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In earlier work [Phys. Rev. A 65, 043412 (2002)] we examined the description of atom-radiation coupling in
terms of the multipolar Hamiltonian rather than the minimal coupling one, and reached the conclusion that the

simple operator DSF (r) = { r, r < r0
r0, r � r0

constitutes a good approximation to the full electric interaction, Hel. Unlike

the standard length form of the electric dipole approximation (EDA), DSF (r) does not increase indefinitely.
Instead, it stops at r0 = 3λ/8, where λ is the wavelength, and then remains constant. This theoretically founded
simplification of Hel has obvious computational advantages over Hel, while at the same time accounts for effects
beyond the EDA. The present paper discusses the elucidation of the singularities of the free-free matrix elements
using DSF (r) and state-specific, energy-normalized, numerical scattering functions in polyelectronic atoms, and
explains how their computation can be done efficiently. Accurate knowledge of such matrix elements is critical
to the quantitative solution of time-dependent or time-independent problems involving various multiphoton
processes that are induced by strong fields and involve off-resonance coupling between extended wave functions
representing high-n Rydberg states of the discrete spectrum or asymptotically unbound states of the continuum.
For completeness, the singularities of the EDA are also derived and discussed within the present approach.

DOI: 10.1103/PhysRevA.86.023420 PACS number(s): 32.80.Rm, 33.80.Rv

I. INTRODUCTION

A. Nonperturbative solution of the time-dependent
Schrödinger equation

The impressive developments in the science and technology
of preparation and control of strong or/and short radiation
pulses (SSRPs) of a very broad spectrum of wavelengths, from
the infrared to the soft x-ray region, gave birth to a fundamen-
tally new time-dependent many-electron problem (TDMEP):
that of having to solve from first principles the time-dependent
Schrödinger equation (TDSE) nonperturbatively, for situations
where an initial ground or excited atomic or molecular state
with an arbitrary polyelectronic structure interacts with one or
more SSRPs. Such interactions induce absorption of one or
more photons, with the system normally undergoing transition
to the continuous spectrum of one or more free particles.
When the field is strong, the evolution of the system and
the concomitant phenomena (e.g., above threshold ionization)
depend not only on on-resonance absorption of photons inside
the continuum, but also on off-resonance couplings.

Even though there has been progress in the understanding
of fundamental processes using simple models and formal
simplifications, the fact remains that, apart from basic phe-
nomenology, the complete and quantitative aspects of the
atomic (molecular) physics depends on the interplay of the
characteristics of the pulse(s) with the energies and with
the actual electronic structures and interchannel couplings
of the free-atom (molecule) states in the discrete and in the
continuous spectrum. (For molecules, the TDMEP may be
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accompanied by considerations of possible processes due to
vibration, rotation, and fragmentation.)

Given the challenge of the aforementioned TDMEP, two
decades ago we argued and started demonstrating on proto-
typical systems that such TDMEPs can be solved efficiently
and reliably via the standard expansion approach, provided that
the wave functions are chosen so as to correspond accurately
to the physical states of the discrete and of the continuous
spectrum. The method was named the state-specific expansion
approach (SSEA) [1,2]. Here, we recall its essence in order to
set the stage for the justification and results of the present
work. We are concerned with the field-induced evolution
over electronic states only, with implementation to atomic
electronic structures.

The starting point is the formal expansion of |�(t)〉 in a
complete N -electron, multichannel function space of station-
ary states in the discrete and in the continuous spectrum. The
key feature and argument of the SSEA is to use, in conjunction
with the problem of interest, reliable as well as manageable
state-specific N -electron wave functions, i.e., wave functions
that have been obtained in direct correspondence with the
electronic structure of each discrete, |m〉, or scattering, |ε〉,
state, in terms of which |�(t)〉 is expressed as (we omit the
index for each possible channel)

|�(t)〉 =
∑
m

am(t) |m〉 +
∫

0
bε(t) |ε〉 dε. (1)

Each wave function in Eq. (1) has its own symmetry and
radial characteristics, with most of them belonging to sets
that are known as perturbed or unperturbed channels. The
channel is defined by the series of same-symmetry Rydberg
and scattering wave functions. Normally, we compute their
outer orbital numerically by the fixed-core, term-dependent
Hartree-Fock method. (When necessary and possible, the core
includes the significant near-degeneracy correlation effects). In
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this way, one obtains a structure-dependent N -electron basis
set where intrachannel coupling is eliminated.

In all problems requiring the determination of |�(t)〉
nonperturbatively, i.e., requiring the solution of the TDSE to
all orders of perturbation theory, in principle all of the terms
in Eq. (1) which are allowed by the symmetry of the total,
time-dependent Hamiltonian are coupled. The significance of
their direct or indirect contribution to a particular property or
phenomenon depends on the characteristics of the problem.

The symbols |m〉 represent bound N -electron state-specific
wave functions. Based on their zero-order configurational
labels, these represent valence and low- and high-lying
Rydberg states, as well as multiply excited and inner-hole
states. Electron correlation is incorporated judiciously in terms
of methods of multiconfigurational Hartree-Fock (MCHF) and
of configuration interaction with optimized orbitals [3].

The symbols |ε〉 represent energy-normalized scattering
states (also called free or continuum states). ε is the energy
of the free electron above the threshold of the channel. In
practice, their number is large (in the many thousands), and
emerges directly from the chosen range of the energy inside the
continuous spectrum and from the size of the energy step inside
this range. The final values of these parameters are chosen
having as criteria the accurate evaluation of integrals, reliable
convergence, and the economy of the overall computation.
The use of numerically accurate, energy-normalized, channel-
dependent basis sets of electron scattering functions, which
satisfy the proper boundary conditions in the asymptotic
region, secures flexibility as well as reliability to the overall
calculation of |�(t)〉, and of properties such as time-dependent
transition probabilities and photoelectron angular distribu-
tions. At the same time, as explained below, it requires special
handling of free-free transition matrix elements, especially
when the two energy states are nearly or exactly degenerate.

The emphasis on carrying out state-specific calculations
of wave functions, using, depending on the case, polyelec-
tronic theory and appropriate computational methods, e.g.,
Refs. [1–3], has serious advantages in the quest for the reliable
solution of TDMEPs. In the context of the present topic, we
mention two of them:

(1) It is clear that the characteristics of, say, a compact
and strongly correlated doubly excited state, regardless of
its position in the energy spectrum, are very different from
those of Rydberg states, whose outer orbital may extend to
thousands of atomic units with very many oscillations and
nodes. Therefore, if a TDMEP requires consideration of both
types, it is evident that a common fixed one-electron basis set
(e.g., “Gaussians,” Slater type, or B splines) cannot represent
them reliably in a tractable way. The same holds, in general,
when basis sets are used for the representation of the states
in the continuous spectrum of multielectron systems. This
spectrum is not smooth, except for possible restricted regions.
On the contrary, it is normally perturbed both by interchannel
coupling and by the presence of unstable states (resonances)
whose electronic structure (multiply or inner-hole excited)
requires the use of different function spaces than those which
can represent, to some approximation, the smooth continuum.

(2) By using energy-normalized wave functions with the
rigorous asymptotic boundary conditions, instead of approx-
imations to them represented by expansions in terms of

box-normalized fixed basis sets, it is possible to understand and
handle systematically the structure of the diagonal free-free
matrix elements (see below) and, consequently, to avoid possi-
ble failures in the quantitative computation of observables [4].

B. Matrix elements

The substitution of the form (1) into the TDSE converts it
into a system of coupled integro-differential equations, whose
numerical solution produces the complex time-dependent
mixing coefficients am(t) and bε(t), whose absolute value
squared, |am(t)|2 and |bε(t)|2dε, defines directly the occu-
pation probability of each corresponding stationary energy
state, provided one uses the electric field gauge or chooses the
solution |�(t)〉 at the points of time over a field cycle where
the vector potential �A(t) vanishes [1,5].

The numerical input which is needed for the solution of
the coupled equations consists of the state-specific stationary
energies and of the bound-bound (b-b), bound-free (b-f),
and free-free (f-f) matrix elements of the total Hamiltonian,
H(t) = H + V (t). H is the field-free Hamiltonian and V (t) is
the time-dependent interaction between the atom (molecule)
and the radiation pulse.

The original formulation and implementation of the SSEA
to electronic transitions [1] adopted the electric dipole approx-
imation (EDA) to the full atom-field interaction in the velocity
form, in which the coupling is (1/c) �A(t) · �p·�p is the momen-
tum operator for the electrons and �A(t) satisfies �∇ · �A(t) = 0
(Coulomb gauge), and has no dependence on �r (EDA), e.g.,
Ref. [6]. In view of the fact that the f-f matrix elements of the
�p operator give rise to troublesome singularities as ε′ → ε,
the calculation of the f-f integral with the fixed-core Hartree-
Fock, state-specific, energy-normalized, numerical scattering
orbitals was done by transforming the integrals of �p into
integrals of ∼ 1

r2 (acceleration form), which converge without
difficulty, and by implementing a methodology that combines
numerical and analytic [Wentzel-Kramers-Brillouin (WKB)]
techniques [1,7].

