−nβεα−mβεγ

Z(β,N − m − n)

Z(β,N )
. (A6)

Next, we calculate 〈nαnγ 〉 from the definition
〈nαnγ 〉 = ∑

n,m nmpαγ (n,m) and using (A5). After
straightforward calculations, we get

〈nαnγ 〉 = 1

Z(β,N )

N∑
n=1

N∑
m=1

e−nβεα−mβεγ Z(β,N − m − n).

(A7)

Now, we are in position to calculate the mean occupation
numbers and correlations between different sites of the
optical lattices. Formally, correlations between two lattice
sites are given by the trace of density matrix ρ̂ with operators
n̂i n̂j . For the canonical ensemble ρ̂ = e−βĤ /Z(β,N ), so
〈ninj 〉 = Z−1(β,N )Tr{e−βĤ n̂i n̂j }. Because ρ̂ has a simple
form only in the basis of Hamiltonian eigenstates, we have to
find the relation between creation and annihilation operators of
single-particle eigenstates b̂α and lattice sites ĝi numerically.
By expressing the mean values of site operators by mean
values of eigenstate operators and utilizing the fact that the
number of atoms is constant so only certain terms are nonzero,
we obtain

〈ninj 〉 =
∑

α

∣∣cα
i

∣∣2 ∣∣cα
j

∣∣2 〈
n2

α

〉 + ∑
α 	=η

∣∣cα
i

∣∣2 ∣∣cη

j

∣∣2〈nαnη〉

+
∑
α 	=η

cα�
i c

η

i c
η�

i cα
j 〈nαnη〉 +

∑
α 	=η

cα�
i c

η

i c
η�

i cα
j 〈nα〉

=
∑
α,η

∣∣cα
i

∣∣2∣∣cη

j

∣∣2〈nαnη〉

+
∑
α 	=η

cα�
i c

η

i c
η�

i cα
j (〈nαnη〉 + 〈nα〉), (A8)

as well as the formula for the mean occupation numbers

〈ni〉 =
∑

α

∣∣cα
i

∣∣2 〈nα〉. (A9)

APPENDIX B: IDEAL BOSE GAS WITH QUADRATIC
ENERGY SPECTRUM

Let us consider a gas of noninteracting bosons in an external
trap with the quadratic energy spectrum εk = ak2, where a is
constant. We use the Maxwell-Demon ensemble technique to
compute the mean number of excited particles in the canonical
ensemble. As an intermediate step, we take the generating
function (for detailed derivation of Maxwell-Demon ensemble
technique, see [43])

ln �e(z,β) = −
∞∑

k=1

ln
(
1 − ze−βak2)

, (B1)
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where z = e−βμ is called the fugacity. The expectation value
of the total number of excited particles is given by 〈Nex〉CN =
z ∂

∂z
ln �e(z,β)|z=1, which yields

〈Nex〉CN =
∞∑

k=1

e−βak2

1 − e−βak2 =
∞∑

k=1

e−βak2/2

2 sinh[(βak2)/2]
. (B2)

In the low-temperature limit βa � 1, we may keep only the
first term in series expansion of sinh and exp functions,
obtaining

〈Nex〉CN ≈ 1

aβ

∞∑
k=1

1

k2
= π2kBT

6a
. (B3)

The whole number of particles is simply N = 〈N0〉 + 〈Nex〉,
so

1 = 〈N0〉CN

N
+ π2kBT

6aN
. (B4)

At the characteristic temperature Tc, the ground-state oc-
cupation becomes macroscopic. From this observation, we
conclude that the characteristic temperature of the gas is given

by kBTc = 6aN/π2, and that below Tc

〈N0〉CN

N
≈ 1 − T

Tc

. (B5)

APPENDIX C: PARTITION FUNCTION FOR THE
STRONGLY INTERACTING GAS

For the strongly interacting gas, the recurrence formula
(A4) does not hold, but we may use the fact that the
Hamiltonian separates the lattice sites and we can develop
a different method. We start from definition

Z(N,β) =
∑
n1

. . .
∑
nM

e−β
∑

εini−βU
∑

ni (ni−1)/2δ∑
ni ,N . (C1)

Due to the separation of the lattice sites, the partition function
for the first m lattice sites Z(N,β,m) can be expressed by
Z(N,β,m − 1):

ZN (β,m) =
∑
nm

e−β[εmnm− U
2 nm(nm−1)]ZN−nm

(β,m − 1). (C2)

Calculation of the occupation numbers, fluctuations, and
correlations may be done in a similar manner.
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