Since the present work deals with the issue of the compu-
tation of f-f transition matrix elements in conjunction with the
form of the coupling operator, it is appropriate here to recall
certain facts from the background to the problem of computing
rigorously and practically the f-f dipole matrix element which
arises from the presence of singularities at points ε′ = ε.
Such diagonal matrix elements are necessary not only for
the nonperturbative solution of the TDSE via the SSEA but
also in any time-independent, high-order perturbation theory
of multiphoton transitions in the continuous spectrum.

The coupling operator (1/c) �A(t) · �p is the one to which
the minimal coupling atom + field Hamiltonian [i.e., the full
interaction using the vector potential �A(�r,t) in the Coulomb
gauge] is reduced in the EDA. On the contrary, the length
operator of the EDA, �r , represents the reduction of the multi-
polar Hamiltonian, which expresses the full electric interaction
in terms of the electric field �E(�r,t) to the form �E(t) · �r
[6], where �E(t) = − 1

c
∂
∂t

�A(t). Manipulation with commutators
or differential equations yields a third coupling operator in
the EDA, the Kramers-Henneberger (KH) frame [8], which,
for a Coulomb potential, has the form − Z

|�r−�α(t)| , where
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�α(t) = − 1
c

∫ t

−∞ dt ′ �A(t ′). In lowest order of its expansion, the

KH interaction gives the acceleration operator, Z�α(t)·�r
r3 .

Operators of the form 1
rq , with the integer q � 2, when

used in matrix elements with Coulomb functions or, in the
many-electron case, with scattering Hartree-Fock numerical
functions, lead to convergent integrals, without the difficulties
of singularities that characterize the length and the velocity
operators. The utility of such operators for the convenient
computation of f-f integrals with Coulomb functions was
demonstrated long ago in the context of nuclear physics [9].
This fact was utilized decades ago by Peach [7] and, later,
along the same lines, by Seaton [10,11], for the computation
of off-diagonal f-f matrix elements in the EDA. Nevertheless,
even in the methods used in Refs. [7,10,11], the severe
difficulties of accurate and practical integration of the diagonal
(equal energies) radial integral of r involving the sinusoidal
asymptotic parts of the two states in the neighborhood of
ε′ = ε, where it diverges, remain. (For f-f transitions, the main
formulas of Refs. [7,10,11] neglect a term which is important
at large radii and at equal energies—see Sec. III). As Seaton
observed, his formulas “cannot be used when (E − E′) is very
small” (p. 2610 of Ref. [11]).

Finally, one may ponder on the implementation of the KH
frame [8] (also loosely called the acceleration gauge) in order
to solve the TDSE with a coupling operator which is dominated
by the 1/r2 dependence. As already said, this dependence
eliminates the troublesome singularities from the diagonal
f-f dipole integrals which arise from the sinusoidal boundary
condition of the energy-normalized scattering functions in the
asymptotic region. The use of the KH-transformed TDSE has
indeed been explored computationally by the grid method,
albeit with model one-dimensional systems [12] which have
very little to do with real, N -electronic structures and spectra of
atoms or molecules. Of course, for the one-electron hydrogenic
atom, such a nonperturbative treatment of the TDSE for strong
fields is, in principle, a tractable alternative. However, for real
many-electron systems this endeavor would not be convenient,
or economical, or reliable. Apart from the formal requirements
of practical significance, such as transformation of wave
functions [8,12] so as to obtain time-dependent coefficients
with the meaning of amplitudes of probability, the degree of
accuracy is expected to be low and unreliable when using
approximate wave functions. This is because, when used in
integrals of N -electron systems with bound antisymmetrized
wave functions, the KH interaction would pick up 1/r2-like
contributions from the short-range portion of the integrand,
where the wave functions of the two N -electron states must
be known very accurately. A discussion on the general issue
of the choice and reliability of the three EDA operators in
N -electron integrals was given decades ago in connection
with the calculation of oscillator strengths of one-photon
transitions [13].

C. The special case of the hydrogenic atom

In the special case of the hydrogenic atom, where the field
is purely Coulombic and the exact eigenfunctions are known
analytically, the b-b, b-f, and f-f matrix elements were obtained
already in 1929 by Gordon [14] for the dipole length form

of the EDA. He did this by establishing a recursion relation
that has as its reference point a known integral involving
hypergeometric functions of the type F (a,b; c; z). A summary
of those results is given in the Appendix of Landau and
Lifshitz [15] on hypergeometric functions. The derivation of
this result has also been given by Alder et al. [9] based again
on recursion relations involving hypergeometric functions.

In spite of their analytic form, Gordon’s [14] formulas are
not numerically free of trouble [15–21]. This fact is linked to
the last argument of F (a,b,c,z), which is − 4kk′

(k+k′)2 . As k′ → k

(i.e., ε′ → ε), this term goes to unity, and at that point this
form of hypergeometric function does not converge [22].

The need to compute the length dipole integral correctly for
off-diagonal and especially for diagonal (ε′ = ε) matrix ele-
ments became prominent in the 1980’s in the context of time-
independent perturbation theory for multiphoton processes
where free-free transitions occur. The early papers pointed
out the significance of the diagonal matrix elements in the
EDA, but did not tackle the mathematics of the singularity for
ε′ → ε, even in hydrogen, e.g., Refs. [23,24]. Indeed, for the
Coulomb potential this was done for the first time, at different
levels, by Pan [17,18], by Madajczyk and Trippenbach [19],
and by Véniard and Piraux [20]. (See also Korol’s subsequent
contributions [21].) They employed the EDA in hydrogen and
elucidated the nature of the singularity which exists when the
free-electron energies coincide in the hydrogenic integrals,

〈R�(ε)| r|R�±1(ε′)〉 (2)

and ∫ ∞

0
dε′ 〈R�(ε)| r|R�±1(ε′)〉C(ε′). (3)

R�(ε) is the radial Coulomb function and C(ε) is a continuous
function whose first derivative exists at ε′ = ε [20]. We recall
that the source of the irregularities in the f-f integrals is the
asymptotically unbound behavior of the wave functions in con-
junction with the form of the operator. Our work in Refs. [1,2,4]
on the nonperturbative solution of the many-electron TDSE
had to face this problem when numerical scattering functions,
computed with a fixed-core, term-dependent potential, are
employed.

Finally, it is worth adding that, as in various problems of
scattering theory, the results of Refs. [19–21] were obtained
with the help of the introduction inside integrals of a
convergence factor, such as e−ξr , with ξ → 0 in the final
formulas. In the computational context an alternative type
of regularization procedure for eliminating the divergence in
f-f dipole length integrals caused by the asymptotic form of
the free-electron wave function has been explored by Gao
and Starace [25] and by Chrysos and Fumeron [26]. They
implemented exterior complex scaling, a technique which was
initially introduced in atomic physics for the regularization
of resonance eigenfunctions [27,28], and argued that “the
exact value of the integral is defined by a cusp, loop or
inflection on a well-defined θ -trajectory, analogously with
resonance quantization” (p. 3118 of Ref. [26]). The numerical
results that were presented in Refs. [25,26] were obtained for
pairs of different energies. It is a moot point whether such
procedures will be economical and/or practical for the reliable
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computation and handling of dipole integrals for the same, or
nearly the same, energy states.

D. The cases of polyelectronic structures and of the full
atom-radiation interaction

In contradistinction to the special case of the hydrogen
atom, when tackling TDMEPs the one-electron scattering
functions are not known analytically. Instead, methods have
been developed where they are computed either numerically in
the physically determined potential and with rigorous asymp-
totic boundary conditions, or, in terms of an expansion in some
type of finite basis set with imposed box normalization. The
latter approach, apart from having limitations and disadvan-
tages when it comes to dealing with arbitrary polyelectronic
structures where multichannel coupling occurs and where
resonances are embedded in the scattering continuum, does
not guarantee the accurate accounting of the effects of the
singularities when ε′ ≈ ε or ε′ = ε, especially when both ε′
and ε are very close to threshold [4].

Furthermore, there is an issue which has hardly been
addressed in practice, with the exception of the work reported
in Refs. [29–32]. Specifically, it was pointed out that the EDA
cannot be justified a priori for matrix elements involving
wave functions of very large range (e.g., Rydberg levels with
large quantum numbers), or of unlimited range, as are the
state-specific energy-normalized scattering wave functions.
In view of this uncertainty, we developed a theory [30–32]
for the practical implementation of the full atom-radiation
interaction, in the multipolar Hamiltonian formalism [6]. The
first term of the expansion of this Hamiltonian produces the
dipole interaction in the length form [6]. In an application
to the excitation of Rydberg wave packets in the hydrogen
atom [32], it was shown that “off-resonance couplings lead
to differences between the full-interaction operator and the
EDA which cannot be neglected. In the extreme case of
intrashell couplings for the n = 50 shell, calculation shows
that the 50p state is coupled to angular momentum states up to
� = 21, compared to the electric dipole coupling of 
� = ±1”
(abstract of Ref. [32]).

In the work reported here, we investigated the rigorous as
well as practical computation of f-f matrix elements such as
those of Eqs. (2) and (3), except that now this computation
engages the full electric interaction operator in the simplified
form that was introduced in Refs. [30,32]—see the next
section. This operator [Eq. (9)] is finite at infinity and its
singularities exhibit the features of those of the EDA velocity
operator, which have the form

P
f1(ε,ε′)
ε − ε′ + f2(ε,ε)δ(ε − ε′), (4)

where the functions f1 and f2 are smooth functions and P
stands for principal value.

Expressions such as (4) are much simpler to handle
numerically than that which is produced by the EDA length
operator. The conclusions also hold for Rydberg-free matrix
elements, where the Rydberg wave function is very extended
and its turning point is way beyond the limiting radius r0

[Eq. (10)], whose value is established by theory [30,32].

II. STATEMENT OF THE PROBLEM

As regards the mathematical exploration of the singularities
of the diagonal field-induced coupling matrix elements, it is
sufficient to consider only the contribution from the asymptotic
part of the eigenfunctions. However, this is not enough for
the accurate computation of matrix elements such as those
of Eqs. (2) and (3) in polyelectronic systems. Instead, this
computation requires accurate knowledge of the two energy-
normalized scattering wave functions over the whole range
of the radius as obtained numerically in the field of a term-
dependent potential. This is critical for the calculation of the
energy integrals of the type (3), which are the ones entering the
procedure of integration of the TDSE. We note that, in the case
studied here, these integrals involve a coupling operator which
represents the full electric interaction operator in a simplified
form—see below.

As an example, we cite Korol’s [21] discussion and results
for the structure of the diagonal singularity of the EDA f-f
matrix elements, using the model potential V (r) = V0 (r) − Z

r
,

where V0(r) is a short-range potential. He used the asymptotic
form of the Coulomb function, to which a phase shift due to
V0(r) can be added. The model assumes that the asymptotic
form of the Coulomb functions starts beyond the point where
V0(r) is zero. When it comes to the ab initio calculation of
matrix elements, this assumption is not generally helpful,
since, especially for small energies and/or large angular
momenta, the exact wave function differs significantly from
the asymptotic behavior. Figure 1 provides an example of the
difference between the exact hydrogenic wave function and its
asymptotic form for � = 30. This difference is evident from
the inspection of the WKB formula (D3) of Appendix D as
compared with Eq. (15).

A. The simplified form of the full electric operator

Apart from the issue of having to handle f-f matrix
elements with energy-normalized scattering functions, or b-b
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FIG. 1. The energy normalized scattering wave function of the
hydrogen atom (solid black line), for angular momentum � = 30 and
energy 0.01 a.u., compared to its asymptotic form given in Eq. (15)
(solid light gray line).
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and b-f integrals with extended state-specific Rydberg orbitals,
obtained numerically, the aim of the work reported here was
to understand the mathematical structure of these matrix
elements when a different coupling operator is used. This
operator accounts for effects beyond the EDA. It has emerged
from the judicious simplification of the full electric interaction
of the multipolar Hamiltonian (see below) and, because of
its simple form, constitutes a computationally practical tool,
in distinct contrast to the case of the exact form of the full
electric interaction operator.

The electric part of the multipolar Hamiltonian can be
written as [6]

Hel = e
∑

j

∫ 1

0
�rj · �E(λ�κ · �rj )dλ, (5)

where �κ is the wave vector of the radiation and �E is the electric
field.

Assuming a plane-wave form for the electric field and
taking its polarization along the x axis, while the z axis is
chosen in the direction of �κ , we have obtained an expression
of the above Hamiltonian in terms of integrals of spherical
Bessel functions multiplied by an angular part containing
the Y±1

� (θ,ϕ) spherical harmonics [30,32]. Specifically [see
Eqs. (A5) and (6) of Ref. [30], the radial parts are given by

(2� + 1)F�(r) = (2� + 1)

κ

∫ r

0
dr ′ 1

r ′ j�(κr ′), (6)

where κ is the wave number andj�(r) is the regular spherical
Bessel function.

The present work is concerned with the first term of the
expansion, defined by � = 1. We call this term the dipole
coupling part of the full operator. For small values of its
argument, j�(x) ≈ x�

(2�+1)!! . Substituting this expression into the
above integral for � = 1 we obtain the usual dipole length form,
3F1 ≈ r . On the other hand, for large values of its argument,
the function F�(r) becomes [30]

F�(r) → 1

κ
c� − 1

κ2

∫ ∞

r

dr ′ 1

r ′2 sin(κr ′ − �π/2), (7)

where c� is the value of the integral from 0 to ∞:

c� =
√

π�(�/2)

2(� + 1)�(�/2 + 1/2)
. (8)

� is the gamma function. For � = 1 one has c1 = π/4.
Thus, we reach the conclusion that for sufficiently large

values of r , the operator F� reaches a constant value, and
this is true for all values of �. This is in contrast to the EDA
(small κ), where the values of the length operator increase
indefinitely.

Based on such results, we suggested [30] the use of
a different operator for practical calculations, which is a
simplified form of the dipole coupling part of the full electric
operator and is strongly suggested by the plot of 3F1 (Fig. 2).
This operator is

DSF (r) =
{

r, r < r0,

r0, r � r0,
(9)
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FIG. 2. Plot of the full electric operator 3F1, Eq. (6), for � = 1
(solid light gray line) vs the model operator of Eq. (9) (solid black
line), both multiplied by the photon wave number k.

where the value of r0 depends on the wave number of the
radiation, through the relation

r0 = 3π/4κ = 3λ/8. (10)

In words, the operator DSF (r) has the length form up to
a point r0, which is determined by the wavelength of the
radiation, and remains constant from then on. For example,
for radiation of wavelengths 400 or 10 nm, the corresponding
limits are r0 ≈ 2830 a.u. or r0 ≈ 71 a.u. We recall that the mean
value of r for the 7p orbital of hydrogen is 72.5 a.u. Hence, it
is evident that, for problems of multiphoton processes induced
by strong fields, where the coupling requires the consideration
of all types of matrix elements, on and off resonance, such data
indicate that the EDA often may be inadequate when pairs of
Rydberg or of scattering states need to be coupled [30–32].

In the next section, we give the theory for the structure and
calculation of matrix elements involving the operator DSF (r),
Eq. (9), as well as those involving EDA, so that a comparison
between the two operators can be made.

III. THEORY

We consider the radial integral of DSF (r) and write∫ ∞

0
dryklDSF (r)yk′l′ =

∫ r0

0
drykl r yk′l′ + r0

∫ ∞

r0

dryklyk′l′ ,

(11)

where l is the angular momentum quantum number.
For a nonhydrogenic atom, the first integral is calculated

numerically up to a radius rc, beyond which the core orbitals
are not important. In most cases of wavelengths, rc is smaller
than r0. Consequently, the rest of the integral, as well as
the second one, involves functions resembling the hydrogenic
ones. We write this part as∫ ∞

rc

dryklDSF (r)yk′l′ = Dkl;k′l′ (rc,r0) + r0Skl;k′l′(r0). (12)
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The overlap Skl;k′l′(r0) is the subject of Appendix A, while
the dipole matrix element Dkl;k′l′(rc,r) is analyzed below
[see Eq. (18)]. For r → ∞, the asymptotic form of the wave
function for k > 0 is

ykl =
√

2

πk
sin

(
kr + Z

k
ln r + δkl

)
+ O

(
1

r

)
, (13a)

where

δkl = σl(k) + Z

k
ln k − lπ/2 + δv

kl . (13b)

σl(k) is the Coulomb phase shift and δv
kl is the additional phase

shift caused by the nonhydrogenic terms. The above wave
function is energy normalized in the sense

∫ ∞

0
dryklyk′l′ = 1

k
δ(k − k′) = δ(ε − ε′). (14)

As regards the normalization of Eq. (14), we note that
the literature contains a few types of normalization for the
wave functions of the continuous spectrum. The condition
of Eq. (14) is the most appropriate one, since it leads to
wave functions that are finite at the ionization threshold ε = 0
(see Appendix D).

For the analysis of the problem in terms of the dipole
operator, a more accurate form of the asymptotic expression
of ykl is needed. This is given by

ykl =
√

2

πk

(
1 − ak

r

)
sin

(
kr + Z

k
ln r + δkl

)

+
√

2

πk

bkl

r
cos

(
kr + Z

k
ln r + δkl

)
+ O

(
1

r2

)
,

(15)

where

ak = Z

2k2
and bkl = l(l + 1) + (Z/k)2

2k
. (16)

Expression (15) can be obtained either from the confluent
hypergeometric function or, more generally, from the WKB
wave function (see Appendix D).

Below we shall derive the form of a matrix element of the
EDA length operator involving functions of the continuous
energy spectrum. We compare the singular part of the matrix
element at equal energies with the expression derived by other
investigators who employed analytic Coulomb wave functions.
We then describe the modifications resulting from the use of
DSF (r), Eq. (9).

A. Matrix elements between positive-energy wave functions

For values of the radial distance r larger than rc, where the
effect of core orbitals becomes negligible, any one-electron
model of the atomic Hamiltonian assumes the hydrogenic
form. Years ago, Peach [7] derived a procedure for the

calculation of the dipole matrix element for r > rc,

Dkl;k′l′ (rc,r) ≡
∫ r

rc

drykl r yk′l′ , (17)

which she expressed as

(ε − ε′)2Dkl;k′l′(rc,r) =
∫ r

rc

dr
Z

r2
yklyk′l′ − [Xkl;k′l′ (r)

+ (ε − ε′)rWkl;k′l′(r)]rrc
. (18)

Here, X is defined as the function

Xkl;k′l′(r) = 1

2

[
Dll′

r2
− 2Z

r
− (ε + ε′)

]
yklyk′l′ − 1

2

dykl

dr

dyk′l′

dr

+ Cll′

r
Wkl;k′l′(r), (19)

with

Dll′ = 1
2 l(l + 1) + 1

2 l′(l′ + 1) and

Cll′ = 1
2 l(l + 1) − 1

2 l′(l′ + 1). (20)

Also, the function Wkl;k′l′(r) is defined [see Appendix A,
Eq. (A7)] as

Wkl;k′l′ (r) ≡ 1

2

[
yk′l′

d

dr
ykl − ykl

d

dr
yk′l′

]
. (21)

We point out that the quantities Xkl;k′l′ and Wkl;k′l′ vary
wildly as functions of energy, and this implies the exercise
of caution when they are used as integrands. This behavior is
made explicit by invoking the WKB form of the wave functions
in Appendix D.

In Appendix A, a procedure similar to the one of Peach [7]
is used to derive the overlap between two positive energy wave
functions. Using the integral

S−2
kl;k′l′(r) ≡

∫ ∞

r

dr ′ 1

r ′2 yklyk′l′ (22)

introduced in Eq. (A6) and discussed in Appendix B for wave
functions having reached their asymptotic behavior, Eq. (18)
is written in a symmetrical form as

(ε − ε′)2Dkl;k′l′(rc,r)

= ZS−2
kl;k′l′ (rc) + Xkl;k′l′(rc) − ZS−2

kl;k′l′(r) − Xkl;k′l′(r)

+ (ε − ε′)[rcWkl;k′l′ (rc) − rWkl;k′l′(r)]. (23)

The above expression requires that at k = k′,

ZS−2
kl;kl′ (rc) + Xkl;kl′(rc) = ZS−2

kl;kl′ (r) + Xkl;kl′(r) (24)

and

∂

k∂k

[
ZS−2

kl;k′l′(rc) + Xkl;k′l′ (rc)
]
k→k′ + rcWkl;kl′(rc)

= ∂

k∂k

[
ZS−2

kl;k′l′(r) + Xkl;k′l′(r)
]
k→k′ + rWkl;kl′(r). (25)

The limit k → k′ is indicated in Eq. (25) because
∂
∂k

S−2
kl;k′l′ (r) is singular at k = k′ [see Eq. (B13)]. Since the
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same expression appears on both sides of Eqs. (24) and (25)
for two different values of r , we conclude that, in the limit
k → k′, the expressions are independent of this variable. Given
that the wave functions take the form of simple trigonometric
functions at very large distances, we need only to examine the
quantities on the right-hand side of the above expressions in the
limit r → ∞.

We point out that in Eq. (34) of Ref. [7], which is the
analog of our Eq. (18), in the limit r → ∞ the expression
in the brackets is considered to be zero. In the context of a
rigorous treatment, this is incorrect. In fact, this term, which
is also omitted in Seaton’s treatment [10,11], gives rise to the
principal values and δ functions of Eq. (49) whose contribution
to the computation of the diagonal f-f matrix elements cannot
be ignored.

Substituting in Eq. (19) the asymptotic form of y given by
Eq. (13), we obtain

lim
r→∞ Xkl;k′l′(r) = − (k + k′)2

4π
√

kk′ lim
R→∞

cos[(k − k′)R + δkl − δk′l′]

+ (k − k′)2

4π
√

kk′ lim
R→∞

cos[(k + k′)R + δkl + δk′l′],

(26)

where we put R = r − Z
kk′ ln r , as in Appendix A. Note that

limr→∞ S−2
kl;kl′(r) = 0. Then, at k = k′, Eq. (24) takes the form

ZS−2
kl;kl′ (rc) + Xkl;kl′(rc) = − k

π
cos(δkl − δkl′). (27)

Taking the derivative of Eq. (26) with respect to k we have

lim
r→∞

∂

∂k
Xkl;k′l′(r) = (k + k′)2

4π
√

kk′

(
R + ∂δkl

∂k

)
lim

R→∞
sin[(k − k′)R + δkl − δk′l′ ] − (k + k′)

2π
√

kk′ lim
R→∞

cos[(k − k′)R + δkl − δk′l′]

− (k − k′)2

4π
√

kk′

(
R + ∂δkl

∂k

)
lim

R→∞
sin[(k + k′)R + δkl + δk′l′] + (k − k′)

2π
√

kk′ lim
R→∞

cos[(k + k′)R + δkl + δk′l′]

− 1

2k
Xkl;k′l′(r), (28)

which gives, for the energy derivative at k = k′,

lim
r→∞

∂

k∂k
[Xkl;k′l′ (r)]k=k′

=
(

r − Z

k2
ln r + ∂δkl

∂k

)
1

π
sin(δkl − δkl′)

− 1

πk
cos(δkl − δkl′) − 1

2k2
Xkl;k′l′(r). (29)

From Appendix B we obtain

lim
k→k′

∂

k∂k
ZS−2

kl;k′l′(r)

= − Z

2k2
sgn(k − k′) cos(δkl − δkl′)

+ Z

πk2
[γ + ln |k − k′| + ln r] sin(δkl − δkl′)

− Z

2k2
S−2

kl;kl′ (r) + O

(
1

r2

)
. (30)

The coefficient − 1/2 of the last term in Eqs. (29) and (30)
is peculiar to the energy-normalized wave function. [In general
the asymptotic form (13a) involves a factor k−q , where q = 0,
1/2, or 1.] Note that the term containing the ln r in Eq. (30)
cancels the corresponding term in Eq. (29). The cancellation
of the r term comes from the Wkl;k′l′ (r) term in Eq. (25). Let

lim
r→∞ Wkl;k′l′ (r) = W

(0)
kl;k′l′(r) + 1

r
W

(−1)
kl;k′l′(r). (31)

Using the limiting form (15) in the definition (21), we get

W
(0)
kl;k′l′ (r) = − (k + k′)

2π
√

kk′ lim
R→∞

sin[(k − k′)R + δkl − δk′l′]

+ (k − k′)

2π
√

kk′ lim
R→∞

sin[(k + k′)R + δkl + δk′l′]

(32)

and

W
(−1)
kl;k′l′(r) = − (k + k′)

2π
√

kk′ (bkl − bk′l′ )

× lim
R→∞

cos[(k − k′)R + δkl − δk′l′]

+ (k − k′)

2π
√

kk′ (bkl + bk′l′)

× lim
R→∞

cos[(k + k′)R + δkl + δk′l′], (33)

where, according to the definition (16),

bkl ∓ bk′l′ = (k ± k′)
Cll′

2kk′ + (k ∓ k′)

×
[

Dll′

2kk′ + Z2

2kk′ u(k, ±k′)
]

, (34)

and u is a function whose exact form is not important. Thus,

lim
r→∞ rWkl;kl′(r) = − r

π
sin(δkl − δkl′) − Cll′

πk
cos(δkl − δkl′).

(35)
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Adding (29)–(31) we finally derive an expression that is
independent of the variable r:

∂

k∂k

[
ZS−2

kl;k′l′ (rc) + Xkl;k′l′(rc)
]
k→k′ + rcWkl;kl′(rc)

= −
(

1

2
+ Cll′

)
1

πk
cos(δkl − δkl′) + ∂δkl

∂k

1

π
sin(δkl − δkl′)

− Z

πk2
sgn(k − k′) cos(δkl − δkl′)

+ Z

πk2
[γ + ln |k − k′|] sin(δkl − δkl′). (36)

In order to compare with expressions derived in Refs. [19,20],
we must produce expressions for ∂δkl

∂k
as well as for the sine

and cosine of δkl − δkl′ .
To this purpose, we differentiate the r-independent part of

the phase δkl , as given by Eq. (13b), to obtain

∂δkl

∂k
= ∂σl(k)

∂k
− Z

k2
ln 2k + Z

k2
+ ∂δv

kl

∂k
. (37)

The Coulomb phase shift is expressed as the argument of
the � function,

σl(k) = arg �

(
l + 1 − i

Z

k

)
≡ Im

{
ln

[
�

(
l + 1 − i

Z

k

)]}
.

(38)

Therefore,

∂σl(k)

∂k
= Z

k2
Re

{
ψ

(
l + 1 − i

Z

k

)}
, (39)

where ψ(z) = d
dz

ln �(z) is the digamma function. Further-
more,

σl(k) = σ0(k) −
l∑

s=1

tan−1

(
Z

ks

)
. (40)

In what follows we specialize the formulas for the case l′ =
l ± 1.

Then, for l> = max(l,l ± 1), we get

σl(k) − σl±1(k) = ± tan−1

(
Z

kl>

)
. (41)

Therefore,

δkl − δkl±1 = ± tan−1

(
Z

kl>

)
± π

2
+ δv

kl − δv
kl±1. (42)

Then,

cos(δkl − δkl±1) = − Z/k∣∣l> + i Z
k

∣∣ cos
(
δv
kl − δv

kl±1

)

∓ l>∣∣l> + i Z
k

∣∣ sin
(
δv
kl − δv

kl±1

)
, (43a)

sin(δkl − δkl±1) = ± l>∣∣l> + i Z
k

∣∣ cos
(
δv
kl − δv

kl±1

)

− Z/k∣∣l> + i Z
k

∣∣ sin
(
δv
kl − δv

kl±1

)
. (43b)

The above expressions may be summarized as

exp[i(δkl − δkl±1)] = ± i
l> ± i Z

k∣∣l> + i Z
k

∣∣ exp
[
i
(
δv
kl − δv

kl±1

)]
.

(44)

This form is the same as the ones of Eqs. (3.2) and (3.8) of
Ref. [20], remembering that for hydrogen the phase shifts δv

kl

are zero. The additional phase shifts in Eq. (44) are due to the
core. Note also that Cll±1 = ∓l> in Eqs. (34)–(36).

Now, we express the dipole matrix element of Eq. (23) in
terms of its two components:

Dkl;k′l′(rc,r) ≡ Dkl;k′l′(rc) − Dkl;k′l′(r), (45)

where

Dkl;k′l′(r) = 1

(ε − ε′)2

[
ZS−2

kl;k′l′ (r) + Xkl;k′l′(r)
]

+ 1

ε − ε′ rWkl;k′l′ (r). (46)

As we have shown above, the matrix elements are finite
at ε = ε′ for finite values of r . Below, we shall examine two
cases: (a) r → ∞ and (b) r = r0· r0 is defined in Eq. (10). In
both cases, it is convenient to write the matrix elements in the
energy region ε ≈ ε′ as

Dkl;k′l′(r) = − ∂

∂ε

{
1

(ε − ε′)
[
ZS−2

kl;k′l′(r) + Xkl;k′l′(r)
]}

+ 1

ε − ε′

{
∂

∂ε

[
ZS−2

kl;k′l′ (r) + Xkl;k′l′ (r)
]

+ rWkl;k′l′ (r)

}
. (47)

This form is particularly useful since, as it was shown
above, the quantities inside the brackets of the first term
and inside the curly brackets of the second term become
independent of r in the limit ε → ε′, and thus cancel the
corresponding terms of the Dkl;k′l′ (rc) component. This is
especially convenient when the dipole matrix element of
Eq. (45) appears as the integrand of matrix element (3).
Then, in the energy region ε ≈ ε′, it is beneficial to express
its two components according to Eq. (47) in order to avoid
the square of the energy difference in the denominator
(see below).

B. The case of the EDA and comparison with the results
of Refs. [19,20]

In this case, we take the limit r → ∞. Therefore, we may
omit terms containing k + k′ in the trigonometric functions
because, considered as the kernel of an integral operator, their
contribution is negligible. Taking into account (27) and (36)
and Appendix B, we rewrite (47) in terms of wave numbers in
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the neighborhood k ≈ k′ as

lim
r→∞ Dkl;k′l±1(r) = ∂

k∂k

{
1

π
lim

R→∞
cos[(k − k′)R + δkl − δk′l±1]

k − k′

}
+ 1

πk

∂δkl

∂k
lim

R→∞
sin[(k − k′)R + δkl − δk′l±1]

k − k′

− 1

k2

(
1

2
∓ l>

)
1

π
lim

R→∞
cos[(k − k′)R + δkl − δk′l±1]

k − k′ − Z

2k2

sgn(k − k′)
k − k′ cos(δkl − δkl±1)

+ Z

πk2

[γ + ln |k − k′|]
k − k′ sin(δkl − δkl±1). (48)

In Appendix C, we show how the term containing the derivative together with a similar term arising from Dkl;k′l±1(rc)
can be manipulated in a practical way.

We recall the relations

δ(k − k′) = 1

π
lim

R→∞
sin(k − k′)R

(k − k′)
and P

1

(k − k′)
= lim

R→∞
1 − cos(k − k′)R

(k − k′)
.

Consequently, we can rewrite Eq. (48) as

lim
r→∞ Dkl;k′l±1(r) = ∂

k∂k

{
1

π
cos (δk′l − δk′l±1) lim

R→∞
cos(k − k′)R

(k − k′)
− sin (δk′l − δk′l±1) δ(k − k′)

}

+
{

∂δkl

∂k
cos(δkl − δkl±1) +

(
1

2
∓ l>

)
1

k
sin(δkl − δkl±1)

}
δ(k − k′)

+
{

∂δkl

∂k
sin(δkl − δkl±1) −

(
1

2
∓ l>

)
1

k
cos(δkl − δkl±1)

}
1

π
lim

R→∞
cos(k − k′)R

(k − k′)

− Z

2k2

sgn(k − k′)
k − k′ cos(δkl − δkl±1) + Z

πk2

γ + ln |k − k′|
k − k′ sin(δkl − δkl±1). (49)

The last line contains singular terms resulting from the energy
derivative of S−2

kl;k′l′(r) that cancel similar terms in S−2
kl;k′l′(rc).

Note that the quantities multiplying limR→∞ cos(k−k′)R
(k−k′) in

the above expression equal the value of the corresponding
quantities in Dkl;k′l′ (rc) for k = k′. Therefore, they simply give
rise to principal value integrals. The same is true for the last
two terms in Eq. (49).

In the hydrogenic case, we can put rc = 0, in which
case, since ykl ≈ rl+1 for small values of r , the component
Dkl;k′l′(rc) becomes simply

Dkl;k′l′ (0) ≡ ZS−2
kl;k′l′(0)

(ε − ε′)2
, (50)

while the additional phase shifts due to the core orbitals are
zero.

Then, it can be checked that the expression (49) gives
identical results (except for a term that depends on the
normalization), with the expression derived by Véniard and
Piraux [20], who used the analytic properties of the confluent
hypergeometric functions building on an initial derivation by
Madajczyk and Trippenbach [19]. To facilitate the comparison
we note that in the hydrogenic case, the Z

k2 term resulting from
∂δkl

∂k
in Eq. (49) [see expression (37)] cancels the ∓ l>

k
term in

the factor of limR→∞ cos(k−k′)R
(k−k′) while the two add up in the

factor of the δ function to give 1
k

√
l2
> + Z2

k2 δ(k − k′). Such a δ

function results in the aforementioned derivations from a term
resembling the orthogonality relation.

In conclusion, formula (49), which was derived for the
general case of arbitrary polyelectronic atomic states, indeed
reduces to results previously obtained for the particular case of
hydrogen [19,20], where the mathematical analysis is based on
the use of the known eigenfunctions. In practice, the Dkl;k′l′(rc)
component can be obtained to a very good approximation from
fixed-core Hartree-Fock wave functions.

C. The case of the simplified form of the full dipole, Eq. (9)

In this case, we put r = r0, a large enough radius that
depends on the wavelength of the radiation. Although r0 is
finite, limk→k′ Dkl;k′l′ is independent of its value and the results
of the previous section still apply.

According to Eq. (12), for distances greater than r0 the
matrix element becomes r0Skl;k′l′(r0). In Appendix A we prove
that,

Skl;k′l′ (r0) = cos(δkl − δkl′)δ(ε − ε′)

+ P
1

ε − ε′
[
Cll′S

−2
kl;k′l′(r0) + Wkl;k′l′(r0)

]
. (51)

Although DSF , being finite at infinity, behaves better than
the pure length form of the EDA, the resulting matrix elements
are complicated. Specifically, the Dkl;k′l′(r0) component at low
energies may be as complicated as Dkl;k′l′(rc), because the
wave functions have not attained their asymptotic forms. In
this case, a more accurate form than the asymptotic one is
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required, and this is the WKB form (see Appendix D):

ykl =
√

2

π

1√
ζkl(r)

sin ϕkl(r). (52)

In the limit of large distances, for k > 0,

lim
r→∞ ζkl(r) = k and lim

r→∞ ϕkl(r) = kr + Z

k
ln r + δkl . (53)

The WKB wave function is accurate for energies down
to ε = 0 for reasonably small values of r (beyond the inner
turning point). A further advantage of this form relies in the
fact that it allows the explicit computational treatment of
the oscillatory part of the matrix elements. As it is shown
in Appendix D, the expressions for X and W are written in
terms of trigonometric functions of sums and differences of
phases multiplied by amplitudes that vary smoothly with the
energies. These expressions can now be treated as integrands
in the spirit of Filon’s integration, where one fits the smooth
parts, here phases and amplitudes, by low-order polynomials,
and then performs the integrals of the rapidly oscillating parts
analytically. The S−2

kl;k′l′ integrals containing WKB functions
are calculated by a method described by Sil, Crees, and
Seaton [33], which involves deformation of the integration
contours into the complex plane.

IV. SYNOPSIS AND CONCLUDING REMARKS

In the Introduction of this paper, we outlined arguments
having to do with the nonperturbative solution of the time-
dependent many-electron problem (TDMEP) that charac-
terizes a variety of multiphoton processes which can be
generated when intense radiation pulses interact with states
of polyelectronic atoms or molecules. In such processes, it
is crucial for theory and computation to be able to provide
reliable information as to the quantitative aspects of the role
played by the multichannel (in general) continuous spectrum,
without or with resonance states. Our proposed theoretical
framework for the efficient and transparent treatment of such
TDMEPs has been the implementation of the state-specific
expansion approach (SSEA) [1,2].

A thorny issue which emerges in this context is the rigorous
and practical calculation of matrix elements of the atom
(molecule)-field interaction corresponding to both on- and
off-resonance couplings. In this paper, we have presented a
method of calculating free-free (f-f) transition matrix elements
in N -electron atoms of an operator, DSF (r) of Eq. (9), which
is a very good approximation to the full electric operator of
the multipolar Hamiltonian, Eq. (5). These matrix elements can
be used in state-specific treatments of the continuous spectrum
within time-dependent as well as time-independent theoretical
frameworks. (The basics of the analysis also hold for high-n
Rydberg-free transition matrix elements.)

We point out that, as mentioned in Sec. I D, a study of the
solution of the TDSE using the full multipolar Hamiltonian
was carried out in Ref. [32] for a prototypical problem
involving off-resonance couplings of high-n Rydberg states.

The use of DSF (r), which represents the dipole coupling
part of the full operator, can obviously reduce the magnitude
of complexity of problems where the continuous spectrum
acquires physical and computational significance. The need

for computing field-atom coupling matrix elements at a level
of theory that is beyond the electric dipole approximation
(EDA) and employs DSF (r) is linked to the fact that, for
problems where the field is strong, even if the wavelength is not
in the x-ray region, off-resonance matrix elements involving
Rydberg and, mainly, scattering states, may contribute
significantly to the observed physical quantity. In N -electron
systems, the wave functions of such states must be computed
numerically, with the correct asymptotic boundary conditions.
In that case, they either extend to very large distances
(Rydberg) or they are unbound with sinusoidal behavior
(scattering). Therefore, there is no a priori justification for the
use of the EDA in computing the Rydberg-free and (mainly)
the free-free coupling matrix elements.

DSF (r) is depicted in Fig. 2, where it is compared to the
exact behavior of the full electric operator. Its fundamental
characteristic is that it is equal to the usual length operator of
the EDA up to a radial distance r0, which is predicted by theory
via the simple formula (10). From then on, it stops increasing
and becomes finite by remaining equal to the r0.

As regards the mathematical theory and its practical
implementation regarding the computation of free-free matrix
elements, we point to our result of Eq. (45). This matrix
element consists of two terms of the form (46), which become
independent of r at ε = ε′, while the same is true of their
derivatives. By rearranging Eq. (46), we obtain Eq. (47),
which is a convenient expression in the vicinity of the singular
point, since it renders the cancellation between the two terms
obvious. Furthermore, by reducing the second-order pole to a
derivative of the first-order pole, expression (47) facilitates its
use as an integrand in matrix elements of the type of Eq. (3).

Depending on the operator one considers, the outer radius
is either taken to infinity [Eqs. (48) and (49)], or is given the
value r0 specified by the wavelength of the radiation [Eq. (9)].
In the latter case, a different formula, depending on the overlap
instead of the dipole, is used in the region from r0 to infinity
(Appendix A).

We note that the herein derived expression for the diagonal
singularity of the length form of the standard EDA corrects
previously published formulas [7,10,11], by incorporating the
part at infinity which provides the correct behavior at ε = ε′.

The results of this work can be of use in a variety of
problems of current and future interest in the broad subject
of multiphoton processes induced by strong electromagnetic
fields, where the correct accounting of f-f matrix elements may
not be neglected a priori. For example, we point to a recent
publication by Sato et al. [34], who measured the absolute
values of the two-photon ionization cross section of helium at
four different wavelengths in the extreme ultraviolet regime
(53.4–61.4 nm) for pulses of intense free-electron radiation
of duration of 300 fs. The comparison of the experimental
values with all previous theoretical results shows significant
discrepancies (Table 2 and Fig. 3 of Ref. [34]), and this
fact suggests the additional exploration of this prototypical
system, where the high-order, nonlinear contributions of the
continuous spectrum are taken into account rigorously. It is our
intention to implement the SSEA using the formulas for the
matrix elements of the operator DSF (r) reported here in order
to solve the TDSE nonperturbatively and contribute useful
information towards the solution of this open problem [34].
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Finally, we point out that the analysis and computational
methodology presented here should be applicable to the
treatment of relativistic atoms as well as to diatomic molecules,
where energy-normalized scattering wave functions in a fixed
(N − 1) electron core can also be computed numerically. In
this framework, ground or excited bound electronic structures
of diatomic molecules can be calculated via numerical methods
in spheroidal coordinates, including electron correlation, e.g.,
Ref. [35]. Hence, it would be possible to compute numerically
the matrix elements up to the radius rc in spheroidal coordi-
nates, and then apply the present formalism for the outer region
in terms of an effective atomic potential by matching the wave
functions appropriately.

APPENDIX A: OVERLAP OF POSITIVE-ENERGY
WAVE FUNCTIONS

For values of the radial distance r larger than rc, for which
the effect of the core orbitals is negligible, any one-electron
atomic Hamiltonian assumes the form of a hydrogenic one, so
that, for r > rc,

hykl ≡
[
−1

2

d2

dr2
+ l(l + 1)

2r2
− Z

r

]
ykl = εykl. (A1)

We are interested in the region of the continuous energies
ε = k2/2, and we wish to calculate the overlap of two wave
functions corresponding to different values of the angular
momentum l,

Skl;k′l′ (r0) ≡
∫ ∞

r0

dryklyk′l′ , (A2)

for r0 > rc. From Eq. (A1) we obtain

(ε − ε′)
∫ ∞

r0

dryklyk′l′ =
∫ ∞

r0

dr(yk′l′hykl − yklh
′yk′l′).

(A3)

Taking the explicit expression of the Hamiltonian into
account, we write

(ε − ε′)Skl;k′l′(r0) = −1

2

[
yk′l′

d

dr
ykl − ykl

d

dr
yk′l′

]∞

r0

+Cll′

∫ ∞

r0

dryk′l′
1

r2
ykl, (A4)

where

Cll′ = 1
2 l(l + 1) − 1

2 l′(l′ + 1). (A5)

In the spirit of Eq. (A2), let us define

S−2
kl;k′l′(r0) ≡

∫ ∞

r0

dr
1

r2
yk′l′ykl (A6)

and also put

Wkl;k′l′(r) ≡ 1

2

[
yk′l′

d

dr
ykl − ykl

d

dr
yk′l′

]
. (A7)

Then, Eq. (A4) is written as

(ε − ε′)Skl;k′l′ (r0) = − lim
r→∞ Wkl;k′l′(r) + Wkl;k′l′ (r0)

+Cll′S
−2
kl;k′l′(r0). (A8)

For r → ∞, the asymptotic form of y is

ykl =
√

2

πk
sin

(
kr + Z

k
ln r + δkl

)
, (A9)

where

δkl = σl(k) + Z

k
ln 2k − lπ/2 + δv

kl . (A10)

σl(k) is the Coulomb phase shift and δv
kl is the additional phase

shift caused by the nonhydrogenic terms. Therefore,

lim
r→∞ Wkl;k′l(r) = − k + k′

2π
√

kk′ lim
R→∞

sin[(k − k′)R + δkl − δk′l′]

+ k − k′

2π
√

kk′ lim
R→∞

sin[(k + k′)R + δkl+ δk′l′],

(A11)

where the substitution R = r − Z
kk′ ln r has been applied.

Regarded as the kernel of an integral operator, the second
term has no contribution, and can be omitted. Note that for
k = k′, limr→∞ Wkl;kl(r) = − 1

π
sin(δkl − δkl′).

We now discuss two cases. (i) We shall examine Eq. (A8)
initially for the case of a pure hydrogenic Hamiltonian, for
which we can put r0 = 0. In the case l = l′, this expression is
used to define the energy-normalized wave functions. Because
Cll′ = 0, ykl(0) = 0, and Wkl;k′l′ (0) = 0, Eq. (A8) gives

(ε − ε′)Skl;k′l′ = k + k′

2π
√

kk′ lim
R→∞

sin[(k − k′)R]. (A12)

Using the well-known expression for the δ function,

δ(k − k′) = 1

π
lim

R→∞
sin(k − k′)R

k − k′ , (A13)

we finally get

Skl;k′l = 1

k
δ(k − k′) ≡ δ(ε − ε′). (A14)

In the case where l �= l′, the corresponding expression is
slightly more complicated:

(ε − ε′)Skl;k′l′ = Cll′S
−2
kl;k′l′ +

k + k′

2π
√

kk′ lim
R→∞

sin[(k − k′)R

+ δkl − δk′l′]. (A15)

Note that for k = k′ the above expression reduces to

Cll′S
−2
kl;kl′ = − 1

π
sin(δkl − δkl′). (A16)

Now, for k �= k′, Eq. (A15) takes the form

Skl;k′l′ = Cll′

ε − ε′ S
−2
kl;k′l′ +

1

π
√

kk′ lim
R→∞

sin(k − k′)R
(k − k′)

× cos(δkl − δk′l′ ) + 1

π
√

kk′

× lim
R→∞

cos(k − k′)R
(k − k′)

sin(δkl − δk′l′), (A17)

023420-11



KOMNINOS, MERCOURIS, AND NICOLAIDES PHYSICAL REVIEW A 86, 023420 (2012)

which gives

Skl;k′l′ = 1

k
δ(k − k′) cos(δkl − δkl′) + Cll′

ε − ε′ S
−2
kl;k′l′

+ 1

π
√

kk′ lim
R→∞

cos(k − k′)R
(k − k′)

sin(δkl − δk′l′).

(A18)

As a kernel, the last term has no contribution, except for
the value k = k′, where, due to Eq. (A16), it exactly cancels
the second term. Specifically, one of the expressions for the
principal value of (k − k′)−1 is

P
1

(k − k′)
= lim

R→∞
1 − cos(k − k′)R

(k − k′)
.

Therefore, we can write (A18) as

Skl;k′l′ = δ(ε − ε′) cos(δkl − δkl′) + P
Cll′

ε − ε′ S
−2
kl;k′l′ , (A19)

where P stands for principal value integration.
(ii) We shall examine the general case of a Hamiltonian

which becomes hydrogenic asymptotically. Now, r0 has a finite
value and the quantity Wkl;k′l′ (r0) in Eq. (A8) is different from
zero. As a consequence, this term is added to Cll′S

−2
kl;k′l′(r0) in

Eqs. (A16)–(A19). Specifically, Eq. (A16) becomes

Cll′S
−2
kl;kl′(r0) + Wkl;kl′(r0) = − 1

π
sin(δkl − δkl′), (A20)

where the additional phase shifts due to the core are included
in δkl . The final expression is

Skl;k′l′(r0) = cos(δkl − δkl′)δ(ε − ε′) + P
1

ε − ε′

× [
Cll′S

−2
kl;k′l′(r0) + Wkl;k′l′(r0)

]
. (A21)

APPENDIX B: ACCELERATION INTEGRAL
OF POSITIVE-ENERGY WAVE FUNCTIONS

We are interested in the region of the continuous energies
ε = k2/2 and we wish to calculate the acceleration integral of
two wave functions corresponding to different values of the

angular momentum l:

S−2
kl;k′l′ (r) ≡

∫ ∞

r

dr ′ 1

r ′2 yk′l′ykl. (B1)

For energies not at the ionization threshold and for r → ∞,
the asymptotic form of y is

ykl =
√

2

πk
sin

(
kr + Z

k
ln r + δkl

)
,

where

δkl = σl(k) + Z

k
ln 2k − lπ/2 + δv

kl .

σl(k) is the Coulomb phase shift and δv
kl is the additional

phase shift caused by the nonhydrogenic terms. Using standard
trigonometric formulas, (B1) can be written as

S−2
kl;k′l′ (r) = 1

π
√

kk′ cos(δkl − δk′l′ )
∫ ∞

r

dr ′

r ′2 cos(k − k′)R

− 1

π
√

kk′ sin(δkl − δk′l′)
∫ ∞

r

dr ′

r ′2 sin(k − k′)R

− 1

π
√

kk′ cos(δkl + δk′l′ )
∫ ∞

r

dr ′

r ′2 cos(k + k′)R

+ 1

π
√

kk′ sin(δkl + δk′l′)
∫ ∞

r

dr ′

r ′2 sin(k + k′)R,

(B2)

where

R = r ′ − Z

kk′ ln r ′.

For sufficiently large values of r , the logarithmic term
can be neglected in the evaluation of the above integrals.
Performing an initial integration by parts and using the
definition of the sine and cosine integrals

sgn(a)si(|a| r) = −
∫ ∞

r

dr ′ sin(ar ′)
r ′ (B3)

and

ci(|a| r) = −
∫ ∞

r

dr ′ cos(ar ′)
r ′ , (B4)

where sgn(a) is the sign of a, we obtain

S−2
kl;k′l′(r) = 1

π
√

kk′ cos(δkl − δk′l′ )

[
1

r
cos(k − k′)r + |k − k′|si(|k − k′|r)

]
− 1

π
√

kk′ sin(δkl − δk′l′ )

×
[

1

r
sin(k − k′)r − (k − k′)ci(|k − k′|r)

]
− 1

π
√

kk′ cos(δkl + δk′l′)

[
1

r
cos(k + k′)r + (k + k′)si[(k + k′)r]

]

+ 1

π
√

kk′ sin(δkl + δk′l′ )

[
1

r
sin(k + k′)r − (k + k′)ci[(k + k′)r]

]
. (B5)

It is of interest to investigate the behavior of these functions for large values of their argument. To this purpose, we express
them in terms of a pair of auxiliary functions f and g:

si(z) = −f (z) cos z − g(z) sin(z), (B6)

ci(z) = f (z) sin(z) − g(z) cos(z), (B7)

which behave asymptotically as

f (z) ∼ 1

z
and g(z) ∼ 1

z2
.
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Then, for |k − k′|r � 1, (B5) becomes

S−2
kl;k′l′(r) ∼ cos(δkl − δk′l′ )

π
√

kk′(k − k′)r2
sin(k − k′)r

+ sin(δkl − δk′l′ )

π
√

kk′(k − k′)r2
cos(k − k′)r

− cos(δkl + δk′l′ )

π
√

kk′(k + k′)r2
sin(k + k′)r

− sin(δkl + δk′l′ )

π
√

kk′(k + k′)r2
cos(k + k′)r. (B8)

Note that, due to the cancellations in Eq. (B5), r appears
squared in the denominator.

On the other hand, for small values of the argument the sine
and cosine integrals behave as

si(z) ≈ −π

2
+ z, (B9)

ci(z) ≈ γ + ln(z) − 1

4
z2, (B10)

where γ is the Euler constant. As a consequence, the first two
terms in Eq. (B5) exhibit singular behavior in their derivative
in the limit k′ → k.

Specifically, the derivative of the second term has a
logarithmic singularity in this limit, while that of the first
has a step discontinuity at k′ = k. To see this, we examine
the expression (B5) for large values of r0 and small values of∣∣k − k′∣∣, such that

∣∣k − k′∣∣ r � 1. Using (B9) and (B10) we
get

S−2
kl;k′l′(r) ≈ 1

π
√

kk′ cos(δkl − δk′l′)

[
1

r
− π

2
|k − k′|

]

− 1

π
√

kk′ sin(δkl − δk′l′)(k − k′)

× [1 − (γ + ln |k − k′| + ln r)], (B11)

Therefore,

S−2
kl;kl′(r) ∼ cos(δkl − δkl′)

πkr
+ O

(
1

r2

)
→ 0, (B12)

while

lim
k→k′

∂

k∂k
S−2

kl;k′l′(r)

∼ δ′
kl

2k
|k − k′| sin(δkl − δk′l′ ) − (k − k′)

δ′
kl

πk
cos(δkl − δk′l′)

× [1 − (γ + ln |k − k′| + ln r)]

− 1

2k2
cos(δkl − δk′l′ )sgn(k − k′)

+ 1

πk2
sin(δkl − δk′l′)[γ + ln |k − k′| + ln r]. (B13)

Recall that the sign function can be written in terms of the
step function as sgn(x) = 2St(x) − 1.

APPENDIX C: INTEGRALS INVOLVING THE DERIVATIVE
OF INTEGRANDS

We want to examine integrals that contain integrands in the
form of derivatives as those in Eq. (48). Together with a similar

term arising from the dipole component at the radius rc, which
here we symbolize as Fkk′ , we obtain

I =
∫ k′+dk

k′−δk

dkCk

∂

∂k

{
Fkk′

k − k′ − 1

π

cos[(k − k′)R + δkk′]

k − k′

}
,

(C1)

where

Fkk = 1

π
cos δkk. (C2)

We split the integral I = I1 + I2, where

I1 =
∫ k′+dk

k′−δk

dkCk

∂

∂k

{
Fkk′

k − k′ − 1

π
cos δkk′

cos(k − k′)R
k − k′

}
(C3)

and

I2 =
∫ k′+dk

k′−δk

dkCk

∂

∂k

{
1

π
sin δkk′

sin(k − k′)R)

k − k′

}
. (C4)

For R → ∞, the expression inside the brackets in I1 gives
rise to a principal value integral while the corresponding one
in I2 becomes a δ function. The derivative with respect to
k produces second-order quantities whose meaning is made
clear upon integrating by parts:

I1 =
{
Ck

Fkk′ − π−1 cos δkk′ cos(k − k′)R)

k − k′

}k′+δk

k′−δk

−
∫ k′+dk

k′−δk

dk
∂Ck

∂k

{
Fkk′ − π−1 cos δkk′ cos(k − k′)R)

k − k′

}
,

(C5)

I2 =
{
Ck

1

π
sin δkk′

sin(k − k′)R)

k − k′

}k′+δk

k′−δk

−
∫ k′+dk

k′−δk

dk
∂Ck

∂k

{
1

π
sin δkk′

sin(k − k′)R)

k − k′

}
. (C6)

As integrands, the first term in each of the above expressions
gives a zero contribution for R → ∞. The remaining integral
in I1 can be evaluated numerically by fitting the functions
∂Ck

∂k
Fkk′ , ∂Ck

∂k
cos δkk′ , and ∂Ck

∂k
sin δkk′ to polynomials. For

practical purposes, a linear fitting usually seems adequate.
The evaluation of I2 is straightforward since it contains a δ

function.

APPENDIX D: POSITIVE-ENERGY
WKB WAVE FUNCTIONS

We follow the development of Seaton and Peach [36].
Consider the solution of the hydrogenic Schrödinger equation,[

d2

dr2
+ w(r)

]
ykl(r) = 0, (D1)

where

w(r) = k2 + 2Z

r
− l(l + 1)

r2
. (D2)
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For r such that w > 0, i.e., beyond the inner turning point,
the solution of Eq. (D1) is

y =
√

2

π

1√
ζ (r)

sin ϕ(r), (D3)

with the constraint

ζ (r) = ∂

∂r
ϕ(r). (D4)

In order that Eq. (D1) is satisfied,

ζ 2 = w + ζ 1/2 d2

dr2
ζ−1/2. (D5)

Equation (D5) is solved by iteration.
The phase is defined so as to obey, for r → ∞,

ϕ → ϕ∞ ≡ kr + Z

k
ln(2kr) − l

π

2
+ σl, (D6)

The Coulomb phase shift

σl = arg �

(
l + 1 − i

Z

k

)
(D7)

is defined in terms of the � function. Choosing the zero-order
solution of Eq. (D5), one has

ζ0 ≡ √
w =

√
k2 + 2Z

r
− l(l + 1)

r2
(D8)

and

ϕ0 ≡
∫ √

wdr + const, (D9)

where the constant is such that the limit (D6) is satisfied. Then,
as Seaton and Peach [36] have shown,

φ0(r) = ζ r + η ln

(
1 + k + ζ

η
r

)

+
√

l(l + 1) cos−1

[
1 + l(l+1)

ηZr
(ζ r − η)

1 + l(l+1)
η2

]

+
[
σl(η) − η + η ln η − l

π

2

]
, (D10)

where η = Z
k

.
The expression inside the last brackets is finite for k →

0 and the same is true for the whole expression (D10).
Specifically,

φ0(r) = 2
√

2Zr − l(l + 1) +
√

l(l + 1)

× cos−1

(
Zr − l(l + 1)

Zr

)
− lπ − π

4
. (D10a)

We now focus on Eq. (18). Because of the existence of the
term rWkl;k′l′(r), it is necessary to take the limit of y for large
values of r without discarding terms of the order of 1

r
, as is

usually the case in the literature. We start by noting that

ζ → k + η

r
+ O

(
1

r2

)
. (D11)

Then, ϕ → ϕ∞ + b
2kr

, in which case,

y =
√

2

πk

(
1 − a

r

)
sin(ϕ∞) +

√
2

πk

b

r
cos(ϕ∞) + O

(
1

r2

)
,

(D12)

where

a = Z

2k2
and b = l(l + 1) + (Z/k)2

2k
. (D13)

For values of the radial distance r larger than rc, any
one-electron Hamiltonian assumes the hydrogenic form. The
corresponding WKB solution for r > rc is given by Eq. (D3)
with an additional phase shift δv

kl added in the limiting form
(D6) and the last bracket of Eq. (D10).

Using this result, one can evaluate the expressions X and
W of Eqs. (19) and (21), with the wild variation of the matrix
elements as a function of the energy made explicit. First we
note that the derivative of the wave function (D3) is

y ′ =
√

2

π

ζ√
ζ

[cos ϕ + g sin ϕ] , (D14)

where the function

g ≡ − ζ ′

2ζ 2
= 1

r2ζ 3

(
Z − l(l + 1)

r

)
(D15)

is of the order of ( 1
r2 ) if k �= 0, while for k = 0 it is of the order

of ( 1√
r
). Then

y1y2 = 1

π
√

ζ1ζ2
[cos(ϕ1 − ϕ2) − cos(ϕ1 + ϕ2)] , (D16)

while

y ′
1y

′
2 = ζ1ζ2

π
√

ζ1ζ2
[(1 + g1g2) cos(ϕ1 − ϕ2)

+ (1 − g1g2) cos(ϕ1 + ϕ2)]

+ ζ1ζ2

π
√

ζ1ζ2
[(g1 − g2) sin(ϕ1 − ϕ2)

+ (g1 + g2) sin(ϕ1 + ϕ2)] (D17)

and

W12 ≡ 1

2
[y ′

1y2 − y1y
′
2]

= 1

2π
√

ζ1ζ2
[−(ζ1 + ζ2) sin(φ1 − φ2)

+ (ζ1 − ζ2) sin(φ1 + φ2)]

+ 1

2π
√

ζ1ζ2
[(ζ1g1 − ζ2g2) cos(φ1 − φ2)

− (ζ1g1 − ζ2g2) cos(φ1 + φ2)]. (D18)

According to the definition, Eq. (19) of the main text,

X12 = − 1

2π
√

ζ1ζ2
[A−

12 cos(ϕ1 − ϕ2) + A+
12 cos(ϕ1 + ϕ2)]

− 1

2π
√

ζ1ζ2
[B−

12 sin(ϕ1 − ϕ2) + B+
12 sin(ϕ1 + ϕ2)],

(D19)
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where

A−
12 = −

[
D12

r2
− 2Z

r
− (ε1 + ε2) − ζ1ζ2(1 + g1g2)

+ (ζ1g1 − ζ2g2)
C12

r

]
, (D20a)

A+
12 =

[
D12

r2
− 2Z

r
− (ε1 + ε2) + ζ1ζ2(1 − g1g2)

+ (ζ1g1 − ζ2g2)
C12

r

]
, (D20b)

B−
12 =

[
ζ1ζ2(g1 − g2) + (ζ1 + ζ2)

C12

r

]
, (D20c)

B+
12 =

[
ζ1ζ2(g1 + g2) − (ζ1 − ζ2)

C12

r

]
. (D20d)

For the sake of completeness we also give the derivatives
with respect to the wave number:

∂ζ0

∂k
= k

ζ0
, (D21a)

∂ϕ0

∂k
= ζ0

k
r − Z

k2
ln

(
1 + k + ζ0

Z
kr

)
+ ∂σl

∂k
− Z

k2
ln

Z

k
.

(D21b)

Again these expressions, due to cancellations, are finite in the
limit k → 0.
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